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PREFACE

This book contains the edited version of lectures and selected papers presented at the
NATO ADVANCED STUDY INSTITUTE ON COMPUTER AIDED OPTIMAL DESIGN:
Structural and Mechanical Systems, held in Tréia, Portugal, 29th June to 11th July 1986,
and organized by CEMUL - Center of Mechanics and Materials of the Technical University of
Lisbon. The Institute was attended by 120 participants from 21 countries, including leading
scientists and engineers from universities, research institutions and industry, and Ph.D. students.
Some participants presented invited and contributed papers during the Institute and almost all
participated actively in discussions on scientific aspects during the Institute. The Advanced
Study Institute provided a forum for interaction among eminent scientists and engineers from
different schools of thought and young reseachers.

The Institute addressed the foundations and current state of the art of essential techniques
related to computer aided optimal design of structural and mechanical systems, namely: Vari-
ational and Finite Element Methods in Optimal Design, Numerical Optimization Techniques,
Design Sensitivity Analysis, Shape Optimal Design, Adaptive Finite Element Methods in Shape
Optimization, CAD Technology, Software Development Techniques, Integrated Computer Aided
Design and Knowledge Based Systems. Special topics of growing importance were also pre-
sented.

This book is organized in eight parts, each one addressing a technical aspect of the field of
Computer Aided Optimal Design:

Part I : Variational Methods in Optimal Design

Part II : Numerical Methods in Optimal Design

Part III : Shape Optimal Design

Part IV : Multilevel and Interdisciplinary Optimal Design

Part V : Optimal Design of Mechanical Systems

Part VI : Knowledge Based Systems in Optimal Design

Part VII : Integrated CAD/FEM/OPTIMIZATION Techniques and Applications
Panel Discussion : Trends in Computer Aided Optimal Design

The foundations and recent developments of variational and finite element methods and
mathematical programming techniques, applied to the optimal design and control of elastic and
nonlinear structures, are presented by leading scientists.

Several contributors address different methods for shape optimal design of structures, in-
cluding recent research on boundary element methods in shape optimal design, design sensitivity
analysis and optimal design of nonlinear structures, adaptive finite element methods for shape
optimization and the practical implementation of shape optimal design in commercially available
software.

In this book special emphasis is placed on the integration of CAD techniques for geometric
modelling, finite element analysis and optimization methods. Several academic and industrial
specialists reviewed the current state of development. A critical review of the available com-
mercial codes is presented. Some researchers have integrated all these techniques in codes and
applied them to the design of structures in aerospace, aircraft and car industries. These appli-
cations show that the integration of these techniques into standard tools for practical design is
a major factor for industrial usage of computers in design of structural systems.

Other papers presented or submitted to the Advanced Study Institute, but not included in
this book, are published in a Special Issue of the Journal of Engineering Optimization in 1987.



Without the sponsorship and financial support of the Scientific Affairs Division of NATO,
National Aeronautics and Space Administration, National Science Foundation and United States
Air Force the Institute and this book would not have been possible. The financial support of
all other sponsors also contributed decisively to the success of the Institute.

The Editor deeply appreciated all the advice and help in organizing the Institute given by
Dr. Craig Sinclair and the late Dr. M. di Lullo, both of the Scientific Affairs Division of NATO.
[ am indebted to all members of the Organizing Committee (Prof. J.E. Taylor, Prof. E.J. Haug,
Dr. J. Sobieski, Dr. L. Berke, Prof. C. Fleury and Dr. H. Hornlein) for the outstanding work
that led to a very successful Institute. I am also grateful to all authors for their effort in writing
the lectures and papers in time, allowing this book to be published as planned.

Special thanks to CEMUL staff, Ms Gléria Ramos, Ms. Alexandra Confeiteiro and Mr.
Amandio Rebelo, for their effort in administrative planning and support of the Institute.

I am very grateful to my family, Maria do Rosario and our daughter Joana Sofia, for all the
support during the organization of the Institute and of this book. Special thanks for my uncle
Hermano Cabral for the video and magnetic tape of the Panel Session of the Institute

Lisbon, December 1986

Carlos A. Mota Soares
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BASIC FORMULATIONS FOR DISTRIBUTED PARAMETER
STRUCTURAL OPTIMIZATION

Introduction

As a part of the broad development that has taken place in the field of
structural optimization in recent years, analytical modelling for the design
of continuum structures has been extended to cover a variety of new
applications. Thus there are formulations available now for the optimization
with respect to various modes of response or measures of performance, for
most types of structural form, to be optimal relative to material distribution,
shape, choice of materials, prestress, and so on. Only a modest part out of the
comprehensive list of topics is to be covered in these lectures. The reader
will find a good many of the major areas of application e.g., 'design for
dynamic response,’ 'shape design', 'grid optimization,' and 'sensitivity
analysis' — to name a few , treated in separate lectures given elsewhere within
the institute. (Citations to other lectures in this collection are identified by
the authors name with an asterisk attached to it.) Our effort is directed more
toward an exposition of methods for the interpretation of design problems
into a form convenient for analysis. This is to be done mainly within the
perspective of well known results from the mathematics of optimization. The
material presented here is comprised for the most part of formal problem
statements, listings and interpretation of necessary conditions, and the
presentation of example applications.

