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PREFACE 

This book contains the edited version of lectures and selected papers presented at the 
NATO ADVANCED STUDY INSTITUTE ON COMPUTER AIDED OPTIMAL DESIGN: 
Structural and Mechanical Systems, held in Tr6ia, Portugal, 29th June to 11th July 1986, 
and organized by CEMUL - Center of Mechanics and Materials of the Technical University of 
Lisbon. The Institute was attended by 120 participants from 21 countries, including leading 
scientists and engineers from universities, research institutions and industry, and Ph.D. students. 
Some participants presented invited and contributed papers during the Institute and almost all 
participated actively in discussions on scientific aspects during the Institute. The Advanced 
Study Institute provided a forum for interaction among eminent scientists and engineers from 
different schools of thought and young reseachers. 

The Institute addressed the foundations and current state of the art of essential techniques 
related to computer aided optimal design of structural and mechanical systems, namely: Vari
ational and Finite Element Methods in Optimal Design, Numerical Optimization Techniques, 
Design Sensitivity Analysis, Shape Optimal Design, Adaptive Finite Element Methods in Shape 
Optimization, CAD Technology, Software Development Techniques, Integrated Computer Aided 
Design and Knowledge Based Systems. Special topics of growing importance were also pre
sented. 

This book is organized in eight parts, each one addressing a technical aspect of the field of 
Computer Aided Optimal Design: 

Part I : Variational Methods in Optimal Design 
Part fI : Numerical Methods in Optimal Design 
Part ill : Shape Optimal Design 
Part IV : Multilevel and Interdisciplinary Optimal Design 
Part V : Optimal Design of Mechanical Systems 
Part VI : Knowledge Based Systems in Optimal Design 
Part VII : Integrated CAD/FEM/OPTIMIZATION Techniques and Applications 
Panel Discussion: Trends in Computer Aided Optimal Design 

The foundations and recent developments of variational and finite element methods and 
mathematical programming techniques, applied to the optimal design and control of elastic and 
nonlinear structures, are presented by leading scientists. 

Several contributors address different methods for shape optimal design of structures, in
cluding recent research on boundary element methods in shape optimal design, design sensitivity 
analysis and optimal design of nonlinear structures, adaptive finite element methods for shape 
optimization and the practical implementation of shape optimal design in commercially available 
software. 

In this book special emphasis is placed on the integration of CAD techniques for geometric 
modelling, finite element analysis and optimization methods. Several academic and industrial 
specialists reviewed the current state of development. A critical review of the available com
mercial codes is presented. Some researchers have integrated all these techniques in codes and 
applied them to the design of structures in aerospace, aircraft and car industries. These appli
cations show that the integration of these techniques into standard tools for practical design is 
a major factor for industrial usage of computers in design of structural systems. 

Other papers presented or submitted to the Advanced Study Institute, but not included in 
this book, are published in a Special Issue of the Journal of Engineering Optimization in 1987. 
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Without the sponsorship and financial support of the Scientific Affairs Division of NATO, 
National Aeronautics and Space Administration, National Science Foundation and United States 
Air Force the Institute and this book would not have been possible. The financial support of 
all other sponsors also contributed decisively to the success of the Institute. 

The Editor deeply appreciated all the advice and help in organizing the Institute given by 
Dr. Craig Sinclair and the late Dr. M. di Lullo, both of the Scientific Affairs Division of NATO. 
I am indebted to all members of the Organizing Committee (Prof. J.E. Taylor, Prof. E.J. Haug, 
Dr. J. Sobieski, Dr. L. Berke, Prof. C. Fleury and Dr. H. Hornlein) for the outstanding work 
that led to a very successful Institute. I am also grateful to all authors for their effort in writing 
the lectures and papers in time, allowing this book to be published as planned. 

Special thanks to CEMUL staff, Ms Gloria Ramos, Ms. Alexandra Confeiteiro and Mr. 
Amandio Rebelo, for their effort in administrative planning and support of the Institute. 

I am very grateful to my family, Maria do Rosario and our daughter Joana Sofia, for all the 
support during the organization of the Institute and of this book. Special thanks for my unde 
Hermano Cabral for the video and magnetic tape of the Panel Session of the Institute 

Lisbon, December 1986 

Carlos A. Mota Soares 
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BASIC FORMULATIONS FOR DISTRIBUTED PARAMETER 
STRUCTURAL OfYfIMIZATION 

Introduction 

As a part of the broad development that has taken place in the field of 

structural optimization in recent years, analytical modelling for the design 

of continuum structures has been extended to cover a variety of new 

applications. Thus there are formulations available now for the optimization 

with respect to various modes of response or measures of performance, for 

most types of structural form, to be optimal relative to material distribution, 

shape, choice of materials, prestress, and so on. Only a modest part out of the 

comprehensive list of topics is to be covered in these lectures. The reader 

will find a good many of the major areas of application e.g., 'design for 

dynamic response,' 'shape design', 'grid optimization,' and 'sensitivity 

analysis' - to name a few , treated in separate lectures given elsewhere within 

the institute. (Citations to other lectures in this collection are identified by 

the authors name with an asterisk attached to it.) Our effort is directed more 

toward an exposition of methods for the interpretation of design problems 

into a form convenient for analysis. This is to be done mainly within the 

perspective of well known results from the mathematics of optimization. The 

material presented here is comprised for the most part of formal problem 

statements, listings and interpretation of necessary conditions, and the 

presentation of example applications. 

In another way, the purpose of these notes/lectures is to provide a 

presentation of formal procedures for a variational formulation of 

structural optimization problems, and to furnish exemplification of their 

application. The objective is to make the coverage as general as possible, 

given the present restrictions on time and space. With this in mind, the word 

'Basic' in the title given above is intended to refer mainly to simple 

fundamental forms of design problem. Also the methods are demonstrated 

NATO ASI Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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generally through the vehicle of simplistic example problems. The hope is 

that by limiting the scope to be simple in these ways, our effort to provide a 

clear statement to the fundamental ideas that undedy the analysis will 

benefit. At the same time, it should be practical as a result to cover a larger 

range of types of problems than would otherwise be possible. The discussion 

to follow covers certain classical results among variational formulations for 

structural optimization, and the extensions of them that are needed more 

generally for the treatment of problems with global andlor local constraints. 

Brief descriptions are provided for a number of special topics, among them 

the design of optimal elastic foundations, the formulation for optimization in 

problems with simple contact between elastic bodies, and a method for the 

relaxation of constraints. A useful scalar formulation for multicriterion 

problems is given in a separate section; its application is exemplified there 

through a variety of sample problems. Fail-safe optimal design and the 

design of optimal structural remodeling also are treated separately as special 

topics. 

It might contribute to the understanding of the material in these 

lecture notes if the following ideas are kept in mind. 

1. The prediction of optimal structural design and the (traditional) task of 

structural analysis - are aspects of one problem. Stated differently, the 

vector of unknowns in the structural optimization problem is comprised of 

design and state variables (or their equivalent) as components. Thus once 

any form of decoupling has been introduced into the modeling of design 

problems, it must be recognized as a specific, i.e., less than general, 

interpretation of the problem. This applies to the approaches that one may 

identify with iterative or sequential-step solution methods, for example. For 

present purposes, the developments are expressed for the most part in a form 

consistent with the fully coupled problem. 
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o P ti. mi.za.ti.o n: 

...tna.[ysi.s a.nt! Desi.9n 

:M.ode[ed t0gether ... 

2. The important matter of how to judge whether or not a problem is 

properly posed - is not addressed directly in the treatments that follow. This 

issue may be resolved without much trouble for special categories of design 

problem, but general methods for dealing with the question are lacking. On 

the side of being practical, we note that an ill-posed problem might 

sometimes be reinterpreted into tractable form either by enlarging the space 

of feasible designs (as a means to achieve G-closure), or otherwise in certain 

cases through the imposition of additional constraints. 
Perfect So[uti.on 

ex.i.st? 1f not, wi.den the 

choi.ces - Dr na.rrow theml 

Finally, it is hoped that the material of these lectures should prove to 

be meaningful in one way or another beyond the scope of the lectures 

themselves. Regrettably, it has not been possible in this writing to develop 

all ties with other works in the field wherever such connections might 

sensibly have been made. Indeed, given the high level of research, 

development, and applications activity in structural optimization, it has 

become a serious challenge just to maintain broad contact with overall 

progress in the subject. On the other hand, contemporary work generally is 

well documented and fortunately the literature is quite well indexed, at least 

into the year 1982. Exceptionally extensive listings are given in the book by 

Carmichael (on the order of 700 items), and in the Komkov and Haug 

translation of Banichuk's book (Original listing with 246 entries, extended to 

531 in the translation) - these books in themselves, and also the surveys by 
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Lev and by Kruzelecki and Zyczkowski and the proceedings edited by 

Morris, provide unusually broad coverage of the field, each in its own way. 

The interested reader is referred to the list provided at the end of this set of 

notes for these and other books, and for the many other useful resources in 

the form of proceedings, reviews, and surveys as well (This part of the 

reference list is taken mostly from Olhoff and Taylor). It should be noted 

that, with the exception of the resources just named, for the most part the 

citation of references in these notes is narrow, i.e., the references listed are 

limited to only a small part of the literature that relates to the immediate 

topics covered in the text. Of course the material covered in these lectures 

depends more broadly on the past efforts of others, and the author wishes to 

acknowledge his debt of gratitude to the colleagues and co-workers whose 

contributions may not have been cited specifically. 

A Classical Variational Form 

In cases where the measure of the criterion for an optimization problem 

relates directly to the quantity that appears as an argument in the associated 

minimum principle of mechanics, the optimal design problem can be stated 

in a particularly simple way. Examples are design for maximum Euler load 

or for maximum normal mode frequency (so long as the solution is 

unimodal!), design for minimum compliance, design for maximum collapse 

load (assuming 'perfectly plastic behavior'), and design for maximum creep 

strength (for a linear creep law). Numerous papers were written on 

variational formulations for these problems, mainly over the years from 

1955 through the 1970's. Except for a few applications, the results of such 

interpretations for optimal design problems are of little practical value 

today; however the material has historical significance as a part of the 

overall development in structural optimization during the recent decades. 
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The design of axially loaded elastic bars for minimum compliance is 

described here, as an example of the more or less classical style for 

variational formulation. For specified load p(x) and admissible deformation 

ll(x), compliance is measured by In Plldx. The equilibrium state for the 

elastic bar is identified with a minimum with respect to ll(x) of the potential 

energy 1t given by 

1t[B(x); ll(x)] = In [1/2 EB(1l,)2 - Pll]dx (1) 

B(x) represents cross-sectional area, and the structure is initially free of 

stress. Note that for the actual deformation, say w(x), the value of 

compliance equals the negative of twice the value of potential energy: 

Inpwdx = -21t[B;w] 

In this case, the necesary conditions for the optimum design problem 

min (In P1l dx) 

subject to: 

Conditions of Equilibrium 

A-B~O 

InB dx - R ~ 0 

(2) 

(3) 

(value R, representing available resource, and the lower bound A to the 

cross section are specified) are equivalent to the conditions for stationarity 

with respect to B(x) and ll(x) of the functional 

L(B,ll,A.,A) = 1t(B,ll) - I n A.(A - B)dx - A[I Bdx - R] (4) 

These necessary conditions are (A(x) and u(x) represent the optimal design 

and its associated equilibrium state): 
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(EAu')' + P = 0 xin n 
EAu' = 0 or u = 0 x = O,L 

112 E(u,)2 - A + 1..= 0; x in n (5) 

AU Adx - R] = 0; A ~ 0; J Adx - R ~ 0 

A(A-B) =0; A.~O; A-B~O 

Domain n of the optimum structure is comprised of intervals where A > A 

=> A. = 0, and sections in no = n - n A where A = A. An example 

solution is shown in Figure 1 for the bar supported at x = 0 and subject to 

a uniform load. 

A(x) 

A 
~ __________________ ~ ____ ~__ x 

L 

Figure 1. Design of an Elastic Bar for Minimum Compliance 

As mentioned earlier, historically problems of the kind designated as 

'classical' have been treated extensively, even though the type of criterion 

associated with such problems is sometimes of limited practical interest. The 

reader may wish to consult the literature (mainly from the period 1955-80) 

for other example applications within the classical form, e.g., optimal Euler 
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columns and plates - design to maximize natural frequency for bars, beams 

and plates - and minimum compliance design of beams, plates, frames and 

disks. 

With the addition of the 'corner conditions', the system of equations 

(5) are sufficient as well as necessary. The comer conditions require that the 

solution design A(x) must be continuous over the domain of the structure. 

Making use of the 'minimum principle for the mechanics', 

sufficiency may be demonstrated quite simply. Let w(x) represent the 

eqUilibrium deformation for arbitrary design B(x) , and recall that u(x) 

symbolizes the equilibrium state for the putative optimal design A(x). Then 

since solution u(x) is admissible for the design B(x), we have from the 

minimum potential energy statement and equation (2): 

- 112 fn pw dx = fn [1I2EB(w,)2 - pw]dx ~ fn [1I2EB(u,)2 - pu]dx (6) 

The right side of the inequality is interpreted as 

fn 1I2[EB(u,)2 - pu]dx = fn [1/2 EA(u,)2 - pu]dx + 112 fn E(B-A)(u,)2dx 

(7) 

Substitute (u,)2 = A - I.. from equation (5) into the last term of equation (7): 

fn 1I2E(B-A)(u,)2dx = AE fn (B-A)dx - E f I.. (B-A)dx 

But since fn A dx = R, fn B dx ~ R ,and A> 0 , A fn ( B - A ) dx ~ 

O. Also A = 0 in the design domain, and I.. ~ 0; (B - A) ~ 0 in no' so that 

fn I..{B - A)dx = In I..{B - A)dx ~ 0 
o 

whereby 

fn E(B - A)(u,)2 dx ~ 0 

Thus from equations (6) and (7) we have 

- 112 In pw dx ~ In [112 EA(u')2 - pu]dx ~ 1t(A;u) 
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But since u(x) is the actual state for design A(x) , 

21t(A;u) = - fn pudx 

and so from equation (7) 

fn pwdx ~ fn pudx 

to complete the proof. 

Sufficiency may be verified through similar argument for various 

examples of classical structural optimization problem which are convex. At. 

the same time, given the general result from analysis that for convex 

problems the (generalized) KKT conditions are sufficient as well as 

necessary for the optimal solution, such exercises may be redundant. 

More General Variational Forms and Their Applications 

We set out to establish in this section a variational formulation where 

the criterion and/or constraint functions are represented in general form. It 

is the intention to accommodate criteria or constraints having either global 

or local measure. (As an example of the latter, the criterion may have the 

form max of a specified function, where the maximum is taken with respect 

to the domain variable. In such cases it is not uncommon that differentiability 

of the criterion becomes an issue; a detailed discussion of this point is 

provided below.) Thus within the limitations of linearly elastic small 

deformation mechanics stated earlier, the results presented here facilitate the 

handling of a broad variety of design problems. The development is 

expressed first for various problems of single purpose structural 

optimization. Essentially parallel treatments for multicriterion problems 

(e.g., multipurpose or multimodal design) are discussed in a later lecture of 

this series. 
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It is particularly convenient for present purposes to work with the 

'weak form' statement of equilibrium conditions, i.e., with the virtual 

displacement equation. Considering first problems with global criterion, the 

criterion is expressed in general form as 

1 = fn F(B;tl)dx 

for argument F(B ;11) specified over fixed domain n of the structure. The 

argument F is supposed to be differentiable w.r.t. design B(x) and state 

field l1(x) and derivitives of 11 to the required order. The optimal design 

problem may be stated symbolically as: 

min [1 = fn F( B,l1) dx] 
B(x) 

subject to: 
* The virtual displacement equation 
* Performance and/or design constraints 
* fnB dx - R < 0 

(8) 

The value R in the isoperimetric (resource) constraint is specified, as are 

the load, structural form, constraint bounds, and so on. 

The formal treatment of design problems within the context of (8) is 

demonstrated via a specific example. For simplicity, we choose a 

generalization of the minimum compliance design problem for the one 

dimensional structure used earlier, namely the axially loaded bar. 

Generalized compliance is expressed for specified weight function <!lex) as: 

1 = fn <!lex) u(x) dx (9) 

The equilibrium requirement, for load p(x), Young's modulus E, and design 

B(x), is represented by: 

fn [EB 11' S' -PS ]dx = 0 for all admissible S (10) 
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i.e., the function among kinematically admissible functions" that satisfies 

this equation for all admissible ~ is the equilibrium solution. 

Supposing that there are no performance constraints on the problem, 

for this example the specific statement corresponding to equation (8) is 

min [J = fn <1>11 dx] 
B(x) 

subject to: 

fn [EB 11' ~'- P ~ ]dx = 0 for all admissible ~ 

A-B~O all x in n 
fnB dx- R~O. 

(11) 

The necessary conditions for this problem may be identified with the 

Lagrangian 

L = fn [<1>" - Ae(EB,,'~' - p~) + ACA-B) + A[fn B dx - R] (12) 

Multiplier Ae is taken to have unit value, without restriction on the 

generality of what follows. The necessary conditions themselves (the 

generalized Karash-Kuhn-Tucker (KKT) conditions) are: 

(EAu')' + P = 0 
all x in n 

(EAv')' + <I> = 0 

and their respective boundary conditions (13) 

Eu'v' = A- A. 

A.(A - A) = 0; 

AUnAdx -R] = 0 ; 

A.> O· - , 

A~ 0 

A-A~O 

fn A dx - R oS 0 

Here A(x), u(x), and vex) represent the solution functions for design, state, 

and adjoint state. Let n A represent the design domain, i.e., the set of 

intervals within the domain n: x £ (O,L) of the entire structure for which 
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A(x) > A . Then 

d 
Eu'v' = { 

A all x innA 
(14) 

A-A. all x in no = n-nA 

In other words, the positive constant A bounds unit mutual strain energy 

Eu'v' of the optimal structure, and the value of unit mutual energy equals 

the bound in the design intervals. Outside of n A the optimal design is 

given by A(x) = A. This much of the interpretation of the necessary 

conditions is summarized symbolically in Figure 2. 

A(x) 

A 

x 

Eu'y' 
~----------------~ 
'-A 

x 

Figure 2. 

The solution for the optimal design may be completed using the first 

two of equations (13), and the equations Eu'v' = A and (since A * 0) 

In Adx - R = 0, together with corner conditions. The example is not 
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particularly interesting so the details are not pursued here. Note, however, 

that for ~(x) = p(x) this problem is equivalent to the conventional 'minimum 

compliance design' problem that is described in the prior section; this 

equivalence can be verified through a comparison of the sets of necessary 

conditions for the two versions of the problem. 

While it is tempting to consider detailed treatments of some of the many 

interesting types of design problems that are covered within the generalized 

form for global constraints (several examples are covered elsewhere within 

presentations of the institute), for the sake of conserving time and space we 

will make do with a few remarks instead. For one, note that it might be 

instructive to examine the necessary conditions as they would appear for the 

general (Le., unspecified) form for the argument F(B;'Tl) in the criterion 

functional. The formal statement of the Euler-Lagrange equations sufffices 

for this purpose, so long as the usual restrictions on argument F are kept in 

mind. Having these equations available makes it possible to observe directly 

the effect on the analysis for design problems of making certain changes in 

the criterion functional. These effects are identified with the term that 

corresponds to 'load' in the adjoint equilibrium equation, and with terms 

that show up in the equation(optimality condition) reflecting variation with 

respect to design, as a result of explicit dependence of argument function 'F 

on the design. As an example of the latter, one might note the effect of 

including an account of self weight in the criterion for the compliance 

design problem. 

Design. Pro£l[ems of 

min.ma.x. type - rn.cme the £lest of 

worst criteria. I 
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We consider next the formulation of structural optimization 

problems where the criterion is expressed in terms of some local measure, 

for example the design to minimize the maximum value of stress or 

displacement over the structure. In such situations the usual 

differentiability properties, i.e., the properties required to support the 

common form of statement for necessary conditions, may not be available. 

In fact, in the field of structural optimization this result is not exceptional. 

Consider the following example: for an axially loaded bar comprised of 

two uniform segments (see Figure 3), determine the design that minimizes 

the maximum absolute value of stress. The lengths Ii of the segments are 

specified. 

Segment 1 

~ 

Maximum 
Stress 

11 

Figure 3. 

.1. 

Segment 2 

12 J 

max nl 

x 1 

~------------------------------?-

Figure 4. 

B1 
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Note that for this structure O'i - Tl'i; then the design problem can be stated 

as: 

[max ( max ITl'iD] 
i=1,2 xeQ i 

subject to: 

fn. [EBiTl'is'i - PSi]dx = 0 all admissible Si (15) 
1 

i=I,2 

For designs that make full use of the resource R (the optimal solution lies 

within this set), the maximum strains in the two segments vary with opposite 

sense (Figure 4). Thus the argument max I u'(x) I (indicated by the dashed 

curve in the Figure) has a comer at the optimal solution. 

Technically this difficulty may be circumvented by use of the 'p-norm' 

to simulate the argument 'max(local measure).' For the problem of 

Equation (15) for example, one would seek the design to minimize 

[L In I Tli I Pdx ] lip 
i 

for sufficiently large value of p. However, computation on the p-norm 

quickly becomes poorly conditioned as the value of p is increased, so that in 

fact the method is not very practical. 

As a more viable alternative, we next consider an interpretation of the 

minmax problem (see, e.g., Taylor-Bends~e) into a form that reflects 

minimization of a bound on the local measure. (This form is identified in 

these notes as the bound formulation .. ) Suppose that the criterion is 

expressed as max If(B(x); Tl(x)l, so that the problem statement along the lines 

of equation (8) appears as: 
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min [max If(B ;11)1] 
B(x) 

subject to: 

*the virtual displacement equation 

* performance and! or design constraints 

* JnBdx-R~O. 

(16) 

As before, B(x) and 11(x) represent admissible design and displacements, 

respectively. We intoduce an additional scalar unknown, say~, and interpret 

the problem of equation (16) in the form: 

min (~) 
B(x) 

subject to: 

* If(B;11)I- ~ ~ 0 

* ( constraints as in (16) ) 

(17) 

Within moderate restrictions on the form of the argument f(B;11), necessary 

conditions for the minmax problem (16) now may be obtained via formal 

procedures, i.e., as the generalized KKT conditions for the problem (17). 

Equivalence of the two problems is easily verified from the set of necessary 

conditions; in general the supremum ~ of argument If! equals the 

maximum value of If! . 

The 'bound formulation' comprises a convenient device for the 

interpretation of a variety of important basic problems in structural 

optimization. Several examples of its application in single purpose design 

problems are given in the material immediately following. Use of the 

formulation as the basis for a broadly applicable statement of multicriteria 

and fail-safe design problems is described in later sections of these lectures. 

We observe that problems where the criterion is expressed in terms of a 
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combination of global and local measures may be interpreted as well using 

effectively the same means as those already described. 

Desi~ of A Se~mented Structure 

As a first example, the bound formulation is applied to the above 

problem of design of a bar with two uniform segments, i.e., we seek to 

determine the design Ai from among admissible Bi that will minimize the 

max (max lu'/) . II Is it 'sensible' to treat this problem within a discussion 

under the name "distributed parameter" design? II Noting that 

max ( max I lli'/) = 
i xtil' 1 

max I lli'l 
xfil; 

we write in terms of the bound ~ on l11i'l : 

min (~) 
B· 

i=f,2 

subject to: 

I lli'l - ~ ~ 0 

f n· (EBi 11'~'i - P~i)dx = 0 
1 

~ Bili - R~ 0 
1 

i=1,2 

all x in n i i= 1,2 

all admissible ~i 

(18) 

Necessary conditions for the problem (18) are identified with stationarity of 

the Lagrangian 

The optimal design A, and associated response u'i and adjoint state v'i 

satisfy the system 
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1 

20 

(EA u')' + P = 0 

(EA V')' - (A \ - A-i)' = 0 

- (VIi) In .Eu'V'idx + A = 0 
1 

A+' > 0 1 - u'i - /3 ~ 0 

A-' > 0 1 - -u'i - /3 ~ 0 

A~O l:Bili -R~O 

allxin~ 

i=1,2 (20) 

allxin~ 

Since ui' - /3:;:. 0 almost everywhere (AE) in ni' A i +,- = 0 AE; 

according to this property together with the first of equations (20) , the Ai +,

are Dirac functions, say Ai +,- = Aik8(x-xk)' The xk identify points where a 

stress constraint is tight. For the present example problem, if p(x) > 0 

throughout n then xk = {O, II}' The optimal solution is obtained directly 

from the system (20). For instance, if p(x) has constant value, say Po' the 

solution is given by 

Maximu!ll strains in the two segments have equal value /3. Note also that for 

the optimal solution the average value of unit mutual strain energy has 

constant value from segment to segment over the domain, as indicated by the 

fourth of equations (20). 

Beam Design for MinMax (Stress) 

Taking the height h(x) of a beam with solid rectangular cross section as 

the design variable, the objective in this example problem is to minimize the 
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maximum stress. * In this case, the stress is proportional to hw" so that the 

design problem is stated: 
min [max if=hw"l] 
h(x) x 

The corresponding min problem is 

min (~) 
h 

subject to: 

hw" - ~ ~O 
(21) 

- J.lhw" - ~ ~ 0 

Jl 3 - - -o [ah w"w" - pw]dx = 0 for all admissible w 

hmin- h~ 0 

I 
bfoh dx - R~O 

The function ah3 (ex = constant) equals beam rigidity and w symbolizes the 

beam deformation. Admissible designs h(x) are defined in terms of the last 

two constraints; R, the bound on total resource, and hmin' the bound on local 

measure of the design, and the factor Jl represent specified non-negative 

values. Width b of the beam is taken to be constant. 

For this problem the Lagrangian has the specific form: 

II 3 - -
L = ~ + 0 {11 1 (hw" -~) + 112( -J.lhw" -~) - ah w"w" + pw 

I 
+ 113(hmin-h)}dx + 114[b fo h dx - W]. (22) 

Stationarity of L requires (solution functions for design and for state are not 

distinguished from the admissible functions here): 

*The following material is taken from Taylor-Bends~e. 
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1 - I~ (111 + 112)dx = 0 

- 3a.h2w"w" -113 + 114b + (111 - 1l112)w" = 0 

- (a.h3w") + [(111 - ll11vh]" = 0 

111 (hw" - (3) = 0 

112( -~w" - (3) = 0 

113(hmin - h) = 0 

114(b f~h dx - W) = 0 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
The solution is governed by these equations together with the original 

constraints and the (Kuhn-Tucker) conditions lli ~ O. The first equation 

represents a nonnalization of the multipliers (adjoint load) 111 and 112. The 

second and third equations are simply the specific fonns of optimality 

condition and adjoint state equation for this example. Note that from 

equations (23, 26, 27), constraints hw" - J3 ~ 0 and/or -J.1hw" - J3 ~ 0 are tight 

at least somewhere in the domain (0,1). In other words, in the solution for 

stationarity of L, the value of criterion measure hw" (or -Ilhw") equals J3 at 

its maximum. This substantiates the identification of problem (21) with the 

associated min-max problem, or, in the more general form it serves to 

identify the problem (17) with its min-max problem. 

From the fourth and fifth equations we have that 111 and 112 are 

orthogonal, 111· 112 = O. Additional interpretation of the system provides 

that 114 * 0, whereby the resource constraint is tight. Also, by the switching 

equation 113(hmin-h) = 0, the domain, (0,1) is covered in intervals with either 

h > hmin; 113 = 0 (design intervals), or h = h min; 113 ~ O. In the design 

intervals 111 * 0, 112= 0 and hw" - J3 = 0, or 112 * 0, 111 = 0 and -~w" - J3 = 

O. Making use of these results the entire system can be reduced by algebraic 
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manipulation to a substantially simpler form. 

In fact the solution itself is obtained directly for simple loads; for p(x) 

= Poxll as an example, the shape of the optimal beam in design intervals is 

given by h(x) = [Po(x3 + cl x + c2)/61J.l~] 112, where cl and c2 are constants. 

An iterative method is used to determine the boundaries (x 1 and x2 in Figure 

1) of design intervals, and the values of~, integration constants, etc. Details 

of the solution for a simply supported beam under the cited load and for J.l = 

1 are shown in Figure 5. 

c:: .... 
E .s::. -x -.s::. 

c:: 
01 .... 
VI 
Cl! o 
E 
<tI 
Cl! 
co 

W/bhmin = 1.19 

....... ----'------------....... --""~ ..... xII 
.200 .885 1.00 

Figure 5. Beam Design to Minimize the Maximum Stress 

Design of an Elastic Foundation 

As a second example, we sketch a treatment for the optimal design of an 

elastic foundation supporting an elastic beam. The goal is to predict the 

distribution of foundation stiffness, represented through the foundation 
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modulus function k(x), that minimizes the foundation pressure. The 

magnitude of pressure is given by Ikwl (w(x) symbolizes the beam 

deformation), so the design problem is stated as: 

min [max Ikwl ] 

Note that in this example the criterion function again depends explicitly on 

the state and on the design function. The 'minimize on a bound' form for this 

problem is: 

min (~) 
k(x) 

Subject to: 

kw-~~O 

-J.1kw-~~O 

1--Io [Rw"w" + (kw-p)w]dx = 0 

where beam stiffness is symbolized by R. 

In contrast to the prior example, here the measure of global resource is 

bounded from below while the design k(x) is limited locally from above (the 

system does not admit solutions with k ~ 0). 

The Lagrangian is formed for this problem, and the solution may be 

established from the associated necessary conditions, in much the same way 

as was indicated for the first example (for brevity the details are omitted). A 

solution is sketched in Figure 6 for the case p == 0, hinged supports, and with 

prescribed, equal-valued displacement of the beam ends into the foundation. 

As indicated in the figure, for the optimal solution the magnitude of 
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foundation pressure is constant in the design intervals (Ikwl = ~). 
The combined design of beams and their foundations is considered by 

* Plaut. 

-x p 
a. 
Q) 
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:::J 
VI 
VI 
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o.. 
....... s-
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a. 
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o 
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Figure 6. Design and Foundation Pressure for the Optimal Elastic 

Foundation 
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Minimize the Maximum Displacement and a Relaxed Form for Min-Max 

Problems 

In problems where the criterion function is directly a measure of state 

or in bending problems of its first derivative, the adjoint loads (multipliers 

on the 'criterion constraints') are in general singular. This property is 

demonstrated for the former case, i.e., min [max Iw(x)l], where w(x) 
D 

represents beam or plate deflection. The Lagrangian for the problem is 

stated as: 

L = ~ + in [111 (w-~ ) + 112( - Ilw-~ )]dn - aD(w,w) + b(w) + 'V, (30) 

Here the state equation is represented in terms of the energy bilinear form 

aD and the load linear functional b. The associated necessary conditions 

related to multipliers 111 and 112 are: 

111 (x) = 0 ifw(x) < ~; 

111 (x) ~ 0 if w(x) = ~; 

112(x) = 0 if - Ilw(x) < ~ 

112(x) :2! 0 if -Ilw(x) :::: ~. 

(31) 

(32) 

Typically the deflection function cannot have constant value over any 

interval of positive measure, whereby the stated conditions (31,32) dictate 

that 111 and 112 must be certain linear combinations of Dirac 8-functions. 

(Haug substantiates this result; also in his variational formulation Cinquini 

identifies the adjoint load as a Dirac-function, but the above normalization 

(31) is not present in his treatment.) 

According to this result, the determination of (adjoint state) w requires 

the solution of a beam or plate boundary value problem with singular loads. 

As an alternative, by treating this type of problem in a slightly modified 

form such singularities may be avoided. The modification amounts to a 

globally-bounded relaxation relative to the original constraint on local 

measure f(D,w). Thus the constraint for criterion f(D,w), i.e., If(D,w)1 - ~ 
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~ 0, is rewritten in terms of relaxation £(x) as If(D,w)1 - (P+£) ~ O. In place 

of the original minmax problem, we now consider the relaxed problem 

stated as: 

minp 
D 

subject to: 

f - (P+E) ~ 0 } 
-Jlf - (P+£) ~ 0 

aD(w,w) - b(w) = 0 

Dmin-D ~O 

fnDdQ- w ~ 0 

-£ ~ 0 

f£dx-E ~ 0 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

Again, state equation (35) is expressed in terms of (energy) bilinear form aD 

and the (load) linear functional b(w). Design is symbolized by D, and c, E, 

Dmin, and W represent specified nonnegative numbers. Thus the relaxed 

problem corresponds still to minimization with respect to design of the 

bound value p, but now with an admissible violation £(x) (the admissible set 

is defined by (38,39» of the bound on f, where the total measure of violation 

is not to exceed the value of E. 

It may be verified that the original min-max problem is recovered for 

E =::} O. The relationships among w, £, and P are indicated in the sketch of 

Figure 7 for the case f = w, as an example. 
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t 

1 

Figure 7. Constraint Relaxation Function e(x) 

The optimal relaxation from among admissible functions e(x) is associated 

with equality in one of the constraints (34). In other words, in the solution of 

the relaxed problem, the difference f-e (or -Jlf-e) has constant value equal to 

the bound~. 

For problems with E > 0 the load in the adjoint problem is no longer 

singular; it is verified below that multipliers "1 and "2 in fact have constant 

value wherever they differ from zero. Note also that the introduction of a 

relaxation regularizes the problem in the sense lhat constraints (34) are 

regular even through their counterparts in the original min-max problem 

may lack regularity. 

An augmented functional for the relaxation problem (33-39) has the 

form 

L * = ~ - aD(w,w) + b(w) + In [111 (f-~-e) + "2(-Jlf-~-e) + 113(Dmin-D) 

+ 115( -e)]dn + "4[In Ddn-W] + 116[Jnedn-E] (40) 
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where the terminology is the same as in the prior examples except for the 

additional multipliers 115 and 116 associated with the constraints that define 

admissible E(X). Stationarity of L * with respect to ~,W,E require satisfaction 

of equations similar to (23) and (24) of the 'Design for Stress' min-max 

problem, and in addition the equation reflecting variation w.r.t. E(X): 

(41) 

The solution must also satisfy the conditions: 

or 

or 

or 

or 

111 = 0 if f < ~ + E 

111 ~ 0 if f = ~ + E 
} 

112 = 0 if - f < ~~ + E 

112 ~ 0 if - f = Jl~ + E } 

115 = 0 if - E < 0 

115 ~ 0 if - E = 0 
} 

(42) 

(43) 

(44) 

(45) 

The condition for stationarity with respect to design of L of the original 

problem remains unchanged in the relaxed problem identified with the 

functional L * . 
The following properties are apparent: 

i) The multipliers 111 and 112 are elements of L2(.o), since 

constraint equations (34) and (35) must be in L2(.o) when E is in 

L2(.o). In other words, 111 and 112 are elements of the dual of 

L 2(.0), i.e., L 2(.0): Therefore Dirac functions do not appear in 

the 'load' for the adjoint problem in the relaxed or E-min-max 
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problem. 

ii) The constraint (39) J Edn ~ E is active, since otherwise equation 

(45) requires that 116 = 0, which leads in tum to the requirement 

from equation (41) that the non-negative functions 111,112,115 

have zero value almost everywhere. The latter condition would 

violate the necessary condition that (111,112) have nonzero 

measure. 

iii) From equation (44), E > 0 implies 113 = 0, whereby from (41) 111' 

+ 112 = 116 has constant value for this case. Furthermore, since 

(from equations (42) and (43)) 111'112 = 0 it follows that when E 

> 0 either (111 = 116 and 112 = 0) or (11 1 = 0 and 112 = 116)' Thus 

either the upper or the lower constraint on f is active when E is 

non-zero, and therefore the load in the adjoint equation has 

constant value. Combining this with the fact that from (ii) J Edn 

= E leads to the conclusion that the optimal colution takes 

'maximum advantage' of the possibility for f to exceed the value 

~, as afforded by the presence of the relaxation function E(X). 

The main features of the relaxed formulation are illustrated via the 

treatment of design of a beam to minimize maximum displacement, i.e., the 

case f = w cited at the beginning of this section. Suppose beam cross-section 

A(x) is the design variable, and for this example the beam rigidity is taken to 

be proportional to Ak. Then the state equation is given by 

J~ tr Akw"w" - pw)dx = 0, for all admissible w(x), 
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and L * is obtained from (40) with f, D, and Dmin replaced by w, A, and 

Amin' To proceed toward a specific solution, for a cantilevered beam 

supported at x = 0 under uniform load, w(x) increases monotonically with x. 

Thus there is a value, say xO' such that 

e(x) = 0 for 0 !S; x!S; xO; e(x) > 0 forxO < X!S; I 

The corresponding load Ttl in the adjoint problem is (the notation for 

multipliers Ttl through Tt6 is the same as in equation (40); also since w(x) ~ 0, 

Tt2 = 0): 

111 (x) = { 
o for 0 ~ x !S; xo 

_I_ 
I- Xo 

for Xo < x !S; I 

Note that Ttl has constant value wherever it differs from zero, whereas 

without the constraint relaxation e(x), the adjoint load is given by the Dirac 

0-function at x = L. 

Integrating the state and adjoint equations leads to 

Akw" ~ F(x) = ~ po(l-x)2 

~ (1 + xO) - x for 0 !S; x !S; xO 

{(l-X)2/2(l-XO) for xo < x !S; 1 

The design itself may be expressed as 

A(x) = { 
k+1/..Jk F(x)G(x)/Tt6 for 0 !S; x !S; x 

where the value x 1 is obtained from 
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which is the optimality condition (27) evaluated for the point x I. Taking 

specific values I = I, k = I, Amin = I, Po = 2 and V = 5.15, the complete 

design is given by Xo = 112, xl = 3/4 and: 
I for 3/4 ~ x ~ I 

A(x) = { 16(1-x)2 for 112 ~ x ~ 3/4 

for 0 ~ x ~ 112. 16(1-x}~34-x 

This design is pictured in Figure 8. 

Other Applications 

The convenience afforded by the transformation of min-max design 

problems to simple min problems and by the relaxation of constraints, as 

demonstrated on the beam examples, might be realized in the context of 

various other problems in mechanics and optimal design. Other types of 

design problems discussed briefly in this section include a problem of design 

for elastic bodies in contact, a formulation for optimal remodel design, and a 

form of mesh optimization for finite element grids. 

nj,nj,mj,ze Pressure 

between boc(j,es j,n Conta.ct. 

The optj,mum fi,t! 
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l w < B J w = B+€; € > 0 

Figure 8. Solution for the Relaxed Problem to Minimize the Maximum 
Displacement 
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The objective to minimize relative to design the maximum value of 

contact pressure may be taken as the basis for optimization in contact 

problems. The case where the purpose is to design the initial gap, say go(x), 

between the bodies is used as a particular example. Thus the problem is 

stated as 

(max_p(x)) 
xeX 

subject to: 

'state equations' 

- go(x) ~ 0 

J godx - G ~ 0 

The corresponding min problem, stated in terms of bound p on pressure, has 

the form, i.e.: 

min p 
goer 

subject to: 

'state equations' 

p-p ~ 0 

- go ~ 0 

J godx - G ~ O. 

Pressure p(x) is of course a function of state. (In its present usage, the term 

'state equations' is intended to reflect the usual constraints for contact 

problems, as well as the governing field equations and boundary conditions. 

In the procedure of Benedict-Taylor, for example, the gap constraint 

I II 
g(x) = go(x) - u(x) - u(x) ~ 0 
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was appended to the potential energy for the two bodies; then the associated 

multiplier turns out to be contact pressure. Here uI and uII represent outer 

normal displacement of the two bodies evaluated along the contact boundary 

interval). 

The necessary conditions for the min problem reproduce results 

obtained earlier, but with the clear advantage that the Lagrangian for the 

problem in this form directly reflects the original design objective. Also, the 

introduction of a constraint relaxation may be useful in the analysis for 

contact problems, e.g., the presence of a relaxation e(x) '# 0 in the constraint 

gap g(x) assures that ordinary functions will suffice to express the contact 

pressure. 

The formulation of optimal remodel design, which is treated 

independently in a separate section of these lectures, represents a quite 

different example application. The name refers to the type of problem 

where the purpose is to predict the design for optimum modification of a 

given structure, rather than the overall optimal design. For the problem in 

its general form, the solution may represent a combination of reinforcement 

(added material) over some parts, and lightening (removed material) over 

other parts of the domain of the structure. 

The purpose of discussing the problem here is to point out that the 

general remodel problem can be represented quite simply with the use of a 

relaxation in the local constraint on design variable d(x), where d represents 

reinforcement to a given structure. The problem is stated: 

min~ 
d(x) 

subject to: 

'state equations' 
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E-fnEdx s 0 

fn(d+E)dx-D s 0 

Here E(X) appearing as a relaxation of -d(x) s 0 serves to represent removal 

of material. For the case D > 0 and E = 0, the problem statement 

corresponds to 'reinforcement only' modifications. On the other hand, a 

value E > 0 prescribes the global measure of material removed. It may be 

verified from the necessary conditions for this problem statement that if both 

D > 0 and E > 0, the design modification d(x) must be negative over intervals 

of the design domain and positive over others, i.e., d(x) represents a general 

remodel. 