In another way, the purpose of these notes/lectures is to provide a
presentation of formal procedures for a variational formulation of
structural optimization problems, and to furnish exemplification of their
application. The objective is to make the coverage as general as possible,
given the present restrictions on time and space. With this in mind, the word
'Basic' in the title given above is intended to refer mainly to simple

fundamental forms of designproblem. Also the methods are demonstrated

NATO ASI Series, Vol. F27

Computer Aided Optimal Design: Structural and
Mechanical Systems. Edited by C. A. Mota Soares
© Springer-Verlag Berlin Heidelberg 1987



generally through the vehicle of simplistic example problems. The hope is
that by limiting the scope to be simple in these ways, our effort to provide a
clear statement to the fundamental ideas that underly the analysis will
benefit. At the same time, it should be practical as a result to cover a larger
range of types of problems than would otherwise be possible. The discussion
to follow covers certain classical results among variational formulations for
structural optimization, and the extensions of them that are needed more
generally for the treatment of problems with global and/or local constraints.
Brief descriptions are provided for a number of special topics, among them
the design of optimal elastic foundations, the formulation for optimization in
problems with simple contact between elastic bodies, and a method for the
relaxation of constraints. A useful scalar formulation for multicriterion
problems 1is given in a separate section; its application is exemplified there
through a variety of sample problems. Fail-safe optimal design and the
design of optimal structural remodeling also are treated separately as special
topics.

It might contribute to the understanding of the material in these
lecture notes if the following ideas are kept in mind.
1. The prediction of optimal structural design and the (traditional) task of
structural analysis — are aspects of one problem. Stated differently, the
vector of unknowns in the structural optimization problem is comprised of
design and state variables (or their equivalent) as components. Thus once
any form of decoupling has been introduced into the modeling of design
problems, it must be recognized as a specific, i.e., less than general,
interpretation of the problem. This applies to the approaches that one may
identify with iterative or sequential-step solution methods, for example. For
present purposes, the developments are expressed for the most part in a form

consistent with the fully coupled problem.



Optimization:
Analysis and Design
Modeled together

2. The important matter of how to judge whether or not a problem is
properly posed — is not addressed directly in the treatments that follow. This
issue may be resolved without much trouble for special categories of design
problem, but general methods for dealing with the question are lacking. On
the side of being practical, we note that an ill-posed problem might
sometimes be reinterpreted into tractable form either by enlarging the space
of feasible designs (as a means to achieve G-closure), or otherwise in certain
cases through the imposition of additional constraints.

Perfect Solution
exist? 1f not, widen the

choices - or narrow them!

Finally, it is hoped that the material of these lectures should prove to
be meaningful in one way or another beyond the scope of the lectures
themselves. Regrettably, it has not been possible in this writing to develop
all ties with other works in the field wherever such connections might
sensibly have been made. Indeed, given the high level of research,
development, and applications activity in structural optimization, it has
become a serious challenge just to maintain broad contact with overall
progress in the subject. On the other hand, contemporary work generally is
well documented and fortunately the literature is quite well indexed, at least
into the year 1982. Exceptionally extensive listings are given in the book by
Carmichael (on the order of 700 items), and in the Komkov and Haug
translation of Banichuk's book (Original listing with 246 entries, extended to

531 in the translation) — these books in themselves, and also the surveys by



Lev and by Kruzelecki and Zyczkowski and the proceedings edited by
Morris, provide unusually broad coverage of the field, each in its own way.
The interested reader is referred to the list provided at the end of this set of
notes for these and other books, and for the many other useful resources in
the form of proceedings, reviews, and surveys as well (This part of the
reference list is taken mostly from Olhoff and Taylor). It should be noted
that, with the exception of the resources just named, for the most part the
citation of references in these notes is narrow, i.e., the references listed are
limited to only a small part of the literature that relates to the immediate
topics covered in the text. Of course the material covered in these lectures
depends more broadly on the past efforts of others, and the author wishes to
acknowledge his debt of gratitude to the colleagues and co-workers whose

contributions may not have been cited specifically.