Often in the analysis and computational work done using finite element 

methods, there is a stringent need for a high level of precision in the 

determination of a local measure such as stress. This need becomes apparent 

in the treatment of contact problems for elastic bodies, as an example, where 

the location of 'contact boundaries' may be rather sensitive to changes in 

contact pressure. Similarly, for certain situations in the design of optimum 

shape the determination of shape is exceptionally sensitive to the level of 

precision achieved in the evaluation of stresses. The determination of stresses 

in the area of crack tips, or near the corners of a sharp punch also suffer 

from the same sort of sensitivity. The implementation of devices for mesh 

adaptation into the finite element scheme make it possible to obtain 

improvements in the authenticity of computational results. One should note, 

however, that in all cases such as those mentioned here, the adaptation must 

be responsive to some index of local error in order to be effective. 
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Computa.ti..onaL 

.Ac!a.pmtt.on - mi.ni.mi.ze 

the [DeaL error. 

We consider an adaptation scheme based on the objective to 

minimize the maximum value of local error , where the choice of the 

measure of error is up to the user. This minmax formulation provides the 

framework in analysis for a grid optimization method that may be tailored 

to the particular application. Kikuchi* provides an extensive treatment of 

this approach, including many applications; thus we limit the present 

discussion to a brief statement of the problem and a few remarks. 

For the local measure of error designated Ee ,the problem min 

[max(Ee)] w.r.t. node locations xk is expressed as 

min (~) 
xk 

subject to: 

*IEel-~<O 

* Constraints to define admissible grid modification 

In a grossly oversimplified view, the necessary conditions for this problem 

furnish guidance for the construction of a grid modification scheme. We 

note that where it might be desirable to use grid adaptation in conjunction 

with structural optimization, an adaptation step might be called for 

periodically along the process controlled by the design algorithm. Again, the 

reader is referred to Kikuchi* for the demonstration of such methods. 

Viewed differently, there should be some advantage to an approach that is 
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consistent with simultaneous structural and grid optimization. The 

justification for this claim is that the two aspects of the problem may be 

strongly coupled. We return to this issue in the discussion that appears at the 

end of the section on multicriterion optimal design. 

We end this section with the comment that the minmax approach is 

possibly more familiar in its many applications outside structural 

optimization, e.g., for the interpretation of data, in curve fitting (as 

generalized Chebyshev approximations), ... 

1"ti,ni,mi,ze toca! 

error - c(efi,nes a 'best fi,t' . 

yes. mi,nmax. agai,n I 

And while it is possible to imagine applying the idea more widely, one is 

advised to consider carefully the possible implications ... 

Closure 

1"ti,ni,mi,ze the worst 

Di,scomfort : Utopi,an 

i,n concept. but Bori,nlJ ! 

It is most fitting to commemorate William Prager on the occasion of this 

Advanced Study Institute - to pay tribute to him, and to acknowledge here 

again his exceptional contributions to the field of structural optimization. 

Prager's pioneering studies on analytical modeling set the stage for 

contemporary developments in several major aspects of interest in our field. 

Certainly the influence of his work is strongly evident still in much of the 

material scheduled for presentation in this meeting. I look forward to 

George Rozvany's special lecture in honor of William Prager, with the 

expectation of being treated to a most informative and interesting exposition. 

One might be informed about some of Prager's earlier and basic work 

through the recently published book by Save and Prager. The book is a 
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useful resource for additional information on the subject of these lectures as 

well. Also, the reference list given in this book is helpful as a guide (with 

notable exceptions) to literature on certain of the topics that are not covered 

here or in the book. The list identifies published material on Rozvany's 

singular developments for grillage design and on other topics, for example. 

Leads may be found there to various works by Cinquini, Masur, Mroz,and 

Lamblin (to name a few) as well. Papers by Masur on his modeling of 

problems for segmented structures, on design for strength and stiffness, and 

on singular problems (with Mroz) are listed with these notes, as are samples 

of the varied contributions by Mroz, and by Dems and Mroz. Historically 

significant schools of earlier work ,e.g., those in Poland (Wasiutynski), in 

Denmark (Niordson), and in Italy, the USSR and the US are described in the 

various survey articles cited here too. 

Directly within the ASI we benefit to hear from Olhoff* (eigenvalue 

problems, solid plates, sensitivities), Mroz* (shape design, nonlinear 

problems), Plaut* (shallow shells), Bends~e* (appropriate design spaces, 

structure plus control, and Cinquini* (elasto-plastic structures) for 

additional coverage on topics related more or less to the business of problem 

formulation and the associated analysis. Haug* presents important results 

from his extensive work on sensitivity analysis, and Choi* covers sensitivity 

in relation to shape design. Braibant* provides a clear and useful exposition 

on the variational modeling for sensitivitiy with respect to shape change. 

Haftka* and Fleury* each discuss aspects of the implementation of finite 

element methods for the computational solution of structural optimization 

problems. Interpretations of finite element grid optimization, treatments of 

shape design w.r.t. local criteria, and design for bodies in contact (all 

interpreted for design w.r.t local criteria using the minmax modeling) are 

reported in the lectures by my colleague Noboru Kikuchi*. 
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Lastly, the important works on analysis by Lurie, Fedorov and 

Cherkaev, and of Kohn and Strang are cited here; it is regrettable that their 

work is not better represented at this meeting. 

OPTIMAL REMODEL DESIGN 

The optimal remodel design problem is formulated using the same 

means as those employed in the the treatments just described. However, the 

design problem itself is substantially more general. As it is presented here, 

the objective is to predict the optimal reinforcement to and/or removal from 

an arbitrary specified starting design, within a prescribed limit on the total 

change in the structure. A variety of practical applications lie within this 

general problem statement. One may wish simply to determine the best way 

to improve upon an existing structure that is to be used for some new 

purpose, for example. To identify another use of the formulation, the benefit 

of prior experience may be introduced into the design process by specifying 

the starting design in the form of the best structure from among known 

examples for problems of the given kind. Also, a sequence of optimal 

remodel designs may be interpreted to represent a form of evolution in 

design. As an example, the evolution might be identified with a set of 

incremental steps in the procedure used for the computational solution of 

optimal design problems. In this case, each step would itself be associated 

with a well posed optimization problem. 

The better 'nex.t step' 

depends on wha.t foHows. a.nd 

a.~so on wha.t's pa.st ... 
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The optimal remodel formulation is applicable to almost all forms of 

structuctural design problems. In this formulation, the optimally modified 

design is represented schematically in terms of a specified initial design Do 

with boundary r 0 as 

r 
o 

where d+ > 0 symbolizes addition or reinforcement to Do and d- > 0 

stands for a removal or lightening of the initial structure. Limits on the 

extent of modification may be expressed through the isoperimetric 

(resource) constraints as 

n represents the space of admissible designs. In this case the 'addition' and 

'removal' are controlled separately through specification of the bounds R+ 

and R-. For example, either simple reinforcement or simple lightening is 

predicted by setting R- or R+ equal to zero. As another possibility, remodel 

design within the constraints 

f d+dx-R+ ~ 0 
n 

serves to predict the best 'relocation of resource' while preserving the total 

volume or weight of the original structure. For the problem so stated, in 
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general there exists a value for the bound R + such that the solution to the 

optimal remodel problem for that value is identical to the solution for the 

conventional optimal design problem. In other words , the conventional 

problem is imbedded in the set of optimal remodel problems. 

The similarity between the variational treatments for optimal remodel 

problems and for the conventional design problems is made apparent here by 

presenting the remodel version for the earlier example of design to 

minimize the maximum stress for the axially loaded elastic bar. Taking into 

account that (J - u' and making use of the 'bound interpretation' for the 

minmax problem, the remodel design problem has the form 
Min (~) 
b+,b-

subject to: 
L 

fo [E(Ao + b+ - b-)ll'~' - p~]dx = 0 

- b- ~ 0 

L 
f b+ dx -R+ < 0 o -

L 
fo (b+ - b-)dx ~ 0 

The Lagrangian associated with this problem is given by 

L = ~ + f~ {- [E(Ao+b+ -b-)ll'~' - p~] + A +(11'-~) 
+ A-(-ll'-~) - J.l.+b+ - Wb-}dx 

(46) 

all~inZ 

(47) 
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The optimal remodel functions a+ and a- and the associated multipliers must 

satisfy the ('optimality') equations 

Eu'v' = r + I.e 
as well as the KKT conditions 

~+a+=O a+ ~ 0 

~-a- = 0 a- ~ 0 

(48) 

(49) 

(50) 

(Only these necessary conditions are needed for the immediate purposes). If 

the quantity (Eu'v' - r) is eliminated between equations (48) and (49) we 

have 

~++~--A=O 

For segments of the bar in the set, say n+, where a+ > 0 => ~+ = 0 ,from 

equation (48) 

Eu'v' = A+ r 
Similarly, for segments of the bar within n- where a- > => ~- = 0 , 

from equation (49) 

Eu'v' = r 
In other words, the unit mutual strain energy has constant value A + 

r or r over the design intervals in n+ and n- respectively. In general the 

value in segments where material is added differs from the value where 

material is removed, whereby A:t:. O. This result combined with equation 

(50) provides the orthogonality relation 

a+a- = 0 
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Furthermore, since ~+ ~ 0; ~- ~ 0, the constants rand r + A 

bound the value of the unit mutual strain energy over the entire domain of 

the structure, as depicted in the Figure 9. 

EUIV I 

r +1\ t---

r 

x 
L 

Figure 9. Unit Mutual Strain Energy (Typical) 

It would be a relatively simple matter to run through the details for 

the actual solution of an example remodel design problem, say for 

particular loads and boundary conditions. However, the procedure is quite 

similar to what has already been described in the earlier example 

problems, and at this point it would most likely be boring to read through 

such material. At the same time it may be useful to note the following 

features of such problems. The extended set of necessary conditions 

provides that the design domain is identified with the union of segments 

for which 1..+> 0 and 1..- > 0 (implies lu'l = ~ ,ie., where the stress 

constraint is tight). The intersections between design intervals and 
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segments where the original design Ao remains unchanged may be 

determined with the help of the corner conditions. The same comment 

applies for the intersection of intervals in n+ and n-. Finally, the entire 

optimally modified design is made up of segments that alternate among the 

domains no' n+ and n- . 

The model is easily extended to accommodate a lower bound, say A, 

on the optimal design. In the results for this case, there may occur 

intervals within segments where Ao ~ A with b- > 0; b+ = 0 and Ao - b- = 

A, and in such intervals the value of the unit mutual energy may be less 

than r, i.e., Eu'v' < r (Compare to Figure 9.). In the contrasting case, 

wherever Ao < A within the domain n, then the constraint requires that 

b+ > 0, and here too one may find that Eu'v' < r. Such results for the 

constrained remodel problem follow directly from the appropriately 

extended set of KKT conditions. 

We mention here another important application of the ideas of optimal 

remodel, namely its use in the context of redesign for structures that are 

already under load (or preload). The treatment of such cases was reported 

in the recent paper by Garstecki. It is important to realize that the remodel 

of a stress-free structure in general differs from the redesign of a structure 

with preload or with prestress. 

Applications 

The OptLmllm Path 

throu9h desL9ns or states - eLther 

by best remodel: ... 

As suggested in the introduction, the optimal remodel formulation is 

basic, and therefore one might consider its use in the context of any 
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structural design problem. The examples described here are limited to two 

applications in optimal shape modification (this material appeared in Na, et 

al.). 

In the first example problem, the objective is to design the optimal 

hole in the cross-section of a torsion bar with specified external shape. 247 

elements were used in the FEM model for the cross-section, and the design 

boundary is represented by twenty nodes. One-quarter of the cross-section 

is shown (see Figure), and results are given for optimally shaped holes 

corresponding to five, ten, and fifteen percent of the original area. 

In the second example, the optimal shapes for external boundaries 

along two free edges of a sheet are predicted for 10, 20, and 30 percent 

required reduction from the original area (see Figure). The left and lower 

edges of the sheet are fixed, and load is applied at the truncated corner 

identified with nodes (7,8,9). 
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Figure 11. Optimal Shapes for Free Edges of a Sheet-Design for Maximum 
Stiffness. 
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MULTICRITERION PROBLEMS IN STRUCTURAL OPTIMIZATION 

Introduction 

ttost of our goaLs tl-M 

Aspi.rtl-twns: thei.r meri.t 

metl-Surm i.n uc:u!e-off. 

The goal with the presentation in this chapter is to provide an 

interpretation for multicriterion or vector structural optimization. Most 

practical problems in structural design could be characterized properly as 

multicriterion problems - for example, multipurpose design: the design of a 

structure to be optimal relative to a set of loads, or multimodal design: where 

the structure is to perform optimally in different response modes (the two 

generally are not independent) - so the importance of being equipped to 

handle problems of this kind is clear. Fortunately the multicriterion 

problems are treated quite reasonably through an interpretation into scalar 

form. We follow closely the style and content of Bends~e-Olhoff-Taylor for 

the material that follows; thus the scalar counterpart used here for the 

multicriterion problem is a minmax problem, and the minmax problem is 

resolved through use of the bound formulation as described in earlier 

applications to minmax optimization. This approach provides the basis for a 

quite general model of multicriterion structural optimization, and so we can 

expect to have available the means to handle multicriterion problems where 

the separate criteria may cover up to the full range of problem types 

discussed earlier in these notes. 

The distinct criteria in a multicriterion problem might reflect design 

requirements expressed in terms of stress or displacement (or some function 

thereof), compliance, eigenvalue, or any other measure of structural 

performance. Given appropriate rules for ordering within and operating on 

the set of criteria, the problem may be represented properly in a form that 

corresponds to minimization on a vector argument. Viewed in the context of 
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Pareto optimization, the optimal solution to such a vector problem is an 

element of the Pareto set. Also, in one approach the solution itself may be 

identified via an interpretation on the Pareto set. However, this generally 

requires the introduction of additional information such as weighting, or the 

provision of an appropriate basis for making judgment. The procedure 

tends to be cumbersome and, particularly in structural optimization where 

one typically has the benefit of substantial physical insight, it is more 

common to make an a priori interpretation of the multicriterion problem 

into a scalar form (in this treatment as a minmax problem). The relationship 

between the Pareto model and multicriterion optimization is discussed in 

more detail at the end of this chapter. 

An extensive description of the mathematical background for vector 

optimization is given in the survey paper by Stadler.aStadlerb also 

provides a comprehensive compilation from the literature on applications, in 

a second part of this survey. As pointed out there, only rather few cases are 

known from published works where analysis has been applied to vector 

structural optimization problems. The report by Koski furnishes a concise 

description of variational problem statements and their application to truss 

design problems. Brief summaries on methods of solution are given in the 

survey paper by Osyczka and Koski; useful listings of the recent literature 

are included in this paper. 

The variational formulation proposed in the present paper 

corresponds to the min-max problem for a minimum with respect to design 

of the maximum value among a set of (weighted) criteria. This min-max 

problem is interpreted as a simple min problem for the minimum of a bound 

value, where (the measures of) the criteria are related to the bound through 

constraints. The min problem is also constrained by a bound on the total 

design resource, e.g. weight of structural material. It appears that the 

analysis and treatment for solution may be accomplished with less difficulty 
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for this scalar problem, compared to existing forms such as other min-max 

statements, or constraint, or global criteria methods. Also, the present 

bound formulation may be compared to other approaches where weighting 

factors are introduced, such as utility function methods. Relationships 

among various methods for vector optimization problems are discussed in 

some detail below. 

The developments described herein apply equally well for discrete or 

continuous structures, and to situations where the design itself has discrete or 

distributed parameter form. Multipurpose design is covered as well, where 

the name refers to problems for which different structural purposes 

(criteria) are identified with distinct load configurations and possibly with 

different associated response modes. Various example problems are given to 

demonstrate how these considerations are handled. 

Formulation 
The analytical formulation is demonstrated for distributed parameter 

design, expressed in a somewhat general form with regard to objective. As 

indicated in the introduction, the development applies equally well for 

discrete systems; a discrete design problem is treated in one of the examples. 

It is assumed that the separate criteria gi of the set {gil are 

conditioned to be consistent with direct minimization on each of them. Then 

the multicriterion (vector) problem is interpreted in the form: 

m~n [ ~ax (ai gi ) ] 

subject to: 
(state equations) a. 

Dmin-D~O (1) 

fn DdO - W ~ 0 
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where D represents the design variable constrained from below by 

(specified) value Dmin' and W is the specified value for the bound on 

resource. The ai ~ 0 denote imposed weighting or utility factors. Index a 

on the representation of 'state equations' is included to accommodate cases 

where there are constraints reflecting independent response states, as would 

occur for multiple loads (multipurpose), or where various response modes 

are to be taken into account. 

The development is to be performed in a way to include elements 

among the gi that represent a max over the domain of the structure for some 

local measure of performance. (Min with respect to design of the max stress 

or displacement are examples of problems with this type of max argument.) 

For the sake of clarity, distinct symbols are introduced for criteria with 

global measure on the one hand, and those associated with a 'max argument' 

on the other. Thus criteria that reflect global objectives such as compliance 

or eigenvalue (i.e. negative of eigenvalue) are represented by fi ; i = 1,2, 

... , M, while the symbol fj is used to denote the argument in a 

criterion 

max ~ (x) ; j = 1,2, ... , N 
xeQ 

Here the fj may measure stress or displacement, for example. 

Using the new notation in place of gi for the criteria, equation (1) 

has the form 

min [max {ai fi ; aj max fj (x) }] 
D I,J xa2 

(2) 

The max-max part of this statement condenses to simply a max, whereby (2) 
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[max {ai fi ; aj fj (x)}] 
i,(x). 

J 

(3) 

The notation (x)j is to indicate that for the collection of criteria aj fj the 

max is to cover xdl. 

The problem of minimizing the argument in equation (3) is recast as 

follows in the form of a simple min problem (Taylor and Bendsoe) that 

reflects minimization of an upper bound ~ on all of the separate criteria: 

min ~ 
D 

subject to: 
ai fi - ~ ~ 0 

aj~ (x) - ~ ~ 0 

(state equations) 
a. 

-D+Dmin ~ 0 

.bDcIn-W~O 

i=l, ... ,M 

xdl;j = 1, ... ,N 

(4) 

A problem statement similar to the first part of Eqs. (4) was considered in a 

different context by Gembicki, under the name "goal attainment method." 

It is informative to form and to operate on the Lagrangian associated 

with problem (4). Note that if a criterion fi (or - fi) can be expressed as a 

maximum with respect to state, the state equation in (4) corresponding to 

this fi can be dropped when fi is replaced by the functional for which fi is 

an extremum (e.g. eigenvalue replaced by Rayleigh expression): the state 

equation will automatically follow as a condition of stationarity of the 

Lagrangian with respect to state. 
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The necessary conditions obtained from (4), together with 

Kuhn-Tucker conditions, comprise a substantial basis for an approach 

toward solving the multicriteria design problem. The procedure is 

demonstrated in detail for the several examples described in the next section. 

The form (4) of the minimization problem is convenient when 

considering the issue of existence of solutions. It follows, as demonstrated in 
... 

Taylor & Bends~e that for a G-closed design space and functionals fi, fj 

that are explicitly continuous and convex in design and state, the existence of 

solutions to problem (4) is guaranteed. It also follows from this 

formulation of the min-max problem that the problem of minimizing the 
... 

maximum of the components ai fi; aj fj (x) with a constraint on resource is 

equivalent to minimizing resource subject to constraints on the separate 

criteria. The equivalent formulation has the form: 

min f Ddn 
D 

subject to: ai fi - ~* ~ 0 

aj fj (x) - ~* ~ 0 

(state equations) a 

i=l, ... ,M 

xeW, j=l, ... ,N (5) 

where (specified) value ~* is the solution for problem (4). The equivalence 

may be verified by comparing necessary conditions for the two problems. 

Design of a Simply Supported Beam for a Global and a Local 
Objective 

As an illustration of the analysis in Section 2 a vector optimization 

problem for a simply supported beam will be considered. To illustrate the 
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usefulness of the formulation in treating global as well as local performance 

indices, we will use compliance and maximum value of deflection as two 

criteria. 

The beam is subjected to a load p increasing linearly along its length 

I , the deflection of the beam is wand the cross-sectional area D of the 

beam is the design variable. For simplification the rigidity of the beam is set 

to be equal to D and the beam is supported at x = 0 and x = I . 
The problem is then 

min max { a max I w (x) I ; b J P wdx } 
D x 0 

subject to: 

(DW") II = P 

I 
J Ddx::;; W 
o 
o .s; Dmin ::;; D, 

(6) 

where a and b are weighting factors on the criteria and W is an imposed 

upper bound on volume. It is readily seen that the scalar criterion to be 

optimized can be rewritten as 

as: 

I 
max {b J P w dQ ; a w (x) ; - a w (x)} . 

x 0 
(7) 

A reformulation of the min-max problem as a min problem is stated 

Min J3 
D (x) 

subject to: 
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1 
bf pwdx-~::;O 

o 
a w (x) - ~ ::; 0 

- a w (x) - ~ ::; 0 

(Dw")" = P 

Dmin - D ::; 0 

I 
f Ddx-W::;O 
o 

(8) 

-With Lagrangian multipliers 11 1, 112, 113,· w, Y and A , 

augmented functional (Lagrangian) for this problem has the form 

L = ~ + fO I [112 (a w -~) + 113 (- a w -~) - w «D w ")" - p) 

+ y(Dmin - D)] dx (9) 

+ 111 [bJ6 pwdx-~] + A[b1 Ddx-W] . 