A Classical Variational Form

In cases where the measure of the criterion for an optimization problem
relates directly to the quantity that appears as an argument in the associated
minimum principle of mechanics, the optimal design problem can be stated
in a particularly simple way. Examples are design for maximum Euler load
or for maximum normal mode frequency (so long as the solution is
unimodal!), design for minimum compliance, design for maximum collapse
load (assuming 'perfectly plastic behavior'), and design for maximum creep
strength (for a linear creep law). Numerous papers were written on
variational formulations for these problems, mainly over the years from
1955 through the 1970's. Except for a few applications, the results of such
interpretations for optimal design problems are of little practical value
today; however the material has historical significance as a part of the
overall development in structural optimization during the recent decades.



The design of axially loaded elastic bars for minimum compliance is
described here, as an example of the more or less classical style for

variational formulation. For specified load p(x) and admissible deformation
N(x), compliance is measured by IQ pndx. The equilibrium state for the
elastic bar is identified with a minimum with respect to mM(x) of the potential
energy T given by

r[B(); n(x)] = Jg [1/2EB()? - pnldx (1)

B(x) represents cross-sectional area, and the structure is initially free of
stress. Note that for the actual deformation , say w(x), the value of

compliance equals the negative of twice the value of potential energy:
IQ pwdx = -2xn[B;w] (2)

In this case , the necesary conditions for the optimum design problem

min (Jg pn dx)

subject to: 3)

Conditions of Equilibrium

A-B<0

JoBdx - R<0

(value R, representing available resource, and the lower bound A to the
cross section are specified) are equivalent to the conditions for stationarity

with respect to B(x) and n(x) of the functional
LBNAA) = nBn)-lq MA-B)dx- Al Bdx-R] 4)

These necessary conditions are (A(x) and u(x) represent the optimal design
and its associated equilibrium state):



(EAu) +p =0 xin Q

EAu' =0 or u=0 x=0,L

12 E(u')2 -A+A=0; xin Q (5)
A[JAdx-R]=0; A>0; JAdx-R<O

MA-B)=0; Ax0; A-B<0

Domain  of the optimum structure is comprised of intervals where A > A
= A = 0, and sections in Q,= Q- Qp where A=A . An example

solution is shown in Figure 1 for the bar supported at x = 0 and subject to
a uniform load.

A(x)

4

| >

) X
x1 L

Figure 1. Design of an Elastic Bar for Minimum Compliance

As mentioned earlier, historically problems of the kind designated as
‘classical' have been treated extensively, even though the type of criterion
associated with_such problems is sometimes of limited practical interest. The
reader may wish to consult the literature (mainly from the period 1955-80)
for other example applications within the classical form, e.g., optimal Euler
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columns and plates — design to maximize natural frequency for bars, beams
and plates — and minimum compliance design of beams, plates, frames and
disks.

With the addition of the 'corner conditions’, the system of equations
(5) are sufficient as well as necessary. The corner conditions require that the

solution design A(x) must be continuous over the domain of the structure.

Making use of the 'minimum principle for the mechanics',
sufficiency may be demonstrated quite simply. Let w(x) represent the
equilibrium deformation for arbitrary design B(x) , and recall that u(x)
symbolizes the equilibrium state for the putative optimal design A(x) . Then
since solution u(x) is admissible for the design B(x), we have from the

minimum potential energy statement and equation (2):

112 Jgpwdx = [ [12EBw)2 - pwldx < Jq [1/2EB(w)2 - puldx  (6)
The right side of the inequality is interpreted as

fo 1/2[EB()2 - puldx = [[1/2 EA@')? - puldx + 1/2 [ E(B-A)(u')2dx

(7
Substitute (u')2 = A — A from equation (5) into the last term of equation (7):

Jo 12E(B-A)W)2dx = AE Jq (B-A)dx - E J A (B-A)dx
But since [oAdx =R, JoBdx <R ,and A>0, Alg(B-A)dx <
0. Also A =0 inthe design domain,and A > 0; (B-A) >0 in Q, so that
JQMB-A)dx = Jq AB-A)dx > 0
whereby °
JE® - A)w)2dx <0

Thus from equations (6) and (7) we have
172 Jo pwx < Jo [1/2 EA)2 - puldx & m(Aw)
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But since u(x) is the actual state for design A(x),
2n(Au) = - fQ pudx
and so from equation (7)
fQ pwdx > fQ pudx

to complete the proof.

Sufficiency may be verified through similar argument for various
examples of classical structural optimization problem which are convex. At
the same time, given the general result from analysis that for convex
problems the (generalized) KKT conditions are sufficient as well as

necessary for the optimal solution, such exercises may be redundant.

More General Variational Forms and Their Applications

We set out to establish in this section a variational formulation where
the criterion and/or constraint functions are represented in general form. It
is the intention to accommodate criteria or constraints having either global
or local measure. (As an example of the latter, the criterion may have the
form max of a specified function , where the maximum is taken with respect
to the domain variable. In such cases it is not uncommon that differentiability
of the criterion becomes an issue; a detailed discussion of this point is
provided below.) Thus within the limitations of linearly elastic small
deformation mechanics stated earlier, the results presented here facilitate the
handling of a broad variety of design problems. The development is
expressed first for various problems of single purpose structural
optimization. Essentially parallel treatments for multicriterion problems
(e.g., multipurpose or multimodal design) are discussed in a later lecture of
this series.
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It is particularly convenient for present purposes to work with the
'weak form' statement of equilibrium conditions, i.e., with the virtual
displacement equation. Considering first problems with global criterion, the

criterion is expressed in general form as
J = Jo FBmdx
for argument F(B;n) specified over fixed domain Q of the structure. The
argument F is supposed to be differentiable w.r.t. design B(x) and state
field n(x) and derivitives of m to the required order. The optimal design
problem may be stated symbolically as:

i = JqF(B,
g%[ljg( m) dx] (8)

subject to:

* The virtual displacement equation

* Performance and/or design constraints
*JogBdx - R < 0

The value R in the isoperimetric (resource) constraint is specified, as are
the load, structural form, constraint bounds, and so on.

The formal treatment of design problems within the context of (8) is
demonstrated via a specific example. For simplicity, we choose a
generalization of the minimum compliance design problem for the one

dimensional structure used earlier, namely the axially loaded bar.

Generalized compliance is expressed for specified weight function ¢(x) as:

J = [0 0(x) u(x) dx ©)

The equilibrium requirement, for load p(x), Young's modulus E, and design
B(x), is represented by:

JQ [EBN'C-pCldx=0 for all admissible { (10)
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i.e., the function among kinematically admissible functions m that satisfies
this equation for all admissible C is the equilibrium solution.

Supposing that there are no performance constraints on the problem,

for this example the specific statement corresponding to equation (8) is

gin, [ - I ¢m dx] (11)

subject to:

JQ [EBM'C-plldx=0 forall admissible {
A-B<0 allxin Q

JoBdx-R<0.

The necessary conditions for this problem may be identified with the
Lagrangian

L = Jqon-AEBN'§ —pd) + MA-B) + Al Bdx-R]  (12)
Multiplier A, is taken to have unit value, without restriction on the

generality of what follows. The necessary conditions themselves (the
generalized Karash-Kuhn-Tucker (KKT) conditions) are:

(EAu) +p = 0
allxin Q
(EAV)' + ¢ = 0
and their respective boundary conditions (13)
Euv' = A-A

AA-A) =0; A>0; A-A<O0
AllgAdx-R1 =0 ; A20 ; JgAd-R<O
Here A(x), u(x), and v(x) represent the solution functions for design, state,
and adjoint state. Let €, represent the design domain, i.e., the set of

intervals within the domain £ : x € (0,L) of the entire structure for which
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A(x)> A .Then

Euv = { A allxinQa (14)

A-L allxinQ, i Q-Qp
In other words, the positive constant A bounds unit mutual strain energy
Eu'v' of the optimal structure, and the value of unit mutual energy equals

the bound in the design intervals. Outside of Q 4 the optimal design is

given by A(x) = A . This much of the interpretation of the necessary

conditions is summarized symbolically in Figure 2.

A(X)J

|

Sp o

Figure 2.

The solution for the optimal design may be completed using the first

two of equations (13), and the equations Eu'v' = A and (since A # 0)

IQ Adx - R = 0, together with corner conditions. The example is not
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particularly interesting so the details are not pursued here. Note, however,
that for ¢(x) = p(x) this problem is equivalent to the conventional 'minimum
compliance design' problem that is described in the prior section; this
equivalence can be verified through a comparison of the sets of necessary
conditions for the two versions of the problem.

While it is tempting to consider detailed treatments of some of the many
interesting types of design problems that are covered within the generalized
form for global constraints (several examples are covered elsewhere within
presentations of the institute), for the sake of conserving time and space we
will make do with a few remarks instead. For one, note that it might be
instructive to examine the necessary conditions as they would appear for the
general (i.e., unspecified ) form for the argument F(B;n) in the criterion
functional. The formal statement of the Euler-Lagrange equations sufffices
for this purpose, so long as the usual restrictions on argument F are kept in
mind. Having these equations available makes it possible to observe directly
the effect on the analysis for design problems of making certain changes in
the criterion functional. These effects are identified with the term that
corresponds to 'load’ in the adjoint equilibrium equation, and with terms
that show up in the equation(optimality condition) reflecting variation with
respect to design, as a result of explicit dependence of argument function 'F
on the design. As an example of the latter, one might note the effect of
including an account of self weight in the criterion for the compliance
design problem.