Stationarity of L requires: 

1 - 11 1 - J6 (112 + 113) dx = 0 (10) 

a 112 - a 113 + 11 1 b P = (D w ") " (11) 

-w"w"-y+A=O (12) 

with associated Kuhn-Tucker conditions. 

For the problem at hand it is known that w ~ 0, so 113 = 0, and as is 

usual for problems involving the maximum deflection as a performance 
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index, the multiplier Tt2 is a Dirac 8 - function or it is zero everywhere. As 

w has one local maximum along the beam, the adjoint w is a deflection 

corresponding to the beam being subjected to a distributed load Ttl bp and 

a point load of size a (1 - Ttl) at a point Xo somewhere along the beam; 

this follows from equations (10) and (11). 

With P = Po xiI the state equation and the adjoint equation (11) are 

integrated to obtain: 

and 

_ d 
Dw" = G(x) = 

Dw" = F(x) = C ( z3 - z ) 

where 

C = Po 12/6 

z = xll 

Ttl b C z3 + z ( a (1 - Ttl )( Xo - 1 ) - Ttl be) 

for 0 :s; x :s; Xo 

Ttl b C z3 + (z - 1 ) a ( 1 - Ttl ) Xo - Ttl b C z 

for Xo :s; z :::; 1 

The optimal design can then be verified via equation (12) to be 

Dmin 0 :s; x :::; Xl, x2 :::; x :::; I 

D (x) = { 

(13) 

(14) 

(15) 

where Xl' x2 are the solutions to F (xi) . G (xi) = A' D2 min' i = 1, 

2. The multiplier A is given by the volume constraint being active, and Ttl' 
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112, Xo are governed by 

(111 = 0 & 112 = 1) or (111 = 1 & 112 = 0) or 

f1 bpwdx = aw(xO) & 111 + 112 = 1 
o 

w ( xO) = max w (x) . 
x 

(16) 

(17) 

Figure 1 shows the optimal area function for weights a = 3, b = 

1.5, length 1 = 1 , load p = 6x and constraints Dmin = 0.27 and W = 

0.356. The optimal value of the criteria is 0.29 and this value is obtained 

by both the weighted maximum deflection and the weighted compliance. For 

a uniform beam of the same volume the value of the performance index is 

0.33 , so in this example optimization results in about a thirteen-percent 

improvement. 

1 

x 

w(x) 

Figure 1 . Design of a Simple Beam Under Two Criteria 
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Design of a Simple Truss Under Two Criteria 

The design of an elastic two-bar truss subject to two criteria suffices 

to demonstrate some interesting features of multi-criteria design of a 

discrete structure. The criteria are taken to be weighted measures of 

displacement in two directions. Cross-sectional areas Ai are the design 

variables. For components {PI' P2} of load and {ul' u2} of displacement, 

the problem statement is: 

min [ max I ak Uk I ] 
Al k 

subject to: 
Pk - ~ Kkj Uj = 0; k = 1 , 2 

Amin } Ai ~ 0 i = 1,2 

~ Ii Ai - W ~ 0 
1 

, 
x1 

Figure 2 - Truss Layout 

:E s· cos2 e· . 1 1 
1 

:E s· sin e· cos e· . 1 1 1 

[K] = 

1 

(18) 

Subscript i identifies the 
members, Ii represent member 
lengths, and the member 
directions are given by ei as 
shown in Fig. 2. The stiffness 
matrix K is 

~ si sin el cos el 
1 

:E s· sin2 e· . 1 1 
1 

(19) 

where si = (Ai E / Ii) are the member stiffnesses. 
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The above min-max problem is solved in the form of the min 

problem: 
min (B) 
A-I 

subject to: 
ak uk - B ~ 0 

- (ak uk) - B ~ 0 

Pk - f Kkj Uj = 0 

Amin - Ai ~ 0 

L Ii Ai - W ~ 0 . 

The Lagrangian associated with this problem is 

L = B + f uk (Pk - r Kkj Uj) + r ~i (Amin - Ai) 

(20) 

(21) 

+ f { 11k [ ak uk - B] + 'Uk [ - ( ak uk) - B]} + ~ (L Ai Ii - W ) . 

Corresponding necessary conditions are (in part) : 

(22) 

- L Kkj Uj + ak (11k - 'Uk) = 0 (23) 

- kL jL (oKk/oAi)Uk Uj - ~i + A = 0 (24) 

and the original equilibrium and design constraints, as well as the 'switching 

equations.' Equation (22) enforces the result that at least one among the 

displacement constraints is tight for the solution. Multipliers (11k, 'Uk) on 

the displacement constraints appear as the loads in (the adjoint) equation 

(23) as expected. Design sensitivity, given by the first term of equation 
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(24), is expressed as unit mutual energy - mutual between original and 

adjoint displacements. Given specified values for W, ak and Amin' and 

using the KKT conditions on the multipliers, the optimal solution may be 

determined from this system. 

Two particular cases are examined, both within the simplifications 

ai = 1, Ii = 1, Pi = P, and Amin = O. For values 9i = 7tl2; 92 = 1t, 

the solution is easily determined to be 1"\*1 = '\)*2 = 112,1"\*2 = '\)*1 = 0, 

u*1 = u*2' A*1 = A*2 = W/21, and u*1 = -u*2 = 2P12/wE. Note 

that for this example every admissible design is Pareto optimum, i.e., 

starting with any design it is not possible to improve on either of the criteria 

without sacrifice on the remaining one (see the next Section). The comment 

still applies for the more general problem with al ± a2 ; PI ± P2' 

In the second example case, 9i have the values 91 = 7rl4; 92 = 31t14 

The equations predict K*12 = 0, A*1 = A*2 = W/21, u*1 = -u*2 = 

2P12/EW. Here, the condition K*12 = 0 identifies the optimal truss as the 

one whose principal directions coincide with the directions of the load. For 

this problem there is only one Pareto optimal design. Given the results for 

these two cases as the extremes, one may appreciate that in general the 

multicriteria design problem might have anywhere from one to an infinity of 

Pareto optimal designs. 

Eigenvalue Problems 

The multicriterion formulation provides an appropriate means for 

the treatment of eigenvalue design problems as well, particularly those 

where the structural design depends on separate response modes. Design of 
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an elastic bar to be optimal with respect to both axial and bending vibrations 

is an example. Also all cases where the response for the optimal design is 

multimodal are managed properly using the minmax (or rather maxmin) 

statement for muIticriterion problems. Consider the design problem with 

the objective to maximize the minimum eigenvalue. The multicriterion 

problem statement expressed for vector O"i}' i = l, 2, ... of eigenvalues 

associated with design D(x) is simply 

max (min { Ai } ) , 
D(x) i 

with a set of constraints much like the ones associated with the example 

problems already described. A fully detailed treatment of problems of this 

kind is furnished in the lectures presented by Olhoff* , so the reader is 

referred there for the rest of the story on multimodal design relative to 

eigenvalues. 

Discussion 

Results from the min-max formulation given above may be related to 

the problem of finding the set of Pareto optimal points for the vector valued 

objective, and to other scalar forms that make use of a weighted sum of 

criteria. For convenience the discussion of these issues is stated here in the 

form associated with discrete problems. However, the arguments apply for 

distributed parameter problems as well. 

An admissible design is represented by element D: (D l ' D2 ' ... Dn) 

eRn subject to the constraints (dependence on state is implicit in these 

expressions) : 
j=l,2, ... ,k. (25) 
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The vector criterion to be minimized may be expressed as 

f (D) = [fl (D) , f2 (D) , ... , fm (D) ] (26) 

A Pareto optimal design D* is a design among admissible designs D that 

satisfies 

f (D) ~ f (D*) => D = D*. (27) 

Here ~ is the partial ordering of Rm inherited from the total ordering of 

R. Values of the criterion in terms of vector f might not be comparable 

using the ordering ~. The criterion for Pareto optimum implies that f (D*) 

is a minimum among those values of the criterion for which a comparison 

using ~ is possible. A consequence of this is that a design giving rise to a 

value of the criterion that cannot be compared to any other value is optimal. 

As observed with the truss example in Section 6, for a problem with two 

conflicting (i.e., monotone varying with opposite sign) criteria any 

to ...... 
s... 
(lJ 

+-' ...... 
s... 
u 

Pareto Optimal 
Designs 

Figure 3 

De ign 

admissible design is Pareto 

optimal. This property might 

be represented qualitatively as 

shown in Fig. 3. Considering a 

design in the interval indicated 

there, any change in design 

results in an increase in the 

value of at least one among the 

Fig. 3 criteria fi . 

In order to discuss relationships among the several approaches for 

treating multi-criteria problems, recall that for the present min-max 

formulation the objective for minimization is the scalar 

(28) 
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In another common approach, minimization is performed on a weighted sum 

of criteria fi , say 

L b· f. 1 1 
1 

(29) 

with weights bi (note that for the discussion ai' bi and fi are taken to be 

non-negative) . 

Considering the problem of minimization we now state and compare 

necessary conditions for local minima for the problems involving the 

criteria (26), (28) or (29) and the constraints (25). For the Pareto 

problem the condition is (see e.g. Koski) : 

m k 

1• __ L1 Tli(af'I,aD1) + .L Ilj (aglaD1) = 0, 
J=l 

1= 1 , ... ,n 

(30) 

where l1i and Ilj are Lagrangian multipliers. Stating the problem of 

minimizing the functional (28) as a minimization problem for a bound J3 

on the components ai fi leads to a necessary condition for the min-max 

problem of the form 

m k 
~ l1i ai(af'r'aD1) + .L IljCaglaD1) = 0 , 
1=1 J=I 

l1i ~ 0, 
m 
L l1i = 1, 

i=l 

l=l, ... ,n 

(31) 

where l1i and Ilj are multipliers. Finally for the weighted sum (29) we 

obtain 
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l=l, ... ,n 

Ilj ~ 0 , Ilj gj = 0, 
(32) 

where Ilj are Lagrangian multipliers. 

From these equations it is seen that a design D* that satisfies the 

necessary conditions (31) for the min-max problem also satisfies the 

necessary condition for the weighted sum if the weights bi are chosen to be' 

"i ai and the values of the two criteria (28) and (29) are equal at this 

design. Conversely, if a design D* satisfies (32) it also satisfies (31) 

when the weights ai are chosen as ~/fi (D*), ~ = L bi fi (D*) , and the 

performance for the two problems is the same (equal to ~). Thus the 

min-max problem and the weighted sum problem, both solved for all 

combinations of utility factors, generate the same set of designs, and from 

(30) it is seen that this set is exactly the set of designs that satisfy the 

necessary condition for Pareto minimality. 

The introduction of a scalar criterion of the form of (28) or (29) 

implies that the designer decides a priori on how to weight different 

components of the vector valued performance criteria. In contrast, finding 

the full set of Pareto optimal points leaves this decision to be taken at a later 

stage of the design process. As most methods of finding the full set of Pareto 

optimal points involves solving a whole class of scalar optimization 

problems, for many practical cases it is more sensible to consider only a 

well-chosen scalar criterion, for example of the max-type presented in this 

paper, or perhaps a limited set of them such as would be identified with a 

practical range of values for the weight factors. 
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Closure 

We remark that while the example problems presented are (as usual) 

simple, the method employed is quite general. Thus one can imagine a 

similar approach as it would apply to design problems with a broad variety 

of types of criteria or constraints, with local or global measure, covering a 

variety of response modes, various purposes, and so on. One example of 

such 'broader' type of problem is described in the section of these notes on 

Fail-Safe design. The multicriterion formulation provides a useful basis for 

the treatment of problems in the simultaneous design of structure and control 

(this subject is discussed in separate presentations given by Bends~e*, by 

Khot*, and by Venkaya*), as another example. 

Lastly, the model for multicriterion optimization might be applied to 

obtain an interpretation for the combined 'design of computational means 

for solving problems' together with 'structural optimization.' This general 

idea can be illustrated with the example where the finite element method is 

used for the mechanics analysis in a problem of shape optimal design. 

Suppose the objective for shape design is to minimize the maximum value of 

a local measure, say fD ' and let Eh represent a bound on the local finite 

element error. If both measures of error can be evaluated over the same set 

of points xk ' and with shape determined by parameters Yi and the finite 

element grid points symbolized by Zg' the combined (vector) design problem 

is expressed as: 

Min 
Yi,Zg 
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For an analysis developed according to this statement, the shape 

design and grid adaptation problems are fully coupled. Coupled forms such 

as this may be warranted in cases where the original problem is particularly 

sensitive, i.e., where the prediction of shape is sensitive to imprecision in the 

finite element model computations. 
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FAIL- SAFE DESIGN AND OTHER APPLICATIONS 

This section is dedicated mainly to the presentation of a model for the 

optimal design of fail-safe structures. The consideration of fail-safe design 

requires that two or more distinct structural forms must be taken into 

account at once in the design process, and this is the feature that makes the 

category of problems unique. Earlier studies of such problems are reported 

in the book by Haug and Arora, and in the papers by Haftka, and by Sun, et 

ai., for example. In the treatment given here, means for accommodating 

multimodal response and multipurpose loading are incorporated into the 

model for fail-safe design, so the model is in this sense comprehensive. This 

model was described (Taylor) at the 16th ICTAM Congress, Copenhagen, 

1984. 
The fa.L[-Sa.fe Structure 

OptLmum to l)elJi,n wLth. 

a.fter c!a.ma.lJe too I 

According to the concept of fail-safe design, a system is required to 

meet one or more sets of performance requirements beyond those dictated 

for its primary purpose, under circumstances where the structure itself may 

have different forms for the alternative requirements. Generally the altered 

structure is designated in way to reflect damage or some other form of 

degradation to the primary structure (damaged or diminished structures and 

their associated loads and/or modes are labeled 'secondary'). Otherwise, the 

fail-safe criterion may be identified with the possible occurrence of one or 

more adverse changes in load, for example (such alternate loads also are 

labeled 'secondary'). For present purposes it is assumed that where the 

secondary context is related to structural damage or degradation, the form 
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Ds of the diminished structure is defined somehow in terms of the primary 

structure. As a simple example, the diminished structure might be given as a 

(not necessarily spatially uniform) prescribed percentage reduction of the 

primary structure. Or as another possibility, prescribed portions of the 

original structure or its supports might be removed to characterize the 

damaged form. 

Our purpose here is, as indicated, to provide a relatively broad 

statement of the optimization problem for fail-safe design. Fail-safe optimal 

design is properly characterized as a multicriterion optimization problem. 

Thus the variational treatment follows directly according to the minmax 

interpretation already given for multicriterion problems. Once again, the 

bound form for a problem with the set of (properly conditioned) criteria 

Gj ; j = I, 2, ... N weighted by factors ai may be stated as: 

min (~) 
D 

subject to: 

* ajGj - ~ < 0 j = 1,2, ... N 

* performance and design constraints 

The main requirement for application to the fail-safe problem is to 

have sensible identification of criteria Gj and the 'state' and 'design' 

constraints with the respective primary and secondary contexts already 

mentioned. This bookeeping is accomplished simply enough with the 

introduction of appropriate notation. We introduce symbols D(x), ua(x), 

and Gj<D;u) to represent the primary design, associated state, and criteria 
A 

respectively, and the parallel notation Ds' usa' and Gsi to represent the 

like quantities for the secondary contexts. For distributed parameter 
_ _ A 

structures the vector valued functions ua (or usa> represent displacement 
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fields of the appropriate dimension. Subscript a on the state function ua' a 

= 1,2 ... ,M serves to identify states associated for different 'purposes' or 

'modes' with the single primary design D; thus the value of M equals the 

total number of primary 'modes plus purposes.' Subscript s, on the other 

hand, identifies the separate secondary contexts. Thus Ds' s = 1,2, ... ,L 

represents the various forms of secondary (damaged) structure, L, in total 
A A 

number, and usa symbolizes the state for the a th purpose or mode, for the 

sth secondary structure. Altogether the problem statement for fail-safe 

design of a structure with Nc primary criteria and Nsc secondary criteria, 

s = 1,2, ... ,L is stated: 

min (~) 
D 

subject to: 

ajGj(D,Ud) - ~ ~ 0 

A A A 

asjGsjCDs,usw - ~ ~ 0 

Statea (D,ua,Pa) 

A A A 

Statesa (Ds,'usa,Pa) 

Design Constraints 

j = 1,2 ... ,Nc 
A 

j = 1,2, ... ,Nsc 

s = 1,2, ... ,L 

A 

a = 1,2, ... ,M 

a = 1,2, ... ,M 

(2) 

Weight factors aj and asj have specified values. In the constraint written as 

Ds - fs(D) ~ 0, which is intended to define the secondary structure in terms 

if the primary one, fs may be thought of as a 'damage function.' In fact the 

matter is not quite so simple as it might appear, and care must be taken with 
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the implication of dependence in the prediction of the optimum solution on 

the form of this statement. It is simpler to appreciate that in the case of a 

secondary context which relates just to a different load and its associated set 

of criteria, Ds= D. Note also that a different 'purpose' is represented simply 
1\ 

by a distinct element of the vector Pa (or Psa for a secondary structure), 

whereas the accounting of different response modes is reflected in the choice 
- - 1\ 

of the appropriate 'state equations.' Functions ua and usa represent the 

corresponding 'state fields' in either case. 

Details for the treatment of problems according to the statement of 

equation (2) are by now mostly routine, i.e., necessary conditions can be 

listed and then interpreted along much the same lines as was done for the 

developments described earlier. Indeed there may not be much reason to 

trouble over example problems at all, except perhaps to demonstrate that it is. 
possible to make sense out of the mess of notation. Examples are described 

for the fail-safe optimal design of trusses and of beams. (We make use of the 

truss design example because the 'discrete structure' model is in some ways 

more convenient as a means to demonstrate the formulation and the use of 

notation. With respect to these aspects of modelling the fail-safe problems, 

the approaches for discrete structures and for distributed parameter 

problems are quite the same.) 

Fail-Safe Truss Design 

Suppose that the truss layout is given; then the design is expressed in 

terms of the member areas Ai' i=I,2, ... ,P for the truss with 'pI members. A 

damaged structure represented by Asi is defined relative to the original Ai 

by the constraints 

A . -r·A s 0 Sill i=I,2, ... ,P (3) 
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Values for the factors ri are specified; they should be non-negative, and to 

reflect damage or degradation ri < 1. We consider a single primary purpose 

with constraints on stresses and on displacements, and a single-purpose 

secondary context with just one constraint to reflect a limit strength for the 

damaged members. The problem is summarized in the statement (patterned 

after (2»: 

Min (p) 
A-1 

subject to: 

Icri(U(Y»1 - ~ .s;. 0 

alu(Y)I - ~ .s;. 0 

aslcrsi(Us(Y»I - ~ .s;. 0 

Asi - fiAi .s; 0 

{u}T[K(A)]{v} - {P} = 0 

{us}T[Ks(As)]{vs} - [Ps} = 0 

Amin - Ai ::;; 0 

P 
.L Aili - R .s; 0 
1-1 

i=I,2, ... ,P 

s=I,2, ... ,L 

y=I,2, ... ,Nu 

for all v in V 

for all Vs in V s 

(4) 

Components u(y) and p(Y) of the discrete vector fields {u} and {P} 

appearing in the virtual displacement (state) equations represent nodal 

displacements and nodal loads (subscript a, does not appear here because both 

the primary and the secondary contexts are taken to be single purpose/single 

modal). Matrix [K] for the system stiffness is interpreted in terms of the 

dependence of its elements, say Ka, ~, on the design variables Ai. 

Displacements {u} and {v} belong to the set, say V, of admissible 

displacement fields. Value R in the isoperimetric constraint is the measure 
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of available structural resource, e.g., the volume of material available for 

the truss. 

The Lagrangian for problem (4), say L, depends on p, u(Y), us(Y), Ai' 

v(Y), v s (y) and the multipliers with the list of constraints. The 'optimality 

conditions' for the problem are obtained simply as the conditions 

i=1,2, ... ,P 

for stationarity of the Lagrangian with respect to design. Requirements for 

stationarity of L w.r.t. u(Y) and Us (Y) are the primary and secondary adjoint 

state equations. The adjoint loads which appear in these equations are 

expressed in terms of the multipliers associated with the criterion 

constraints. The full set of KKT conditions are necessary and sufficient for 

this problem, and so they provide the means to solve for the minimal 

fail-safe design. 

For an illustrative example, the primary and secondary strucures are 

taken to have the forms shown in the following figure. 

110 1 T 10 1 I 

Primary and Secondary Truss Structures 
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One member of the 'primary' three-bar truss is completely removed in the 

secondary context, while the other two members remain unchanged 

(undamaged). Accordingly, the 'damage matrix' r of equation (4) has the 

form: 

r = 

The detailed solution is presented here for the case with a single primary 

load {pCl), p(2)}T, one secondary load {P1Cl),Pl(2)}T, and where the 

displacement constraint of (4) is inactive. Suppose that the multipliers on the 

stress constraints are symbolized by A.i and A.l i for the primary and 

secondary contexts, respectively. Then the results for 'switching equations' 

associated with these constraints are: 

~[Eu(2)/1O - p] = 0 

A.3[-EC-u(1) + u(2»/20 - p] = 0 

A.12[alEul(2)/10 - p] = 0 

A.13[-a1E(-ul(1) +ul(2»/20- p] = 0 

(a) 

(b) 

(c) 

(c) 

(e) 

The optimal design mayor may not be influenced by the secondary context, 

represented here in the latter two of the five equations, depending on the 

value of weight factor a 1; if 
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al > min[10~/EuIP(2); 20~/E(ul (1)-u1P(2» 2 al *] 

the secondary context does affect the solution. The range of possible optimal 

solutions, limited here for simplicity to non-negative values for specified 

loads p('y) and PI (Y), is summarized in the following two tables, the first one 

covering results for al < al * and the second table for al > al *. 
Specific numerical results are given for optimal solutions 

corresponding to the values p(l) = 20 ksi, p(2) = 30 ksi, Amin = .1 in2, and 

E = 107 psi, as an example. For the situation a 1 < a 1 *, the solution is 

Al = 1.13 in2, A2 = 0.40 in2, A3 = 0.1 in2 

~ = 2.5 ksi, R = 21.4 in3 

This result is identified with Case 1 of Table 1. On the other hand, with the 

additional secondary context PI (1) = 1 ksi, PI (2) = 11 ksi, and al = .893, the 

optimal solution belongs in Case 2 of Table 2 and we find: 

Al = 1.126 in2, A2 = 0.429 in2, A3 = 0.1 in2 

~ = 2.5 ksi, R = 21.6 
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Table 1 - Summary of Optimal Truss Designs 

for al < al * ... Primary Context Dominates 

Active 
Case Stress Optimal Solution Values 

Constraints Designs for J3 

Al = -V2 p(l)/~ 

I (a) and (b) A2 = (p(2) - p(l))/~ IO(P(l) + p(2))/ 

A3 = Amin . (R-IO-V2 Amin) 

Al = Amin 

2 (b) and (c) A2= (p(l) + p(2))/~ (30P( I) + IOp(2))/ 

-2-v2A . nun '(R + (20+ IO-V2)Amin 

A3 = -V2P(I)/~ - 2Amin 

3 (a) and (c) 20 P(l)/(R-IOA .) mm 
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Table 2- Summary of Optimal Solutions for 

a 1 > a 1 * ... Design Influenced by Secondary Context 

Active 
Case Stress Optimal Solutions 

Constraints 

Al = "-12 p(I)/~ 

1 (a),(b) and (e) A2 = (p(2) _ p(I)/~ 

A3 = "-12 al PI(1)/~ 

~ = IO(P(1) + p(2) + 2aIPI(1))/R 

Al = [("-I2AI+A3)P(1) + A3P(2) - A2A3~] 

. (A2 + "-12 A3)~ 

(a) and (d) where A2 = a 1 (PI (1) + PI (2))/~ 

2 A3 = Amin 

~ = - G + "-IG2 - 4FH 12F 

F = 200 A2min - 10"-12 R Amin 

G = 100"-12 Amin(P(1) + p(2)) 

+ al (200 Amin - R)(PI (1) + PI (2)) 

H = 20p(I) a l (PI (1) + PI (2)) 

+ 10"-12 aI2 (PI (1) + PI (2))2 

(a), (d) and (e) Al =KI~ 

3 A2 = al (PI (1) + PI (2))/~ 

A3 = "-I 2 aIPI(1)/~ 
where 1( = "-12 [2P(I)PI (1) + P(1)PI (2) + 

p(2)PI (1) - al PI (I)(PI (1) + PI (2)] 
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The secondary loads applied to the Table 1 design would result in a 7% 

violation of the stress constraint for member two. 

Example of Fail-Safe Beam Desi~n 

The primary system for this example is comprised of a propped 

cantilevered beam under a single uniform lead. In the secondary context the 

same beam is required to carry a lesser load but with the prop support 

load p load P1 

fftfffttfftfl f fffttff1 f t 

~ t---~?A; r:x L -J -x 
~14-4 --L 

Primary System Secondary System 

removed. (Note that in this case sets V and V s of admissible displacement 

(cf. equation (4» are distinct.) The design is required to meet a single 

criterion in the form of a bound on bending stress in each of the primary and 

secondary contexts. The width b(x) of a beam cross-section with uniform 

depth is the design variable. Problem statement (2) simplified for this 

example has the form: 

min (~) 
b(x) 

subject to: 

IW"I- ~ ~ 0 
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all x in (O,L) 

b . - b < 0 mm -

L 
fo [ebw"v" - pv]dx = 0 all v in V 

L 
fo [eb w"lv"l - Plvl]dx = 0 all v in V I 

L 
fo bdx-R ~ 0 

Here flexural rigidity has been represented by cb(x), c = constant, and the 

(prescribed) ratio of primary to secondary allowable stress is given by 

constant a. 

As in the prior example, the KKT conditions are sufficient as well as 

necessary for the optimal fail-safe beam design, so the solution can be 

determined directly from this system of equations. For the sake of brevity, 

we bypass the detailed analysis for the problem and merely point out that (a) 

the optimal solution may be affected by the primary or the secondary 

contexts alone, or by them in combination, depending on the values 

prescribed for R, a, p, PI' and bmin' and (b) generally the solution is 

comprised of segments over the beam length, where the segments have 

functionally unique form depending on one or another of the local 

constraints in equation (5). 

The specific result for the optimal design and the associated stresses 

obtained for the value aPl/p = 1/6 are shown in the figures. Of the five 

intervals covering the length of the beam, in the first and fourth the primary 

criterion dominates the design, the secondary criterion governs in the second 
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interval, and b = bmin in the remaining segments. 

b(x) 

x . 
L 

Optimal Fail-Safe Beam Design: aPl/p = 1/6 

Closure 

Wherever safety or dependability of a system is at issue, the 

fundamental notions of fail-safe design must be represented in the process 

that leads to the prediction of practical designs. Thus the subject is quite 

basic, and yet there is apparently only relatively moderate interest in basic 

research on the modelling of such problems. At the same time, it seems that 

the further development and application of methods for fail-safe design 

should be within reach with reasonable effort, and therefore one might 

expect an increase of activity in this important subject. Several aspects of the 

subject clearly could benefit from attention. Surely there is a need to create 

effective means for the computational solution of fail-safe design problems. 

Additional work is required in order to have an understanding of how 

properly to characterize damage or structural degradation in tractable form. 

Also there is a need for clarification on the relationship between worst-case 

design and fail-safe design, and on the modelling for sets of continuously 

varying damage states. 
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STRUCTURAL OPTIMIZATION 
BY VARIATIONAL METHODS 

NIELS OLHOFF 

Department of Mechanical Engineering and Energy Technology, 

University of Aalborg, DK-9220 Aalborg, Denmark 

INTRODUCTION 

This chapter contains notes for lectures delivered as part of the Advanced 

Study Institute "Computer Aided Optimal Design: Structural and Mechanical 

Systems" organized in Troia, Portugal, 30 June - 11 July 1986, by the Center 

of Mechanics and Materials of the University of Lisbon. The author grate

fully acknowledges Professor Carlos Mota Soares and his collagues for a 

most successful arrangement of the meeting and the other lecturers for seve

ral extremely interesting contributions. 

The chapter is subdivided into seven sections with the following 

titles: 

1. Optimal Design of One-Dimensional, Conservative, Elastic Continuum 

Systems with Respect to a Fundamental Eigenvalue. 

2. Optimal Design of Elastic Columns Against Buckling. Bimodal Optimiza

tion. 

3. Optimization of Transversley Vibrating Beams and Rotating Shafts with 

Respect to the Fundamental Natural Frequency or Critical Speed. 

4. Optimization with Respect to Higher Order Eigenfrequencies. 

5. Optimal Design of Viscoelastic Structures under Forced Steady State 

Vibration. 

6. Optimal Design of Solid, Elastic, Axisymmetric Plates. 

7. References. 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 



www.manaraa.com

88 

Throughout the chapter the usefulness of adopting variational methods 

for the mathematical formulation of a broad class of structural optimiza

tion problems is emphasized. Thus, problems of geometrically constrained and 

unconstrained optimal design are formulated by variational analysis and dis

cussed for linearly elastic {Sections 1- 4,6} and viscoelastic {S} struc

tures whose deflections are governed by ordinary or partial differential 

eigenvalue or boundary value problems via an extremum principle. 

Primarily, problems of optimal material distribution in beam {1,3-S}, 

column {1,2}, shaft {1,3,4} and plate {6} elements of fixed size are consid

ered, and the optimality criteria include minimum weight, maximum static 

stiffness, maximum Euler buckling load, maximum fundamental or higher order 

natural vibration frequencies, maximum gap between adjacent natural vibra

tion frequencies or critical whirling speeds, and maximum dynamic stiffness 

under external vibrational excitation. 

A quite extensive list of references connected with the topics dis

cussed is given by the end {7} of the chapter. Comprehensive general reviews 

of the field of optimal structural design have been published by Wasiutynski 

and Brandt [1] in 1963, Sheu and Prager [2] in 1968, Prager {3] in 1971, 

Niordson and Pedersen [4] in 1973, Rozvany and Mroz [5] in 1977, Venkayya 

[6] in 1978, Schmit [7] in 1981, Vanderplaats [8] in 1982, and by Olhoff 

and Taylor [9] in 1983. This rapid sequence of reviews and the publication 

of a number of textbooks [10-26] witness the recent progress and increasing 

importance of the field. 

SECTION 1 

OPTIMAL DESIGN OF ONE-DIMENSIONAL, CONSERVATIVE, ELASTIC 

CONTINUUM SYSTEMS WITH RESPECT TO A FUNDAMENTAL EIGENVALUE 

1.1 INTRODUCTION 

For one-dimensional, conservative structural systems made of linearly 

elastic material, problems of optimal design with respect to a fundamental 

eigenvalue have by now been studied quite intensively. In this section, we 

consider eigenvalues of self-adjoint and full-definite structural eigen-
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value problems, as for example the first frequency of free axial, torsional 

or transverse vibrations of rods and beams, the first critical speed of 

rotating shafts (excluding gyroscopic effects), the critical Euler buckling 

load of columns, or the critical torsional divergence velocity of a wing. A 

unified variational formulation for optimal design with respect to a 

fundamental eigenvalue will be presented in the following, and we outline 

the basic concepts and characteristics of such problems. 

Optimal design with respect to structural eigenvalues was already 

considered by Lagrange [27] in 1770, and later by Clausen [28] in 1851, but 

it was Keller's paper [29] from 1960 that provided inspiration for the 

considerable contemporary research efforts in the area. Refs. [27-29] deal 

with optimal design of columns against Euler buckling, i.e. optimization 

under static loads. 

Optimal design with respect to eigenvalues of structures under 

dynamic loading conditions is generally more complex, because the loading 

changes with changes in the design. This field of optimization was opened 

by the significant paper [30] published by Niordson in 1965. Surveys have 

since been prepared by Ashley and McIntosh [31], Pierson [32], Reitman and 

Shapiro [33], Rao [34], and by the author [35,36]. 

1.2 PRELIMINARY CONSIDERATIONS 

We follow Ref. [36], and consider a straight, one-dimensional, single

purpose structure with a coordinate axis x embedded. The structure has 

given length L and variable cross-sections with common directions for 

principal axes of inertia. Let A(x) denote the cross-sectional area of 

the structural material, that is, linearly elastic material contributing 
to the specific structural stiffness sex) , where the term specific refers 

to unit length of the structure. We then consider relationships between 

sex) and A(x) in the form 

sex) o < x < L (1.1) 

where Young's modulus E , the factor c and the power p are positive 

constants, that are assumed to be given. 

Although (1.1) restricts the cross-sectional variation, it covers a 

large class of structural types and behaviour. Thus, axial deformation is 

covered by c = p = 1 . In torsional divergence or vibration, thin-walled 
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cross-sections of variable thickness but constant planform are covered by 

p = 1 , and geometrically similar solid cross-sections, by p = 2 • For the 

bending associated with transverse vibration of beams, whirling instability 

of rotating shafts, and Euler buckling of columns, Eq. (1.1) models the 

following types of cross-sections: Fixed width sandwich cross-sections with 

uniform thickness cores of zero stiffness covered by two identical thin 

face sheets of variable thickness are modeled for p = 1 , and so are solid 

cross-sections of constant thickness and varying width. Solid cross-sec

tions of variable size but fixed shape correspond to p = 2 , and solid 

rectangular cross-sections of fixed width and variable thickness are 

modeled for p = 3 • 

A generalized expression for the Rayleigh quotients associated with 

conservative problem formulations for free axial, torsional or transverse 

vibrations, whirling instability, divergence or buckling instability, 

respectively, of our one-dimensional structure can be written in the form 

(1.2) 

JL {bPAr(X) +q(X)}f[y(X)]dX + LQ. f[y(x.)] 
o i ~ ~ 

where the stiffness representation (1.1) is used. In (1.2), A denotes the 

square of the fundamental angular frequency w for a particular vibration 

problem, the square of the first critical angular speed w for a whirling 

problem, the Euler load P for a buckling problem, or the square of the 

critical free-stream velocity v multiplied by a factor for a torsional 

divergence problem for a wing, and y(x) represents the corresponding 

deflection mode. According to Rayleigh's principle for self-adjoint and 

full-definite eigenvalue problems, A is stationary and equal to the 

fundamental eigenvalue at the fundamental mode y(x). among all other 

kinematically admissible deflection functions. 

The deflection y(x) and its derivatives are contained in positive 

definite quadratic forms in the symbols e[y] and fry] , which must be 

interpreted according to the particular type of problem, cf. Table 1. The 

expressions given for e[y] in the cases of transverse vibrations, whirl

ing instability and buckling instability, respectively, are those 

consistent with Bernoulli-Euler beam theory. It is assumed by the form of 

(1.2) that linearly independent, homogeneous boundary conditions and condi

tions at possible interior supports are specified for the structure. 

Elastic supports are excluded for brevity. 



www.manaraa.com

Type of problem 

Torsional divergence 

of a straight wing 

Axial vibration of rods 

Torsional vibration of rods 

Transverse vib. of beams or 

whirling instability of 

rotating shafts 

Buckling of columns 

91 

Characteristics 

p=l , r=O , q (x)::l , 

b=O , Qi=O 

p=r=b=c=l 

p=r~l 

p~ 1, r=b=l 

P~ , r=O , q (x)::l , 

b=O , Qi=O 

Table 1. 

e[y] f[y] 

2 ,2 
Y y 

,2 2 
Y y 

,2 2 
y y 

,,2 2 
y y 

Differential 
equation 

, 
-{EAy'} = fly 

, 
-{EAy'} = 

fI{pA+q}y 

-{CEAPy'} 
, 

= 

fI{bpAP+q}y 

{CEAPy"}" = 

A{pA+q}y 

,, 2 , 2 { P II}" A II Y Y - cEA Y = Y 

The problem of torsional divergence instability of a straight air

plane wing with elastic axis perpendicular to the airstream and constant 

cross-sectional profile along the span, is covered by (1.2) with q(x) :: 1 , 

b = 0 , Qi = 0 and p = 1 , if aerodynamic strip theory is used and the 

dominating contribution to the torsional stiffness comes from the skin, the 

(small) thickness of which is assumed to vary along the span. 

For vibration problems, the term bpAr (x) in (1. 2), with P ~ r ~ 1 , 

b a given positive constant and p the mass density, represents the 

specific structural mass for rectilinear vibration types, or the specific 

structural polar mass moment of inertia for torsional vibration. The former 

types are associated with r = b = 1 , whereas r = p for the latter. Similar

ly, q(x) represents the specific mass or specific polar mass moment of 

inertia of distributed dead mass loading and/or non-structural material 

(e.g. core filler in sandwich structures). Eq. (1.2) also covers vibrating 

structures carrying lumped dead mass loads at specified points x=x 
i 

. The 

constants identify their masses or mass moments of inertia. Both 

and q(x) are assumed to be given. 
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In the classical problems of buckling instability under external 

axial compressive forces, the own weight distribution of the structure can 

be disregarded, and it is then characteristic that A(x) does not appear 

in the denominator of the Rayleigh quotient. The problem is included in 

(1.2) if we take q(x) = 1 , b = 0 and Qi = 0 . Allowance can be made for 

buckling caused by own structural weight [37] and/or lumped dead weights 

attached along the column span, by changing the denominator of (1.2) to a 

slightly more general expression, but it is omitted here for reasons of 

brevity. 

1.3 MAXIMUM FUNDAMENTAL EIGENVALUE FOR PRESCRIBED VOLUME 

For given structural length and material, cross-sectional style, given type 

of single-modal behaviour and given boundary conditions, the optimal design 

problem may be stated in the form: 

With the cross-sectional area A(x) of structural material as 

the design vaPiabZe and the fundamental eigenvalue A as the 

objective function, determine the design that maximizes A 

subject to the integral constraint of given structuraZ voZume 
V = f~ A(x)dx , and subject to the geometric constraint that 

A(x) may nowhere be less than a prescribed minimum value A 

Le. A(x) > A 

Using variational formulation, the optimal design A(x) , its as

sociated mode y(x) and optimal eigenvalue A are identified with sta

tionarity of the following augmented form of the functional (1.2), 

JL {bPAr (x) +q(X)}f[Y(X) ]dx + L Q. f[y(x.)] 
o i ~ ~ 

(1.3) 

- K{t A(X)dx-V} - t IHx){l(x) -A(x) +A}dX 
o 0 

Here, the quantities K and a(x) are Lagrangian multipliers, and the 

geometric minimum constraint A(x) > A has been converted to an equality 
2 

constraint by means of the real slack variable g(x) defined by g (x) = 
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A(x) - A • In optimal design problems, minimum cross-sectional area con

straints were first considered by Taylor [38] in 1968. 

Now, Rayleigh's principle and the introduction of the Lagrangian 

multipliers permit the variation of A* with respect to variations of 

y(x) ,A(x) and g(x) to be taken independently. 

Noting that the stationarity of A* (1.3) with respect to all 

admissible variation of y(x) is equivalent to the stationarity of the 

Rayleigh quotient with respect to variation of y(x) , we first obtain the 

differential equation (cf. Table 1) and the natural boundary conditions for 

the problem, along with the jump conditions at inner supports and at the 

points x. where the concentrated loads 
~ 

structure. 

are attached to the 

Next, stationarity of A* for arbitrary admissible variation of 

g(x) gives 

S(x)g(x) o (1.4) 

Finally, stationarity of A* with respect to all admissible varia

tion of the design variable A(x) yields the optimality aondition 

p-l r-l pcEA (x) e [y (x) ] - rbpAA (x) f[y (x)] = K (1 - S (x) ) 

after applying (1.2) and redefining the Lagrangian multiplier K by 

dividing it by the denominator in expression (1.2). 

(1.5) 

In order to formulate the governing equations without explicit 

appearance of S(x) and g(x) , we exploit that either g(x) = 0 or 

g(x) * 0 . Denoting by Xc the (unions of) sub-intervals in which g(x) 

o may take place, and denoting by Xu the remaining sub-intervals (where 

we have g(x) * 0) , Eq. (1.4) gives us that A(x) A (constrained) for 

x E x and that A(x) > A (unconstrained) for x E 
c 

x In the latter 
u 

sub-interval(s), Eq. (1.4) can only be satisfied if S(X) = 0 , which 

clearly reduces the optimality condition (1.5) for x E Xu 

A complete set of governing equations foX' optimality, which by their 

derivation are neaessary conditions for a possible optimal solution, may 

now for convenience be listed as follows, 

Rayleigh quotient expression for A, Eq. (1.2) (1.6a) 
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Differential equation for problem type, cf. Table 1 O<x<L (1.6b) 

PCEAP-l(x)e[y(x)] -brpJ\Ar-l(x)f[y(x)] = K 

A(x) > A xEx 
u 

A(x) 

r A(x)dx = V. 
o 

A xEx 
c 

xEx 
u 

Note that the form (1.6c) of the so-called optimality condition is 

(1.6c) 

(1.6d) 

(1.6e) 

restricted to the unions of a priori unknown sub-intervals x 
u 

where the 

design variable A(x) is unconstrained. Clearly, the unions of sub-

intervals Xu and Xc make up the entire interval 0 < X < L . Specific 

forms of the optimality condition for particular problems are easily 

identified with the help of Table 1. It is noteworthy that the second term 

on the left-hand side of the optimality equation is not present in tor

sional divergence and classical buckling optimization, for which b = 0 

The first term of the optimality condition is interpreted as the average 

strain energy density in the design fibres, i.e. the fibres that are af

fected by a change in the design. Constancy of this energy density is found 

to be a general principle in geometrically unconstrained optimal design 

under Btati~ toads, see Masur [39]. 