Design Problems of
minmax type - make the best of

worst criteria !
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We consider next the formulation of structural optimization
problems where the criterion is expressed in terms of some local measure,
for example the design to minimize the maximum value of stress or
displacement over the structure. In such situations the usual
differentiability properties, i.e., the properties required to support the
common form of statement for necessary conditions, may not be available.
In fact, in the field of structural optimization this result is not exceptional.
Consider the following example: for an axially loaded bar comprised of
two uniform segments (see Figure 3 ), determine the design that minimizes

the maximum absolute value of stress. The lengths 1; of the segments are

specified.
/]
2 Segment 1 Segment 2
7
Z |
7
< 1 1 Pt 1, —
Figure 3.
Maximum

Stress

h —

Figure 4.
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Note that for this structure 6; ~n'; ; then the design problem can be stated

as:
min  [max max M'iD]
B1,By i=172 ( erin‘l)
subject to:
Jo. [EB'i¢-pGildx =0  all admissible §;  (15)
1
i=1,2
2
X 1iBj-R<0
i=1

For designs that make full use of the resource R (the optimal solution lies
within this set), the maximum strains in the two segments véry with opposite
sense ( Figure 4 ). Thus the argument max |u'(x) | (indicated by the dashed
curve in the Figure) has a corner at the optimal solution.

Technically this difficulty may be circumvented by use of the 'p-norm'
to simulate the argument 'max(local measure)." For the problem of
Equation (15) for example, one would seek the design to minimize

(=g Im;Pax]/P

i i
for sufficiently large value of p. However, computation on the p-norm
quickly becomes poorly conditioned as the value of p is increased, so that in
fact the method is not very practical.

As a more viable alternative, we next consider an interpretation of the
minmax problem (see, e.g., Taylor-Bends¢e) into a form that reflects
minimization of a bound on the local measure. (This form is identified in
these notes as the bound formulation..) Suppose that the criterion is

expressed as max |f(B(x); m(x)|, so that the problem statement along the lines

of equation (8) appears as:
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rél(iﬁ) [max [f(B;n)l]

subject to:

*the virtual displacement equation (16)
* performance and/or design constraints
*[oBdx-R<0.

As before, B(x) and n(x) represent admissible design and displacements,

respectively. We intoduce an additional scalar unknown, say {3, and interpret

the problem of equation (16) in the form:

rél(l)r(l) ®

subject to:
*IfBm)I-B<0 (17)

* ( constraints as in (16) )

Within moderate restrictions on the form of the argument f(B;n), necessary
conditions for the minmax problem (16) now may be obtained via formal
procedures, i.e., as the generalized KKT conditions for the problem (17).
Equivalence of the two problems is easily verified from the set of necessary
conditions; in general the supremum [ of argument |[f| equals the
maximum value of |f].

The 'bound formulation' comprises a convenient device for the
interpretation of a variety of important basic problems in structural
optimization. Several examples of its application in single purpose design
problems are given in the material immediately following. Use of the
formulation as the basis for a broadly applicable statement of multicriteria
and fail-safe design problems is described in later sections of these lectures.

We observe that problems where the criterion is expressed in terms of a
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combination of global and local measures may be interpreted as well using
effectively the same means as those already described.

ign of men I
As a first example , the bound formulation is applied to the above

problem of design of a bar with two uniform segments, i.e., we seek to

determine the design A; from among admissible B; that will minimize the

max ( max [u']) . //Is it 'sensible' to treat this problem within a discussion
under the name "distributed parameter" design? // Noting that

max (max| M;) = max | n;|
1 xeQj i .xl- i
i=1,

we write in terms of the bound B on n;:

min
in - (B)
i=1,2
subject to: (18)
Injl - B< 0 all xinQ;  i=1,2
J ;BB - pG)dx = 0 all admissible &
ZBjl;- R<0
1

Necessary conditions for the problem (18) are identified with stationarity of
the Lagrangian

2 2
L=p+2 I (- EBGi + pGi + AHM'iB) + A7i(n'-B)ldx + Al Z BiliR]
) a9

The optimal design A, and associated response u'; and adjoint state v';

satisfy the system
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1+3 Jo, - M+i-Aypdx = 0

(EAu) +p = 0
all x in
(EA V) - (A+;-Ay)' =0
-() Jq Euvidx +A=0 i=1,2 (20)
1

Atu'i-B)=0 At >0 ui-B <0
Aj(-uj-B)=0 Ai>0 -uj-P<0O all x in
ACBji-R)=0 A20 . TB{jj-R<0

Since wuj'-P# 0 almost everywhere (AE) in QA ;%" = 0 AE;
according to this property together with the first of equations (20) , the A,

are Dirac functions, say A;*~ = A; 8(x-x)). The x identify points where a
stress constraint is tight . For the present example problem, if p(x) > 0

throughout Q then xj = {0, 1;}. The optimal solution is obtained directly

from the system (20). For instance, if p(x) has constant value, say p,, the
solution is given by
Ay = p(l1 +1h)/E Ay = polh/E
B =py(lj+llp + H)/ER
Maximum strains in the two segments have equal value . Note also that for
the optimal solution the average value of unit mutual strain energy has

constant value from segment to segment over the domain, as indicated by the
fourth of equations (20).