Along with the boundary conditions and the other conditions mentioned 

above, Eqs. (1.6a-e) constitute a coupled, non-linear, ordinary integro

differential eigenvalue problem, where the unknowns to be determined are 

the optimal eigenvalue J\, the optimal distribution of structural material 

A(x) (which includes determination of the sub-intervals X c 
and 

associated fundamental mode y(x) , and the Lagrangian multiplier 

It is noted that the cross-sectional constants p and r play a 

fundamental role in the coupling and the non-linearities of the equations. 

Evidently, cases of p = r = 1 are the easiest to deal with, because such 

problems are linear in the design variable A(x) , which even vanishes 

from the optimality condition (1.6c). Although (1.6c) remains non-linear in 

the deflection, it is often possible to obtain analytical solutions to 

problems with p = r = 1 , see for example prager and Taylor [40]. For 

buckling problems, where b = 0 , so that terms involving r drop out, 

analytical solutions have even been obtained for p = 2 , as for example in 

[29]. For vibration optimization problems associated with values of p 
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other than unity, however, the coupling and the non-linearities of the 

governing equations generally only permit numerical solution. 

1.4 MINIMUM VOLUME DESIGN FOR PRESCRIBED FUNDAMENTAL EIGENVALUE 

An alternative, dual formulation for optimal design is the following: 

With the cross-sectional area A(x) of structural material as 

the design variable and the structural volume V = f~ A(x)dx 

as the objeotive funotion, determine the design that minimizes 
V subject to the behavioural oonstroaint of speoified 
fundamental eigenvalue A and the geometrio minimum oonstroaint 
A(x) ~A where A is given. Again, the structural length and 

material, the cross-sectional style, the type of single-modal 

behaviour, and the boundary conditions, are assumed to be 

given. 

The set of necessary governing equations for a possible optimal solu

tion to this formulation are easily derived by variational analysis of the 

functional 

t A(x)dx - ylI: 
fL CEAP(x)e[y(x)]dx 

Al 
v* 0 

0 
{bPAr (x) +q(X)}f[y(X)]dX+LQ. f[y(IK.)] 

i ~ ~ 

-t (1. 7) 

\.l(X){g2(X) - A (x) + A }dX , 
0 

where the behavioural constraint and the geometric minimum constraint have 

been adjoined to the functional V by means of Lagrangian multipliers y 

and \.l(x) , respectively. 

By variation of A(x) we find that the optimality condition takes 

the form 

{ p-l r-l} y pcEA (x)e[y(x)] -rbpJ\A (x)f[y(x)] 1 - l.l(x) (1.8) 
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{ p-l r-l} y pcEA (x)e[y(x)] -rbpJ\A (x)f[y(x)] 1 x E x 
u 

(1.9) 

since the Lagrangian multiplier ~(x) vanishes in the sub-interval(s) 

where the design variable is geometrically unconstrained. The form of Eqs. 

(1.8) and (1.9) involves a redefinition of ~ in the same manner as the 

Lagrangian multiplier K in Eqs. (1.5) and (l.6c). 

As the result of the complete variational analysis, we find that the 

present min.V fixed A formulation is also governed by Eqs. (l.6a-e), 

with the only exception that the Lagrangian multiplier K in the optimali

ty condition (l.6c) is replaced by l/y. In the present formulation, the 

unknowns to be determined are the minimum structural volume V, the 

optimal distribution A(x) of structural material, the fundamental mode 

y(x) , and the Lagrangian multiplier y . 

1.5 ON EQUIVALENCE OF DUAL OPTIMIZATION PROBLEMS 

The system of equations governing the max.A fixed V problem in Section 

1.3 and the governing equations for the min.V fixed A problem consider

ed in the foregoing section only differ by the Lagrangian multipliers K 

and y and corresponding slightly different appearences of the optimality 

conditions. It is therefore not surprising that these dual optimization 

problems, generally speaking, are equivalent. However, exceptions exist. 

Comparing the optimality conditions, (l.6c) and (1.9), it is obvious 

that a min.v fixed A solution will at the same time be a solution to a 
max.A fixed V problem, with K = l/y . Note that vanishing of the 

Lagrangian multiplier y is excluded by the form of Eq. (1.9). 

Furthermore, a max.A fixed V solution assoaiated with a non-zero 
Lagrangian multiplier K is at the same time a solution to a min.v fixed 
A problem, with y = 11K 

However, a max.A fixed V solution with K = 0 is not a min.V 

fixed A solution, because it is unable to satisfy the optimality condi

tion (1.9) for a problem of the latter type. 

Now, generalizing an approach of Brach [41], let us state precisely 

for which type of problems the equivalence may be lost. First, we multiply 

Eq. (1.5) by A(x) and integrate over the interval 0 < x < L • Using Eqs. 

(l.6d-e) and employing that ~(x) = 0 for x E Xu ' we find 
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(1.10) 

Then, multiplying Eq. (l.6a), i.e. Eq. (1.2), by the product of r and the 

denominator on the right-hand side, and subtracting the resulting equation 

from Eq. (1.10), we obtain 

K{V-A t S(X)dX} = (p-r) f: CEAP(x)e[y(x)]dx 

c 

+ rfl.{f
L 

q(x)f[y(x)]dx+LQ. f[y(X.)]} . o i ~ ~ 

(1.11) 

Here, the first integral on the right-hand side (representing twice the 

potential energy of the structure) is positive. Furthermore, we have p~r 

for the types of problems considered, cf. Table 1. The subsequent terms on 

the right-hand side of (1.11) are non-negative. 

Thus, K can only vanish, i.e. the equivalence of the dual optimiza
tion problems can only be lost if both p = r , q(x) = 0 and Q. = 0 • 

~ 

Note that, among the types of problems considered here, the equivalence can 

only be lost for vibration optimization problems. 

Taylor [42] was the first to establish the equivalence of dual formu

lations for optimal design. The subject has also been considered in 

papers by Vavrick & Warner [43] and Seiranyan [44]. 

1.6 GEOMETRICALLY UNCONSTRAINED OPTIMAL DESIGN 

We may drop the minimum constraint in the formulations considered above by 

setting S(x) - 0 and )l(x) = 0, respectively, in Eqs. (1.3) and (1.7). 

The governing equations for the resulting geometrically unconstrained 
optimization problem are then obtained as a special case of Eqs. (l.6a-e) 

associated with A = 0 and validity of the optimality condition (l.6c) in 

the entire interval 0 < x < L (which x becomes identical to). Examples 
u 

of geometrically unconstrained optimal solutions are illustrated in dimen-

sionless form in Fig. 1 for columns and in Fig. 7 for transversely vibrat

ing beams. 
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A geometrically unconstrained optimal design is in general associated 

with maximum obtainable merit. However, geometrically unconstrained solu

tions must often be regarded as limiting solutions from the point of view 

of practical design, in other words, geometrically constrained optimal 

designs are preferable in practice. Nevertheless, it is evident that know

ledge of maximum obtainable efficiency is of both theoretical and practical 

importance, and that geometrically unconstrained solutions direct the 

designer towards maximum economy of material. 

It is a general feature that geometrically unconstrained optimization 

of one-dimensional structures results in statiaally dete~nate solutions 

when a single mode for,mulation is used. This fact is connected with the 

occurrence of points in the optimal solutions with vanishing structural 

material. At these points, the derivative of the deflection appearing in 

the optimality condition may exhibit discontinuous behaviour in problems 

with p = 1 , and in cases of p = 2 and p = 3 , points of vanishing 

structural cross-section are associated with significant singular behaviour 

of the deflection and/or its derivatives. In optimal design of transversely 

vibrating beams with p = 2 or 3, the cross-section may vanish in two 

essentially different ways at singular points; either in a way that is 

found at a hinge, a so-called Type I singularity, see e.g. Fig. 7a, or in a 

manner found at a free structural end (Fig. 7b) and at an inner separation 

(Fig. 7c), which is called a Type II singularity. In optimal columns, the 

governing equations only admit Type I singularities (cf. Figs. la,b,c) if 

the point is under axial compression, which by the way seems obvious from 

physical grounds. 

NOW, when a priori statically indeterminate structures are optimized 

without geometric minimum constraint on the basis of a single mode formula

tion, it is the automatic formation of hinges or separations in the 

structure that reduces this to a statically determinate one, cf. Figs. lc 

and 7c. The singular behaviour at points of zero cross-section is studied 

quite intensively in [30,45-47] for different one-dimensional problems. 

1.7 SUFFICIENT CONDITIONS OF OPTIMALITY 

The optimality equations (1.6a-e) are derived as necessary conditions for a 

possible optimal solution, and they do not, in general, state sufficient 

conditions for global optimality. 
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For problems associated with p = r = 1 , sufficiency can be shown in 

specific cases, however. This was first demonstrated by Taylor [42], who 

proved the global optimality of a solution obtained by Turner [48]. Shortly 

after, sufficiency of possible solutions to geometrically unconstrained 

vibration problems associated with p = r = 1 was shown by Prager and 

Taylor [40]. A proof for corresponding constrained problems does not seem 

to be available, but might, for example, be established along lines indi

cated in [49]. For vibration optimization problems with p > 1 , sufficien

cy is generally not ensured. 

As to buckling optimization, sufficiency is proved by Taylor and Liu 

[50] for a geometrically constrained, statically determinate p = 1 

column, and a proof for statically determinate p = 2 columns is available 

in Tadjbakhsh and Keller [51]. The latter authors claimed validity of their 

proof independently of the column boundary conditions, but Masur [52] and 

Popelar [53] have since noted that the proof breaks down for statically 

indeterminate cases, and [54] provides an illustration of this. 

1.8 EXISTENCE OF SOLUTIONS 

Existence of optimal solutions cannot generally be assured a priori. 

Consequently, their possible existence cannot be demonstrated until the 

actual solution is arrived at. 

Non-existence of optimal solutions on the contrary, can in some cases 

be shown. For example, no min. V fixed A solutions exist to the types of 

vibration optimization problems considered~ if p = r and both 
geometrical constraints~ non-structural material~ and external dead 
loading are absent*). In this case, the eigenvalue problem defined by the 

differential equation (1.6b), cf. Table 1, and the boundary conditions 

considered, is linear and homogeneous in both AP(x) and y(x) . Thus, 

denoting by A(x) a design associated with the prescribed value of A 

and satisfying (1.1) along with a vibration mode y(x) , the eigenvalue A 

is maintained by a design CAlx) , where C is an arbitrary constant. The 

volume of this design, however, can be made arbitrarily small by choosing 

a sufficiently small value of C . 

Note, in view of the discussion in Section 1.5, that the dual problem 
would be associated with K = 0 , Eq. (1.11). 
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Considering the dual problem of maximum A at fixed V and L 

specially for transversely vibrating p = r = 1 beams with q(x) = 0 , 

Qi = 0 and no minimum constraint, Brach [55] demonstrated non-existence 

for the case of a cantilever, but existence of an optimal solution for a 

simply supported beam - results that have later been confirmed in [46,56]. 

It is interesting to note, as an illustration of the result cited at the 

end of Section 1.5, that for these cases of p = r , q(x) = 0 and Qi 0, 

the equivalence is lost for the dual simply supported beam problems, 

whereas the equivalence holds for the cantilever problems in the sense 

that no optimal solution exists for either of the dual formulations. 

SECTION 2 

OPTIMAL DESIGN OF ELASTIC COLUMNS AGAINST BUCKLING. 

BIMODAL OPTIMIZATION 

2.1 INTRODUCTION 

We consider the problem of determining the optimal design of a thin, 

elastic column such that the Euler buckling load attains a maximum possible 

value for given material volume, length and boundary conditions. We first 

assume the optimum buckling load to be a simple eigenvalue, and obtain the 

governing equations for the problem from the general theory of section 1. 

The type of singular behaviour that may occur in geometrically unconstrain

ed problems is discussed, and conditions for optimal location of inner 

singular points are stated. 

For structures of some complexity or statical indeterminacy, 

optimization against buckling must be conducted with bimodal or even multi

modal optimal buckling loads in perspective. This trend, which requires an 

extended formulation for optimal design, already manifests itself in the 

case of a doubly clamped column, and we shall discuss this problem in 

detail. 
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2.2 SINGLE MODE FORMULATIONS FOR OPTIMAL DESIGN 

Consider a thin, straight, elastic column which has the volume V, length 

L and Young's modulus E, and is subjected to an axial compressive force, 

the value of which is P at buckling. The cross-section of the column is 

permitted to vary along the column axis according to (1.1) with s(x) 

EI(x) , the bending stiffness of structural material. In (1.1), A(x) is 

the cross-sectional area of structural material, and c and p are given 

constants. The cross-sectional styles corresponding to p = 1 , 2 and 3 

are described in Section 1.2. We consider columns of Bernoulli-Euler type 

with given support conditions and exclude flexible supports for brevity. 

In geometrically constrained form, our optimization problem consists 

in determining the cross-sectional area distribution A(x) that maximizes 

the fundamental buckling load P for given values of V, L , A , E , P 

and c . Assuming P to be a simple eigenvalue, we easily obtain the 

following governing equations for this problem from Table 1 and the general 

optimality equations (1.6a-e), 

P fL 2 
y' dx 

o 

(CEAPy")" = - Py" 

p-l 2 
pcEA y" = K 

O<x<L 

xEx 
u 

A(x) > A xEx 
u 

A(x) A 

fL A(x)dx 
o 

V • 

xEx 
c 

(2.1a) 

(2.1b) 

(2.1c) 

(2.ld) 

(2.le) 

Specification of a minimum constraint for the cross-sectional area of a 

column was introduced by Taylor & Liu [50], and has later been done in 

Refs. [40,54,57-62], for example. If V is minimized at fixed P, such a 

constraint is equivalent to a constraint on the maximum prebuckling stress. 

Let us now, for convenience, nondimensionalize the coordinate x by 

division by L and introduce a dimensionless cross-sectional area u(x) 

and buckling load A by 
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a(x) A(x)L/V (2.2) 

p+2 
A 

PL (2.3) =---
EcvP 

The geometricaZZy unconstrained problem (where a = AL/V = 0) , is 

thus governed by the following dimensionless equations, obtainable from 

Eqs. (2.1a-e) where (2.1d) drops out and the optimality condition (2.1c) 

becomes valid in the entire interval 0 < x < 1 for the dimensionless 

variable: 

r o 

r o 
2 

y' dx 

O<x<l 

0< x < 1 

r a (x)dx = 1 
o 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

These equations expose the Rayleigh quotient, the differential equation for 

Euler buckling, the optimality condition (where K has been redefined) and 

the volume constraint, respectively, in dimensionless form. Normalizing the 

deflection y(x) such that the denominator in (2.4a) is set equal to unity, 

Jl 2 
y' dx = 1 , 

o 
(2.5) 

multiplying (2. 4c) by a (x) and integrating over the interval 0 < x < 1 , 

taking (2.4d) and (2.5) into account, we find that the Lagrangian 

multiplier K is simply given by 

K = A • 

Hence, for cases of p = 2 or p = 3 , Eq. (2.4c) gives us the 

optimal cross-sectional area function a(x) in the form 

(2.6) 
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p 2 , 3 cv.(x) 

1 

( _" )P-l 
,,2 

y 
(2.7a) 

while, for p = 1 , Eq. (2.4e) states that the curvature y" (x) of the 

deflection is constant throughout, except for possible sign shifts, 

p 1 y" (x) ± f>: . (2.7b) 

The continuity conditions for a column are as follows. At all points 

free from kinematic constraint (column supports), the bending moment 

m(x) = cv.Py" and the function (cv.Py")' + "y' are continuous: 

o (2.8) 

o (2.9) 

The function (cv.Py")' + "y' represents, for the buckled column, the force 

y 

(a) 

Ibl~ 

(e) 

Fig. 1. 

component of the stress resultants in 

the direction perpendicular to the 

x - axis, while the shear force 

t(x) = (ely")' is the force 

component perpendicular to the 

deflected column axis. 

The geometrically unconstrained 

problem is seen to be quite simple 

for p = 1 , and solutions can be 

obtained analytically, see e.g. 

[5,40,45,63,64]. In cases of p 2 

and p = 3 , where the problem 

becomes non-linear in y(x) , it is 

still possible to apply analytical 

methods of solution provided that the 

boundary conditions are sufficiently 

simple [2,3,51,65]. Else, numerical 

methods are available, see for 

example [16,37,54,58,61,66,67]. 
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Optimal shapes ± i<l and corresponding buckling modes yare in-

dicated in Fig. 1 for (a) cantilevered [51], (b) simply supported [29], 

and (c) clamped-simply supported [51] p = 2 columns. The buckling loads 

of the optimal solutions are increased by (a) 1/3 , (b) 1/3 and (c) 

35.1% when compared with the buckling loads of correspondingly supported 

unifo~ columns of the same volume, length and material [29,51]. 

2.3 SINGULARITIES IN GEOMETRICALLY UNCONSTRAINED SOLUTIONS 

We now consider the behaviour of a solution to the geometrically uncon-

strained, single mode formulation at a point x = x. 
J 

of zero bending 

moment For the case of p = 1 , zero bending moment must imply, 

in view of (2.7b), that a also vanishes. For p = 2 and p = 3 , Eq. 

(2.7a) and the relation m aPy" show that the cross-section a also 

vanishes and that y" 

bending moment m 

tends to infinity at a point x = x. 
J 

of vanishing 

If the point x = x. 
J 

of m = ex = 0 is an interior point in the in-

terval for x , then a discontinuity of the slope y' of the deflection 

is possible at 

(exPy")' + "y' 

x = x. , but the deflection y(x) 
J 

are continuous. Therefore, the point 

and the function 

x = x. corresponds, 
J 

physically and kinematically, to an inner hinge of the optimal column. 

Detailed information on the singular behaviour of the functions at an in

ner hinge is available in Ref. [45] (see also Ref. [18], pp. 156-158). 

In problems of optimizing statically determinate columns by means of 

a single mode, geometrically unconstrained formulation, the locations of 

singular points of zero bending moment are known beforehand. Thus, simply 

supported or free end points are predetermined to be singular. However, in 

a priori statically indeterminate problems of the type mentioned, singula

rities may occur at inner points. The positions of such points can be pre

scribed for a particular column to be optimized, while in other problems, 

we may consider the locations X=x., j=l, •.• ,S 
J 

of the singularities 

(hinges) to be additional design variables. Problems of the latter type 

were for the first time considered by Masur [68]. 

For columns, the condition for optimal location x 

hinge is [45] 

x. of an inner 
J 
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either (2.10a) 

or 
+ y (x.) - y (x. 1) 

y'(x.) =-y'(x~) - 2 J J+ 
J J (2.10b) 

where, in (2.10b), x j +l denotes the position of an adjacent inner hinge 

or hinged end point of the column, and it is presumed that no beam support 

or additional hinge are placed between the points d Xj an Xj+l. 

The reader is referred to Ref. [45] (or Ref. [18], pp. 158-163) con-
cerning the derivation of the above condition. 