Beam Design for MinMax (Stress)
Taking the height h(x) of a beam with solid rectangular cross section as

the design variable, the objective in this example problem is to minimize the
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. %k . . 3 "
maximum stress. In this case, the stress is proportional to hw" so that the

design problem is stated:
min [max |f=hw"|]
h(x) x|
The corresponding min problem is

m}iln B

subject to:
hw"-B <0

21
- phw" -B <0 @D

1 . -
[, [ah3w"w" - pwldx = 0 for all admissible w
byin-h <0

1
bJohdx-R<0
The function cth3 (o = constant) equals beam rigidity and w symbolizes the
beam deformation. Admissible designs h(x) are defined in terms of the last

two constraints; R, the bound on total resource, and h the bound on local

min
measure of the design, and the factor 1 represent specified non-negative
values. Width b of the beam is taken to be constant.

For this problem the Lagrangian has the specific form:
l - -
L=B +Jo {njw"-B) + no(-pthw"-B) - oh3w"w" + pw
1
+N3(pin-h)}dx + nglbJy hdx - W], (22)

Stationarity of L requires (solution functions for design and for state are not
distinguished from the admissible functions here):

*The following material is taken from Taylor-Bendsde.
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1-J3 (1 +M2)dx = 0 (23)

- 3ch2w"w" - N3 +Ngb+ M1 -punw" = 0 (24)
- (oh3W") + (N1 - wnph]" = 0 (25)
nyw"-B) = 0 (26)
No(-phw" -B) = 0 Q27
N3thpin-h) = 0 (28)

M4 fghdx - W) = 0 (29)

The solution is governed by these equations together with the original

constraints and the (Kuhn-Tucker) conditions n; > 0. The first equation

represents a normalization of the multipliers (adjoint load) M and n,. The
second and third equations are simply the specific forms of optimality
condition and adjoint state equation for this example. Note that from
equations (23, 26, 27), constraints hw" - B < 0 and/or -phw" - B < 0 are tight
at least somewhere in the domain (0,1). In other words, in the solution for
stationarity of L, the value of criterion measure hw" (or -phw") equals [ at
its maximum. This substantiates the identification of problem (21) with the
associated min-max problem, or, in the more general form it serves to

identify the problem (17) with its min-max problem.

From the fourth and fifth equations we have that 1 and ny are
orthogonal, n1- M2 = 0. Additional interpretation of the system provides
that ng4 # 0, whereby the resource constraint is tight. Also, by the switching
equation N3(hyjn-h) = 0, the domain, (0,1) is covered in intervals with either
h > hpins N3 = 0 (design intervals), orh = h ;5513 2 0. In the design
intervals Ny #0,My=0andhw" -3 =0,0r Ny #0, Ny =0and -phw"-f =

0. Making use of these results the entire system can be reduced by algebraic
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manipulation to a substantially simpler form.
In fact the solution itself is obtained directly for simple loads; for p(x)
= poX/1 as an example, the shape of the optimal beam in design intervals is

given by h(x) = [po(x3 +c1x + co)/6lup)l/ 2, where c1 and c are constants.
An iterative method is used to determine the boundaries (x and x5 in Figure
1) of design intervals, and the values of (3, integration constants, etc. Details
of the solution for a simply supported beam under the cited load and for L =

1 are shown in Figure S.

J

o

_:;E
=
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= W/bh . = 1.19
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200 .885  1.00

Figure 5. Beam Design to Minimize the Maximum Stress

Design of an Elastic Foundation
As a second example, we sketch a treatment for the optimal design of an

elastic foundation supporting an elastic beam. The goal is to predict the
distribution of foundation stiffness, represented through the foundation
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modulus function k(x), that minimizes the foundation pressure. The
magnitude of pressure is given by |kw| (w(x) symbolizes the beam
deformation), so the design problem is stated as:

min [max |kw]| ]
Note that in this example the criterion function again depends explicitly on
the state and on the design function. The 'minimize on a bound' form for this
problem is:

min (B)
k(x)

Subject to:
kw-B<0

-pkw-B <0

L Rw"W" + (kw-p)wldx = 0

k-kpax < 0

K-Jokdx <0

where beam stiffness is symbolized by R.

In contrast to the prior example, here the measure of global resource is
bounded from below while the design k(x) is limited locally from above (the
system does not admit solutions with k < 0).

The Lagrangian is formed for this problem, and the solution may be
established from the associated necessary conditions, in much the same way
as was indicated for the first example (for brevity the details are omitted). A
solution is sketched in Figure 6 for the case p = 0, hinged supports, and with
prescribed; equal-valued displacément of the beam ends into the foundation.

As indicated in the figure, for the optimal solution the magnitude of
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foundation pressure is constant in the design intervals (kw| = B).
The combined design of beams and their foundations is considered by
%

Plaut.

\'Ol

Support Pressure p(x)

> X/1

b,

Foundation Modulus k(x)

— X/1

ion Pressure for the Optimal Elastic

BRR I |I I undation
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Minimize the Maximum Displacement and a Relaxed Form for Min-Max
Problems

In problems where the criterion function is directly a measure of state

or in bending problems of its first derivative, the adjoint loads (multipliers
on the ‘criterion constraints') are in general singular. This property is

demonstrated for the former case, i.e., mlgn [max |w(x)|], where w(x)

represents beam or plate deflection. The Lagrangian for the problem is
stated as:

L=B+]qMy(w-B)+ Ny(- uw-B)1dQ - ap(w, W) + b(W) +v,  (30)
Here the state equation is represented in terms of the energy bilinear form
ap) and the load linear functional b. The associated necessary conditions

related to multipliers M1 and 17 are:

1-Jo(ni+mnp=0 (31)
N1(x) = 0 if w(x) < B; Ma(x) = 0 if - pw(x) <P 32

N1(x) > 0if w(x) = B; Ma(x) 2 0 if -pw(x) =P.
Typically the deflection function cannot have constant value over any

interval of positive measure, whereby the stated conditions (31,32) dictate
that M and M must be certain linear combinations of Dirac d-functions.

(Haug substantiates this result; also in his variational formulation Cinquini
identifies the adjoint load as a Dirac-function, but the above normalization
(31) is not present in his treatment.)

According to this result, the determination of (adjoint state) W requires
the solution of a beam or plate boundary value problem with singular loads.
As an alternative, by treating this type of problem in a slightly modified
form such singularities may be avoided. The modification amounts to a
globally-bounded relaxation relative to the original constraint on local

measure f(D,w).| Thus the constraint for criterion f(D,w), i.e., [f(D,w)| - B
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<0, is rewritten in terms of relaxation &(x) as [f(D,w)| - (B+€) < 0. In place
of the original minmax problem, we now consider the relaxed problem

stated as:

mﬁn B (33)
subject to:

f-B+e) < 0 } (34)
-uf- (B+e) < 0

ap(w,W) - b(W) = 0 (35)
Dmin-D <0 (36)
JaDdQ-W < 0 (37)
-e<0 (38)
[edx-E < 0 (39)

Again, state equation (35) is expressed in terms of (energy) bilinear form ap

and the (load) linear functional b(w). Design is symbolized by D, and c, E,

Dphins @and W represent specified nonnegative numbers. Thus the relaxed

problem corresponds still to minimization with respect to design of the
bound value [, but now with an admissible violation €(x) (the admissible set
is defined by (38,39)) of the bound on f, where the total measure of violation
is not to exceed the value of E.

It may be verified that the original min-max problem is recovered for
E = 0. The relationships among w, €, and B are indicated in the sketch of

Figure 7 for the case f = w, as an example.



28

Figure 7. Constraint Relaxation Function &(x)

The optimal relaxation from among admissible functions €(x) is associated
with equality in one of the constraints (34). In other words, in the solution of
the relaxed problem, the difference f-€ (or -uf-€) has constant value equal to
the bound .

For problems with E > 0 the load in the adjoint problem is no longer
singular; it is verified below that multipliers M and 1, in fact have constant
value wherever they differ from zero. Note also that the introduction of a
relaxation regularizes the problem in the sense that constraints (34) are

regular even through their counterparts in the original min-max problem
may lack regularity.