2.4 DISCUSSION 

The buckling load of the clamped-simply supported optimal column shown in 

Fig. lc and originally determined in [51], is actually bimodal. For this 

type of column, we obtain the same optimal design independently of whether 

we use (2.10a) or (2.10b) to govern the location of the inner hinge of 

zero bending moment. However, as will be illustrated next, it is necessary 

to pay full attention to both conditions in other geometrically uncon

strained problems. 

~~~-L 
y 

Fig. 2. 

Fig. 2 shows the geometrically unconstrained optimal design of a 

doubly clamped column (p = 2) with two inner hinges, Refs. [54,45]. This 

design is also bimodal, but in this case, the optimal position of the left 

hand hinge is governed by condition (2.10b), while the position of the 

right hand hinge is governed by condition (2.10a). If, for example, (2.10a) 

were used for both inner hinges, their positions would change, and a 

slightly different design be obtained. This design would maximize the 

second buckling eigenvalue (with a symmetric mode), see Ref. [54], but it 

would have a much lower fundamental Euler buckling eigenvalue than the 

design shown in Fig. 2, and hence not be optimal in the sense of maximizing 
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the buckling load. In fact, the doubly clamped column solution published 

in [51] is subject to this mistake. 

2.5 MULTIMODAL FORMULATION FOR OPTIMAL DESIGN 

In this subsection, we consider a problem in which a bimodal rather than a 

single mode formulation is necessary in order to arrive at the correct 

optimal design. For reasons of generality, we present a multimodal formu

lation of the problem. 

The example problem consists in maximizing the Euler buckling eigen

value A , Eq. (2.3), of a doubly clamped, solid elastic column (p = 2) 

of given volume and length. This problem was first considered in [51], but 

as is shown in [54], an erroneous solution was arrived at. The design shown 

in Fig. 2 constitutes the correct solution within the premises of a single 

mode formulation of the problem, and it replaces the design from [51], 

which was also obtained on the basis of a single mode formulation. 

However, the design shown in Fig. 2 is only optimal within the class 

of doubly clamped columns with two inner hinges. It is quite obvious that 

the column would obtain a greater Euler buckling load for the same volume, 

length and material, if it were made to buckle in a symmetric fundamental 

buckling mode with a continuous slope throughout. This could easily be 

achieved by restributing the given material slightly so that the hinges 

became locked. The problem is, however, that the field equations of the 

geometrically unconstrained column do predict zero cross-section (singular 

behaviour) at points of vanishing bending moment, and two such points are 

necessarily present in a clamped-clamped column whenever a single mode 

formulation is used. 

This clearly indicates that the single mode formulation is inadequate 

for the problem under consideration, and motivates a reformulation of the 

problem in [54], leading to a new optimality condition, that does not 

necessarily lead to vanishing cross-section at points of zero bending 

moment. 

Let us now reformulate and expand the initial formulation of our 

optimization problem in Section 2.2 by following [69]. The eigenvalues 

A. , i=l , ••• ,00, of our elastic column are expressed in terms of the 
~ 

modes Yi(x) by 
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i=l, '" ,00, 

provided that the modes are normalized by 

rl ,2dx J y i 
a 

Also the eigenfunctions for A. * A. 
~ J 

1 i=l, •.• ,oo. 

are orthogonal, i.e., 

a for A. * A. 
~ J 

(2.11) 

(2.12 ) 

(2.13) 

but this need not be the case if 

the entire set of modes {Yk(x)} 

Ai = Aj , i * j. However, let us take 

to be orthonormalized according to 

fal y~y'.dx 
~ J 

where 0.. is Kronecker's delta. 
~J 

0 .. 
~J 

i,j 1 , ... , 00 , (2.14) 

The condition of given volume for the column is expressed by 

1 , (2.15) 

and to formulate the problem in some generality, we will consider a geome

tric minimum constraint for the design variable a(x) , namely that 

a(x)~ a 

throughout, assuming the minimum allowable value a (a,S, a ,S,l) 

The design problem may now be stated as 

max [min (A . ) ] 
a(x) i ~ 

(2.16) 

to be given. 

(2.17) 

This max-min problem is non-differentiable, however. In order to circum

vent this difficulty, we use a bound formulation [69,70], which consists 

in introducing an extra parameter e which ensures that we have a standard 

differentiable problem even if multimodal eigenvalues occur. Hence, we 

transform the problem (2.17) into the problem of maximizing a bound e 
subject to the constraints A. > e 

~-
i=l, ... ,oo. In this way the para-
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meter S replaces a non-differentiable functional and is to be maximized 

over a constraint set in an enlarged space. The points of non-differenti

ability correspond to "corners" in the constraint set of the enlarged space 

and arise from intersections of differentiable constraints. 

The bound formulation for our problem has the form: 

subject to 

max S 
a(x) 

S < A. <=> 
- 1. 

a(x) > a <=> 

S-A.+h~=O 
1. 1. 

i=l, ... , 00 

i=l, ... ,00 

<5 •. 
1.J 

i = 1, ...... , 00, j:;::: 1, ...... , ex> 

- 2 
a- a(x) +g (x) = O. 

(2.18) 

Here the symbols hi and g(x) designate real slack variables that convert 

the inequality constraints to equality constraints. 

To solve the problem (2.18), we construct an augmented Lagrangian 

L S -

00 

~ 
~ 

i=l 

i 

I p .. (Jl y~y~dx - <5 •. \) 
1.J 0 1. J 1.J 

j=l 

(2.19) 

where n. , P .. , rand o(x) are Lagrangian multipliers. Note that the 
1. 1.J 

multipliers P.. are only defined for i':' j. 
1.J 

The condition of stationarity of L with respect to variation of S 
and hi gives 
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00 

(2.20.) 

where 

n. = 0 if A. > S, n. > 0 if A. = S, i = 1, .•• , 00 • 
~ ~ ~- ~ 

(2.21) 

Variation of a(x) and g(x) yields the so-called optimality con-

dition 
00 

p-l I 2 
a niyi K - a (x) (2.22) 

i=l 

where K = rip, and 

a(x) =0 if a(x) >a, a(x) ~o if a(x) =a (2.23) 

Finally, stationarity of L with respect to variation of the i-th 

mode is expressed by 

i-l 

2n. (aPy'~)1I + 2p .. y'~ + /~ 
~ ~ ~~ ~ -

j=l 

00 

o (2.24) 

after integration by parts, using the boundary conditions. In (2.24) and in 

the following, summation is only to be carried out over repeated indices 

when explicitly stated. 

Let us now assume that a total number of N Lagrangian multipliers 

n i are greater than zero, which is the same as assuming that the fundamen

tal eigenvalue is (at least) N-fold, c.f. Eq. (2.21). Moreover, let us re

number our variables, i.e., use the first N values of an index n , i.e., 

n = 1, ..• ,N , to identify the Lagrangian multipliers nn and modes 

that are associated with the N-fold eigenvalue S = A , n = 1, •.. ,N. 
n 

Then Eqs. (2.20.) - (2.24) become 

N 

1 

y (x) 
n 

(2.25 ) 
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N 
p-l a; X nny~ 

n=l 

a.(x) =0. 
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n= 1, .•. ,N 

n=N+l, .•. ,OO 

2 
K (if 0.>0. 

n-l 00 

xEx 
u 

xEx 
c 

} 

2n (a.Py")" + 2p y" + "\' P .y'~ + 
n n nn n ..::;..; nJ J I Pjnyj 

j=n+l j=l 

0, 

n = 1, ... ,00 

(2.26 ) 

(2.27) 

(2.28) 

Eqs. (2.27) are readily obtained from Eqs. (2.22) and (2.23). The symbols x 
u 

and x 
c 

denote the unions of sub-intervals in which we have a.(x) >a (un-

aonstrained cross-sectional area) and a.(x) =a (aonstrained area), respec-

tively. 

In order to determine the Lagrangian multipliers Pnm ' we first mul

tiply (2.28) by Yn' integrate by parts over the interval in applying of 

the boundary conditions, and use (2.11) and (2.14) to obtain Pnn = Annn ' 

n = 1, ••• ,00 • In view of (2.26) we thus have 

{ 
I3non ' n=l, •.• ,N , 

, n=N+l, ••. ,oo 

(2.29) 

To determine the remaining components of Pnm (i.e., those associated 

with n > m), we first write Eq. (2.28) with index n replaced by m. Then, 

we multiply this equation by Yn and Eq. (2.28) by Ym' integrate both 

equations by parts using the boundary conditions, assume n > m , and apply 

(2.14). Subtracting and adding the two resulting equations, we finally ob

tain 

a.Py"y"dx 
nm 

n>m m=l, ... ,oo , (2.30) 
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(n - n ) Jl aPy"y"dx 
n m 0 n m 

0, n >m m=l, ... ,oo, (2.31) 

respectively. 

For values of n > N we have n = 0 by (2.26) and it is then easily 
n 

seen from (2.30) and (2.31) that 

Pnm = 0, n>m, n=N+l, ••. ,oo. (2.32) 

This equation implies together with (2.26) and (2.29) that only the 

modes associated with the N-fold fundamental eigenvalue enter Eqs. (2.28), 

and that we only need to consider Eqs. (2.28) for n= 1, ... ,N • 

Consider now any of the equations (2.28) associated with a given 

n < N , and write its solution y n as y n = wn + zn where the function wn 

designates the solution to the eigenvalue problem consisting of the given 

set of boundary conditions and the differential equation ( aP w" ) " + Sw" = 0 , 
n n 

which is constructed from (2.28) by setting the two first terms on the left 

hand side equal to zero and using (2.29). The function Z 
n 

is then due to 

the terms under the summation signs in (2.28). The Rayleigh quotient as so-

ciated with the aforementioned eigenvalue problem is defined by 

rl 2 rl 2 
R[U] = JO aPu" dx/Jo u' dx , where u is an admissible function, and Ray-

leigh's minimum principle implies that S=R[w]< R[w +z ]=R[y ]=A , 
n- n n n n 

where the last relationship follows from Eqs. (2.11), (2.12) and the defini-

tion of R. Now, Eqs. (2.26) require strict equality of Sand 

S=An for n=l, .•. ,N. Hence, we must have Yn(x);, wn(x), i.e., 

A , i.e., 
n 
zn (x) ;, 0 , 

n = 1, .•• , N , and as is shown in the Appendix of Ref. [69] this requires 

vanishing of the Lagrangian multipliers, 

Pnm = 0, n>m, n=2, ... ,N, (2.33) 

in Eq. (2.28) 

By means of (2.26), (2.29), (2.32) and (2.33), we may now write Eqs. 

(2.28) as the familiar differential equations for buckling 

(aPy ")" + A y" = 0, n=l, •.. ,N, 
n n n 

(2.34') 

where AS, n = 1, ••• ,N It is also worth noting that Eqs. (2.30) , 
n 

(2.26) and (2.33) imply vanishing of the integrals 
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fO
l 

OPyllylldx = 0 , 
n m 

n >m , n=2, •.. ,N, (2.35 ) 

that represent the mutual bending energy of the modes Yn and Ym. 

2.6 THE BIMODAL CASE 

For the type of problem treated above, the multiplicity N of the fundamen

tal eigenvalue is not known beforehand, but must be determined as the high

est possible number of positive Lagrangian multipliers nn' which, together 

with their associated linearly independent modes Yn' is admitted by the 

optimality condition (2.27). Up to now the highest multiplicity found for 

an optimal Euler column buckling eigenvalue is N = 2 , cf. [54] for the 

case of a doubly clamped column. N = 1 is usual for columns with other 

boundary conditions. 

If N=l, Eq. (2.25) gives nl =1 and it is readily seen that Eq. 

(2.27) reduces to the traditional single mode optimality condition, Eq. 

(2.4c) • 

For the case of N= 2, Eqs. (2.25) and (2.27) may be combined into 

the following condition where we write 1 - Y in place of n l : 

P-l{ 2 2} a (l-y)yi + YY2 K (ifa>a) xEx 
u 

(2.36) 

This condition is identical with the optimality condition derived by Olhoff 

and Rasmussen [54]. It follows directly from (2.25) and (2.26) that in 

(2.36) y must lie in the interval 

(2.37) 

This condition has earlier been established as ~ sufficient condition for 

local optimality by Masur and Mr6z [71,72]. 

Together with the condition a(x) = a for 

solved for a(x) to give 

1 

( K t- l r (1 - yl y,,2 + yy.2 
P 2,3 a(x) 1 2 

a. 

xEx , Eq. (2.36) maybe 
c 

(if > a) x E x 
u 

(2.36a) 

x E x 
c 
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for p 2 or p 3 • For the case of p 

2 2 
(1- Y)yi + YY2 K 

p 1 

a(x) = a 

1 , we obtain 

(if a > Ci) x E x 
u 

x E x 
c 

(2.36b) 

As is the case for Eq. (2.7b), we note that for p = 1 , the optimality 

condition for the geometrically unconstrained sub-interval(s) does not 

contain the design variable a, which must therefore be determined from 

the buckling differential equation. A method of solution for p = 1 is 
presented in [71] and the case of p = 1 will not be considered further 

here. 

For exemplification, let us follow [54] and derive convenient 

expressions for the Lagrangian multipliers K and Y and the optimum 

buckling eigenvalue A for the more complex cases of p = 3 and p = 2 

First, we substitute (2.36a) into the volume constraint (2.15), thereby 

obtaining an explicit expression for K , 

p 2,3 K 

t 
u 

l-aJ dx 
x 

c 

dx 

p-l 

(2.38) 

Then, subtracting the two equations comprised in (2.1.1) for i=l and 

i = 2 , substituting a.(x) from (2.36a) and using (2.38), we find the 

following implicit equation for y, 

p 2,3 t 
u 

J x {(I _ Y) y,,2 +~y,,2} 1/ (p-l) 
CiP __ ~u~ ______ -=1 ____ -=2 _________ 1 

l-o:J dx 
x 

c 

(2.39) 
p 

J ( ,,2 - ,,2)dx 
Yl Y2 

x 
o 

c 

Finally, substitution of (2.36a) and (2.38) into first of Eqs. (2.11) gives 

an explicit expression for A, 



www.manaraa.com

p 2,3 

114 

2 Yl dx + 

l-aJ dx 
x 

c 

,,2 
Yl 

--------~2~~-2~-/77--~dx . 
{ (1 _ y) y" + yy" }p (p-l) 

1 2 

p 

x 

(2.40) 

Equations (2.11) '-1 2 ' (2.12) '-1 2 ' (2.34) -1 2 ' (2.36a), (2.38)-
1.- , 1.- , n- , 

(2.40) comprise the complete set of necessary equations governing the bimo-

dal optimal design problem for p = 3 and p = 2 , and they constitute a 

strongly coupled, non-linear integro-differential eigenvalue problem. The 

unknowns to be determined are the optimal buckling eigenvalue A, the op-

timal column cross-sectional area function a(x) (and thereby the sub-in-

tervals x 
u 

multipliers 

and xc), eigenfunctions Yl and Y2 ' and the Lagrangian 

K and y, respectively. The solutons depends in general on 

the minimum constraint a, which is the only specified quantity in the 

non-dimensional formulation. 

A method of numerical solution based on successive iterations is 

presented in [54]. In that paper, the modes y, and Y2 were not taken to 

be mutually orthogonal. The results are exposed in the next subsection. 

Other examples where bimodality of optimal eigenvalues occur, may be found 

in Refs. [73-76]. 

The bimodal formulation for optimal design described above contains 

geometrically unconstrained optimization and/or single mode optimization as 

special cases. The principal advantage of the new formulation is that while 

the optimality condition (2.4c) of the single mode formulation predicts 

formation of hinges at points of zero bending moment in a geometrically 

unconstrained formulation of optimal design, the bimodal optimality con

dition (2.36) does not necessarily lead to zero cross-section and forma

tion of hinges at points of zero bending moment. 

2.7 EXAMPLE: BIMODAL OPTIMIZATION OF A DOUBLY CLAMPED p= 2 COLUMN [54] 

Fig. 3 illustrates optimal designs ± va and assosiated fundamental single 

or double modes corresponding to selected values of a geometric minimum 

constraint a on the cross-sectional area a of a doubly clamped p = 2 

column. In Fig. 3a, a = 0.7 and A = 48.690 is a simple. In Fig. 3b, 



www.manaraa.com

115 

a = 0.4 and A = 51.775 is simple. In Fig. 3c, a = 0.25 and the optimal 

buckling load A = 52.349 is bimodal. Fig. 3d shows the optimal solution 

corresponding to any value of 

Fig. 3. 

55 

H 

A B 

50 

~ 

(_ P L4 ) 
- E cv2 

45 

F 

40 

~i ble '" is sim Ie 

35 
inactive active minimum constraint 

G 
30 

.6 .7 .8 .9 

.226 .280 ii (.~) 

Fig. 4. 

a belonging to the interval 

o < a < 0.226 , where the con

straint is no longer active in 

the design. The corresponding 

optimal buckling load 

A = 52.3563 is bimodal. 

In Fig. 4, curve ABCD 

is based on a number of solu-

tions and shows A as a func-

tion of the geometric minimum 

constraint a For 

0.280 < a < 1 , the optimal 

designs are associated with a 

simple fundamental eigenvalue 

A , given by curve CD. Curve 

CE shows the second order eigen

values A2 of the simple optimal 

55 eigenvalue designs behind curve 

CD . At point C, the two curves 

are seen to coalesce at the value 
50 

0.280 for a , and for 

o < a < 0.280 , the optimal 

45 designs are associated with a 

bimodaL fundamentaL eigenvaLue, 

cf. modes and in Figs. 
40 

o 3c and d. All the designs 

obtained are symmetrical (this 

35 was not assumed in the solution 

procedure), and purely symmetric

al and anti symmetrical linear 
30 

combinations of double modes Yl 

and can be constructed. 

As shown by curve DCB 

Fig. 4, the optimal buckling 

eigenvalue A increases with 

of 
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decreasing constraint for 0.226 < a ~ 1 , and for these values of a the 

constraint is active in the optimal designs, cf. Figs. 3a, band c. How

ever, for values of a belonging to the interval 0 < a < 0.226 , the 

minimum constraint is inactive in the optimal design, and the associated 

bimodal fundamental buckling eigenvalue is constant, cf. AB in Fig. 4. 

For these values of a, 0 < a < 0.226 , the optimal design, see Fig. 3d, 

is the s~, and it has finite variable cross-section throughout, with a 

minimum magnitude of a = 0.226 . 

This a independent bimodal optimal design in Fig. 3d is the solu

tion to the geometrically unconstrained optimization problem for a doubly 
clamped column of p = 2 • Its fundamental, double buckling eigenvalue A 

is 32.62% higher than the fundamental eigenvalue of a corresponding 

uniform column of the same volume, length and material. The bimodal optimal 

design replaces not only the solution arrived at in [51], but also the 

geometrically unconstrained, candidate design in Fig. 2. 

The result provides a noteworthy example of a statically indeterminate 

solution to a geometrically unconstrained, one-dimensional, single purpose, 

structural optimization problem: it const"itutes an abvious exception to 

the "general rule" that solutions to the broad class of all such problems 

will always be statically determinate. 

SECTION 3 

OPTIMIZATION OF TRANSVERSELY VIBRATING BEAMS 

AND ROTATING SHAFTS WITH RESPECT TO 

THE FUNDAMENTAL NATURAL FREQUENCY OR CRITICAL SPEED 

3.1 INTRODUCTION 

This section deals with problems of determining the distribution of 

structural material in transversely vibrating beams or rotating circular 

shafts, such that maximum values of natural frequencies or critical whirl

ing speeds are obtained for a prescribed amount of material, length, and 

boundary conditions for the beam or shaft. Equivalently, we minimize the 

volume of structural material for a given vibration frequency or critical 

speed. 
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The practical significance of such problems is that they provide 

designs of minimum weight (or cost) of material against beam vibrational 

resonance due to external excitation of given frequency, and against 

failure due to whirling instability at service speeds, within a large range 

from zero and up to the particular fundamental frequency or first critical 

speed. 

3.2 GEOMETRICALLY CONSTRAINED OPTIMAL DESIGN 

An elastic Bernoulli-Euler beam of length L and structural volume V 

vibrates at its fundamental angular frequency w of free transverse 

vibrations. The beam is made of a material with Young's modulus E and 

the mass density p , and it has variable but similarly oriented cross

sections with the relationship I = cAP between the area moment of inertia 

I and the area A, cf. Eq. (1.1). We restrict ourselves to the cases of 

p = 2 (geometrically similar, solid cross-sections) and p = 3 (solid 

cross-sections of fixed width and variable height), because the case of 

p = 1 (sandwich cross-sections) is often degenerate for the types of 

problems to be considered, cf. the discussion in Sections 1.5, 1.8, and 

Refs. [35,41,46,47]. The constant c for the cross-sectional shape and 

the value of p (p = 2 or p = 3) are assumed to be given. 

For the particular case of p = 2 , we may conceive the structure to 

be a shaft of circular cross-sections, that rotates at its fundamental 

critical angular whirling speed w , if we neglect gyroscopic effects. 

We shall assume that our vibrating beam (or rotating shaft) carries 

no distributed nonstructural mass, but that a number K of given non

structural masses (or circular disks) Qi' i = 1, ... ,K , are attached to 

the beam/shaft at specified points X = Xi ' where X is the beam/shaft 

coordinate (which is denoted by x in Chapter 1). 
2 

Identifying A of Section 1 as w , and introducing non-dimensional 

quantities, 

x = X/L 0 < x < 1 (3.la) 

a(x) A(x)L/V a = AL/V (3.lb) 
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X. 
l 

i=l, •.. ,K (3.1c) 

(3.1d) 

i.e. coordinate x, cross-sectional area function a(x) , non-structural 

masses (or circular disks) qi and fundamental eigenvalue A, respective

ly, the non-dimensional beam or shaft will have unit volume and unit 

length. 

Our dimensionless, geometrically constrained optimization problem 

then consists in determining the function a(x) > a that maximizes A 

for given minimum allowable beam/shaft cross-sectional area a, given 

positions xi and magnitudes qi of non-structural masses/disks, and 

given, homogeneous boundary conditions. 

Using Eqs. (3.1a-d), the governing equations for the optimization 

problem are easily obtained as a special case of the general set of 

optimality equations (1.6a-e) with the help of Table 1. Normalizing the 

vibration/whirling mode according to 

Il 2 
ay dx + 

o 
1 , (3.2) 

such that the denominator of the dimensionless Rayleigh quotient equals 

unity, the set of governing equations takes the following form 