An augmented functional for the relaxation problem (33-39) has the
form

L* = B - ap(w,w) + b(W) + Jq [M](f-B-€) + N2(-uf-B-€) + N3(Dpmin-D)

+M5(-£)]dQ + ngllg DAQ-W] + ngllqedQ-E] (40)
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where the terminology is the same as in the prior examples except for the

additional multipliers 15 and 1g associated with the constraints that define

admissible €(x). Stationarity of L~ with respect to ,w,€ require satisfaction
of equations similar to (23) and (24) of the Design for Stress' min-max

problem, and in addition the equation reflecting variation w.r.t. £(x):

-My+Mp)-N5+ng=0 (41)
The solution must also satisfy the conditions:
N =0if f<P+e

or 42
Ny >0 if f=B +¢ y (“42)

=0 if -f < +€
or n2 | uB y 3
Mm =0 if -f=pf+e

=0 if -€ <0
or 5=t T } (44)
N >0 if -e=0

ng=0 if [edQ=E < 0
or ) } (45)
Mg = 0 if [edQ-E=0

The condition for stationarity with respect to design of L of the original
problem remains unchanged in the relaxed problem identified with the
functional L*.

The following properties are apparent:

i) The multipliers M and M, are elements of LZ(Q), since
constraint equations (34) and (35) must be in L2(Q) when € is in
L2(Q). In other words, 111 and 1, are elements of the dual of
LZ(Q), ie., Lz(Q): Therefore Dirac functions do not appear in

the 'load’ for the adjoint problem in the relaxed or €-min-max
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problem.

ii) The constraint (39) | £dQ < E is active, since otherwise equation

(45) requires that ng = 0, which leads in turn to the requirement

from equation (41) that the non-negative functions M1, N9, N5
have zero value almost everywhere. The latter condition would
violate the necessary condition that (n{,n9) have nonzero
measure.

iii) From equation (44), € > 0 implies N3 = 0, whereby from (41) n; -
+ My = Mg has constant value for this case. Furthermore, since
(from equations (42) and (43)) MMy = 0 it follows that when €
> 0 either (N =Ngand Ny = 0) or (N = 0 and Ny =Mg). Thus
either the upper or the lower constraint on f is active when € is
non-zero, and therefore the load in the adjoint equation has
constant value. Combining this with the fact that from (ii) [edQ

= E leads to the conclusion that the optimal colution takes

'maximum advantage' of the possibility for f to exceed the value

B, as afforded by the presence of the relaxation function &(x).

The main features of the relaxed formulation are illustrated via the
treatment of design of a beam to minimize maximum displacement, i.e., the
case f = w cited at the beginning of this section. Suppose beam cross-section
A(x) is the design variable, and for this example the beam rigidity is taken to
be proportional to AK. Then the state equation is given by

Ié (x akya - pW)dx =0, for all admissible w(x),
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and L* is obtained from (40) with f, D, and Dy ;, replaced by w, A, and

A To proceed toward a specific solution, for a cantilevered beam

min*
supported at x = 0 under uniform load, w(x) increases monotonically with x.

Thus there is a value, say x(, such that

ex)=0 forOsx_<_xO; €(x)>0 forxp<x<l
The corresponding load My in the adjoint problem is (the notation for
multipliers N through n¢ is the same as in equation (40); also since w(x) > 0,

T]2=0):
0 forngng
& = {
1 for xg < x < 1
I-x

(0]

Note that n; has constant value wherever it differs from zero, whereas

without the constraint relaxation €(x), the adjoint load is given by the Dirac
d-function at x = L.
Integrating the state and adjoint equations leads to
akw' § Fx) = %Po(l-x)z

%(l+xo)-x for0 < x < xp

Akw" = G(x) =
) { (l-x)2/2(1-x0) forxg < x <1

The design itself may be expressed as

Amin forx; s x <l

Al) = _
®=1__ kit F(x)G(x)mg  for0 < x < x

where the value x7 is obtained from



32
kF(x1)G(xq) = ng Ak+l
(xpG(x1) = Mg in

which is the optimality condition (27) evaluated for the point x;. Taking

specific values 1 = 1, k =1, A,i, = 1,py = 2 and V = 5.15, the complete

design is given by x, = 1/2, x{ = 3/4 and:
1 for3/4 < x <1

Ax) = {1 160x)2 for1/2 < x < 3/4
16(1-x)\34-x for0 < x < 1/2.

This design is pictured in Figure 8.

Other Applications

The convenience afforded by the transformation of min-max design
problems to simple min problems and by the relaxation of constraints, as
demonstrated on the beam examples, might be realized in the context of
various other problems in mechanics and optimal design. Other types of
design problems discussed briefly in this section include a problem of design
for elastic bodies in contact, a formulation for optimal remodel design, and a

form of mesh optimization for finite element grids.

Minimize Pressure
between bodies in Contact.

The optimum fit!
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Design A(x)

A .
min I

] | x/1

W< B W = B+e; €>0

Figure 8. Solution for the Relaxed Problem to Minimize the Maximum
Displacement

TR
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The objective to minimize relative to design the maximum value of

contact pressure may be taken as the basis for optimization in contact
problems. The case where the purpose is to design the initial gap, say g,(x),

between the bodies is used as a particular example.