r 2 A aPy" dx 

0 

" (aPy") Aay 0 < x < 

p-l 2 
pa y" - Ai = K x E 

a (x) > a x E x 
u 

a(x) = a 

r a(x)dx = 1 , 
o 

1 

X 
U 

x E x 
c 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.3e) 

where we have redefined the Lagrangian multiplier K in the optimality 

condition (3.3c). 

In addition to Eqs. (3.2) and (3.3a-e), our optimization problem must 

satisfy (i) the boundary conditions, (ii) the condition of continuity of 
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the bending moment m = o:Py" except at possible points of prescribed y' , 

and (iii) the conditions of continuity of the shear force t (x) = - (o:Py") , 

except at possible points of prescribed y and at the points x xi' 

i = 1, ••• ,K with attached nonstructural masses qi • At the latter points, 

the jumps of t are identified as <t>x = - Aq. y (x.) . 
i ~ ~ 

Due to the nonlinearity and coupling of the governing equations, 

closed form solutions cannot be expected for p 2 and p 3 , and 

numerical solution procedures must therefore be applied. Such procedures 

are available in Refs. [7S-S0]. Refs. [78] and [SO] present results for 

geometrically constrained p = 2 cantilevers with and without nonstructur

al masses, respectively, and Ref. [79] offers results for p = 2 and 

p = 3 beams with various other boundary conditions. 

Fig. 5 shows results obtained in [78], namely cantilever beams of 

geometrically similar cross-sections, p = 2 , (or rotating circular 

I 
Va1 I 

va, 

la) Ie) 

~q, 

I 
ra; ~ 

I·' 
Va1 

~r I •• 0 

Ib) (d) 

Fig. 5. 

cantilever shafts) optimized with respect to the fundamental natural 

transverse vibration frequency (or first critical speed) W = wl • The 

beams are illustrated by optimal shapes ± ~ , where 0:1 (x) = o:(x) 

A (x) L/V , and the solutions in (a), (c) and (b) , (d), respectively, 

correspond to minimum constraints 0: = 0.05 and 0.5 . The dimensionless 

nonstructural tip mass in (c) and (d) is ql Ql/PV = 0.1 • The fundament-

al frequencies wl of the optimal designs are increased by (a) 279%, 

(b) 8S%, (c) Sl% and (d) 57%, respectively, in comparison with those 

corresponding to uniform designs of the same volume, length, material, 

and, for (c) and (d), tip mass. 
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Fig. 6. 

Fig. 6 shows the square 

root ~ of the fundamental 

eigenvalue A = Al and the 

square root ~ of next eigen

value A2 as functions of the 

dimensionless cross-sectional 

area constraint ra = vAL/v 

for optimal cantilevers of the 

type in Fig. 5. Note that a = 0 

and a = 1 correspond to 

geometrically unconstrained and 

fully constrained (uniform) 

designs, respectively, and that 

the square root eigenvalues are 

proportional to the first and 

second vibration frequencies 

(critical speeds) and 

respectively, for given beam 

volume, length and material. 

The solid curves in Fig. 6 

represent optimal A = Al 

designs without nonstructural mass, see for example Fig. Sa,b, while other 

curves are for optimal A = Al designs with a dimensionless tip mass 

ql = Ql/PV , see e.g. Fig. Sc,d. 

Fig. 6 clearly illustrates that geometrically unconstrained designs 

are associated with maximum obtainable merits in comparison with 

corresponding geometrically constrained designs, cf. the discussion in 

Section 1.6. 

3.3 GEOMETRICALLY UNCONSTRAINED OPTIMIZATION 

We now consider the case where no geometric constraint is specified for the 

cross-sectional area function a(x) in the process of optimization. This 

constitutes a special case of the formulation considered in Section 3.2, 

and corresponds to setting a = 0 and the interval Xu equal to the 

entire interval 0 < x < 1 • Doing this, the system of Eqs. (3.2), (3.3a-e) 

reduces to the following system for geometrically unconstrained optimiza-

tion, 
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A r cly,,2dx 
0 

r 2 L 2 
o.y dx + qiY (xi) I 

0 i 

p " (a. y") 

II o.dx 
0 

Ao.y 

I 

a. (x) 
G + A~~P-I 
[py" J 

I 
o < x < I 

o < x < I 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

Here the optimality condition (3.4e) is now valid in the entire interval 
p-l 2 o < x < I . If we write this equation in the form po. y" - AY = K , 

multiply it by a., integrate over the interval, and use Eqs. (3.4a-c), we 

find 

(3.5) 

i.e., Lagrangian multiplier K is always positive for problems with 

p > I 

Geometrically unconstrained solutions obtained numerically by 

successive iterations are available in Refs. [30,46,47,56,81]. Ref. [46] 

presents optimal p = 2 and p = 3 cantilevers with and without tip mass, 

and p = 2 solutions without nonstructural mass are available in Refs. 

[30,47] for other boundary conditions. 

Fig. 7 shows examples of geometrically unconstrained optimal design 

of p = 2 beams with respect to the fundamental natural vibration 

frequency W = WI ' when no nonstructural masses are considered. The de

sign in Fig. 7a is the solution for a simply supported beam [30], Fig. 7b 

shows the optimal cantilever design [46], and Fig. 7c illustrates the opti

mal design of a doubly clamped beam [47]. The design in Fig. 7b may be com

pared with the constrained designs in Figs. 5a-b, and it should be noted 

that its optimal characteristics (maximum WI for given V and L, or 

minimum V for given WI and 

for the solid ~ curve at 

L) are represented by the value indicated 

~ = 0 in Fig. 6. It is also worth mention-

ing that the design in Fig. 7b is at the same time the optimal design of a 

clamped-simply supported beam [47]. 
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la) 

Ib) 

Ie) 

Fig. 7 

3.4 TYPES OF SINGULAR BEHAVIOUR 

The fundamental frequen-

cies of the optimal solu-

tions in Fig. 7 are increased by 

(a) 6.6%, (b) 588% and (c) 332%, 

respectively, when compared with 

the frequencies of corresponding 

uniform beams of the same volu-

me, length and material. Compar

ing (b) with a uniform clamped

simply supported beam, its fun

damental frequency Wl is in

creased by 57%. 

In problems of optimizing transversely vibrating Bernoulli-Euler beams or 

rotating shafts without geometric constraint, there may occur two different 

types of singular behaviour, both of which are associated with zero bending 

moment m(x) = aPy " and cross-section CJ. , but in one type (I) the shear 

force is finite, while in the other type (II) the shear force vanishes at 

the singularity. Physically, an inner Type I singularity corresponds to an 

inner hinge, and an inner Type II singularity to an inner separation of the 

beam. The types of the singularities are independent of whether the beam 

(or shaft) is optimized with respect to the fundamental frequency (first 

critical speed) or a higher order eigenfrequency (higher order critical 

speed) • 

The singular behaviour can be determined analytically by expanding 

solutions to Eqs. (3.4d) and (3.4e) in power series near the singular point 

x = x. , which may either be an inner point or an end point of the beam. 
J 

Detailed information is available in Refs. [45,47] and Ref. [18] pp. 185-189. 

The conditions that govern optimal location of Type I and Type II singula

rities can also be found in the references cited. 
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SECTION 4 

OPTIMIZATION WITH RESPECT TO HIGHER ORDER EIGENFREQUENCIES 

4.1 INTRODUCTION 

Here, we shall consider an extension of the types of optimization problems 

studied in S:ection 3. Thus, instead of maximizing the fundamental natural 

frequency (or critical speed), we will deal with the problem of maximizing 

a particular higher order natural frequency (or critical speed) of given 

order n (n > 1) for a transversely vibrating Bernoulli-Euler beam (or 

rotating shaft) of prescribed structural volume, length, material, and 

boundary conditions. 

This problem is governed by a set of dimensionless equations consist

ing of Eqs. (3.2) and (3.3a-e) for geometrically constrained optimal design 

or Eqs. (3.4a-e) for geometrically unconstrained design, with A, a(x) 

and y(x) subscribed as An' an(x) and Yn(x) (indicating reference to 

the given order n of the subject eigenfrequency), and the additional 

equations 

Il 
a y y,dx + 

o n n J 
o j = 1, ... ,n-l (4.1a) 

j =l, ..• ,n-l (4.1b) 

see Refs. [47,78]. Eqs. (4.1a) are conditions of orthogonality of Yn(x) 

against the lower modes y, (x) , j;" 1, ..• ,n-l , and Eqs. (4.1b) constitute 
J 

together with the boundary conditions n-l eigenvalue problems for the 

lower modes y, (x) of the optimal design a 
J n 

As will be discussed in the following, a geometrically unconstrained 

solution an to the problem coincidently constitutes the optimal design 

to the problem of maximizing the difference between two adjacent natural 

frequencies (or critical speeds) wn and wn _ l for given volume and 

length of the beam (or rotating shaft), see [47]. It is not surprising, 

therefore, that geometrically constrained solutions also exhibit large gaps 

between two adjacent frequencies [78], and that these gaps are very close 

to the maximum obtainable gaps. The point is that the geometrically con

strained problem of maximum, single, higher order natural frequency is 
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simpler to solve than problem formulated in terms of maximum difference 

between two adjacent natural frequencies. The latter type of problem has 

been solved in Refs. [83,84] (see also Ref. [85]). 

Thus, the type of problem to be considered is directly related to 

practical design against resonance of beams due to external excitation and 

whirling instability of rotating shafts: if the structure is designed such 

that the external excitation frequency or the service speed is isolated in 

a broad gap between two consecutive higher order natural frequencies or 

higher order critical speeds, considerable weight savings are possible 

compared with designs where the excitation frequency or service speed is 

placed between zero and a high value of the fundamental natural frequency 

or first critical speed. 

Another direct and very important advantage of considering optimiza

tion (geometrically constrained as well as unconstrained) with respect to 

a single, higher order natural frequency (or critical speed) of given 

order n, is that the resulting optimal design is, at the same time, the 

optimal design to the problem of optimizing with respect to the fundamental 
natural frequency (or first critical speed), assuming the positions of n-l 

available interior supports to be design variables in addition to the 

cross-sectional area distribution [47,78]. According to Mr6z and Rozvany 

[86] and Rozvany (87], zero support reaction is a necessary condition for 

optimum location of an interior simple support. This implies [47,78] that 

the optimal positions for available interior supports in a problem of 

optimal design with respect to the fundamental frequency, are simply 

identified with the n-l nodal points of the vibration mode Yn(x) of 

the higher order frequency optimal design. 

Fig. 8 illustrates as an example the geometrically unconstrained 

design with optimal positions of four available inner supports that 

maximize the fundamental frequency of a transversely vibrating p = 2 

Fig. 8. 

x., 
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beam with clamped and free end points. The design is determined by optimiz

ing the beam without inner supports with respect to its fifth eigenfrequen

cy, and the inner supports are subsequently placed optimally at the four 

nodal points of the corresponding mode. 

4.2 RESULTS OF GEOMETRICALLY CONSTRAINED PROBLEMS 

Let us now consider some examples of geometrically constrained solutions 

for transversely vibrating Bernoulli-Euler cantilever beams (p = 2) and 

rotating, cantilevered circular shafts from Ref. [78]. Results for 

Timoshenko beams are available in [88]. 

Fig. 9 shows cantilever beams optimized with respect to the third 

natural frequency, OJ 3 The optimal designs are associated with p = 2 

and are geometrically constrained with a = "AL/V = 0.05 for (a) and (c) , 

and Ct. = 0.5 for (b) and (d) , respectively. Designs (c) and (d) are 

equipped with a dimensionless tip mass, ql = Ql/PV = 0.1 • The first 

four vibration modes of the optimal designs (a) and (c) are also shown in 

the figure. The natural frequencies OJ 3 of the optimal beams are in

creased by (a) 129%, (b) 39%, (c) 82% and (d) 28%, respectively, when 

compared with the same frequency of uniform beams of the same volume, 

length, material, and, for (c) and (d), tip mass. The frequency differences 

OJ 3 - OJ 2 of the optimal beams are (a) 228%, (b) 53%, (c) 156% and (d) 41% 

higher than the corresponding frequency differences of the uniform beams. 

~ 
Va: 

--~~ 
(0) -----

Fig. 9. 
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200 

n = 3 , the results for a number 

of optimal solutions of the 

types shown in Fig. 9. Adopting 

the concept of given volume V 

and length L, the square roots 

150 of the eigenvalues in Fig. 10 

50 

directly represent the natural 

frequencies of the optimal 

designs associated with n = 3 

The results in Fig. 10 may be 

compared with corresponding 

results for n = 1 in Fig. 6, 

noting especially the different 

ordinate scales and the 

different type of behaviour of 

the subject eigenfrequencies of 

the mass-carrying beams, sub

stantiating advantages of 

optimizing with respect to 

higher order eigenfrequencies. Similarly, the optimal n = 3 designs in 

Fig. 9 may be compared with the n = 1 designs in Fig. 5. 

As is illustrated for n = 3 in Fig. 10, we find for any value of 

n > 1 that both the optimal natural frequency W 
n 

and the distance 

between the consecutive natural frequencies wn and wn_ l increase with 

decreasing geometric constraint. In fact, the absolute values of the 

differences between W 
n 

and increase with increasing n , and this, 

irrespective of whether the beams are equipped with nonstructural mass or 

not. 

Optimizing cantilevers for n > 3 , not only the subject frequency 

wn but also the closest subsequent natural frequencies wn +l ' wn+2 ' etc. 

are pushed upwards, and the sub-spectrum consisting of these natural 

frequencies becomes significantly condensed for optimal solutions associat

ed with small geometric constraint. In the limiting case of geometrically 

unconstrained optimization, the subject frequency may be increased to the 

extent that it coalesces with one or more of the subsequent natural fre

quencies [78], see e.g. Fig. 10. For the problems considered in [78], 
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coalescence of the subject eigenvalue with one or more higher order eigen

values is always found to take place in the limiting case of geometrically 

unconstrained design (a 0). This implies the advantage that it is not 
necessary here. to apply a bi- or multimodal formulation, in order to 

obtain the correct optimal design. 

Another characteristic feature of optimizing with respect to a higher 

order natural frequency wn ' n > 2 is that all the lower natural frequen

cies w. , j =l, .•. ,n-l , are kept small by this process, and that they 
J 

tend toward a multiple zero eigenvalue as the geometric minimum constraint 

tends towards zero, see Fig. 10. 

4.3 GEOMETRICALLY UNCONSTRAINED OPTIMIZATION 

Geometrically unconstrained solutions are important because they constitute 

limiting designs for corresponding geometrically unconstrained designs, and 

their associated optimal eigenvalues constitute upper bound values for 

corresponding eigenvalues of all similar beams with and without non

structural mass. In the following we shall consider some geometrically un

constrained optimal designs obtained in [47] for transversely vibrating 

Bernoulli-Euler beams with p = 2 • 

The solutions are determined numerically in [47] on the basis of a 

formal integration of the geometrically unconstrained formulation for 

optimal design, with possible types of singular behaviour appropriately 

allowed for in the numerical solution procedure. The positions as well as 

the types (I and II) of the singularities are additional design variables 

in the optimization process, and the optimal solutions are, in fact, 

determined via a path through a class of geometrically unconstrained sub

optimal solutions. 

Fig. 11 provides an illustration of this in the case of optimizing a 

cantilever for n = 3 • The solutions in Fig. lla are both sub-optimal 

~I 

Fig. 11. 
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solutions. The dashed solution has inner Type I singularities at x = 0.218 

and x = 0.418 , and the eigenvalue A3 is "3 = 1.77 010 4 . For the solid 

solution in Fig. lla, the type I singularities are placed at x = 0.268 

and x = 0.368 , and the eigenvalue is increased, 
4 

A3 =2.87 0 10 • Fig. 

llb shows the resulting optimal solution with A3 = 5.511 010 4 • This solu-

tion has an inner 1ype II singularity, which is optimally placed at x = 

0.321 , and the optimal frequency w3 of the design is increased by 280% 

in comparison with the corresponding frequency of a uniform cantilever of 

the same volume, length and material. It should be noted that it is the 

deSign in Fig. llb which lies behind the result for a = 0 in Fig. 10, and 

that it may be compared to corresponding constrained optimal designs in 

Figs. 9a,b. 

Now, each Type I and Type II singularity introduces, respectively, 

one and two degrees of kinematic freedom to a geometrically unconstrained 

beam, and when optimizing with respect to the n'th natural frequency 

(n > 1) , it turns out [47] that the optimal design exactly possesses 

degrees of kinematic freedom to perform rigid body motions. Thus, all 

natural frequencies lower than the subject natural frequency of a 

geometrically unconstrained optimal design correspond to rigid body 

motions*) and attain zero value, cf. Fig. 10 (with a = 0) . 

W 
n 
n-l 

This clearly implies that a geometrically unconstrained solution to 

the problem of optimizing the n'th natural frequency wn (n > 1) is 

coincidently the solution to the problem of optimizing the difference 
between the two adjacent frequencies wn and 

Figs. 12a,b show optimal cantilevers for 

Wn _l . 

n=2 and n = 4 , respecti-

vely 0 Figs. 13a,b show optimal simply supported beams for n = 2 and n = 3 , 

respectively, and Figs. 14a,b illustrate free beams optimized for n = 3 

and n = 4 , respectively. (The first two natural frequencies of free beams 

correspond to rigid body motions, and are always zero). 

Note, in Fig. 9 above, the tendency of the lower vibration modes Yl 
and Y2 to become rigid body motions in the limiting case of zero 
constraint, and that these modes indicate the two degrees of kinematic 
freedom associated with an inner Type II singularity, namely jumps in 
both deflection and slope. 
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(a) (b) 

Fig. 12. 

la) Ib) 

Fig. 13. 

(a) 
Ib) 

Fig. 14. 

The study in Ref. [47] reveals the notable feature that two Type I 

singularities may coalesce, thereby forming one Type II singularity. Fig. 

11 provides an illustration of such coalescence at an inner point. Note 

also that the inner beam separation formed at the resulting Type II 

singularity of the optimal n = 3 cantilever in Fig. llb in fact divides 

this beam into a scaled optimal cantilever corresponding to n = 1 , see 

Fig. 7b, and a scaled optimal free beam corresponding to n = 3 , as shown 

in Fig. 14a. The coalescence may also take place at a beam end point; for 

example, the Type II singularity of the simply supported, optimal n = 2 

beam in Fig. 13a results from an original inner Type I singularity 

coalescing with an a priori singularity of Type I at the beam end. 

The formation of Type II singularities is found to contribute 

considerably to large subject eigenvalues, and singularities of this type 
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consequently play a predominant role in geometrically unconstrained optimal 

designs. Thus, no more than one inner Type I singularity is found in any 

of the designs [47]. 

In fact when optimizing beams of a given type of end conditions, it 

is only necessary to apply the numerical solution procedure for values of 

n up to a particular value, N, where the first Type II singularity 

occurs in the corresponding optimal design. As discussed and outlined in 

[47], the inner Type II singularities open up the possibility of determin

ing the optimal designs associated with higher values of n simply by 

assembling optimal beam elements obtained numerically for small values of 

n • In fact, in Ref. [47], a so-called "Method of scaled beam elements" is 

developed by means of which optimal designs subject to any higher value of 

n are determined for beams with any combination of clamped, simply suppor

ted, and free end conditions. 

SECTION 5 

OPTIMAL DESIGN OF VISCOELASTIC STRUCTURES 

UNDER FORCED STEADY STATE VIBRATION 

5.1 INTRODUCTION 

This section concerns non-selfadjoint problems of optimal design. We 

consider viscoelastic, one-dimensional structures, such as rods, bars and 

beams, that are subjected to forced, steady state vibration by excitation 

by given, harmonically varying, external loads. The structural vibrations 

may be axial, torsional or transverse vibrations, and the external excita

tion frequency is assumed to be smaller than the fundamental natural 

frequency for the particular type of vibration. It is our objective to 

derive a general set of governing equations for the optimal structural 

design that is associated with minimum dynamic response for given volume, 

length and boundary conditions, and given viscoelastic material of the 

structure. 
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The structural material is assumed to follow the well-known three-

parameter constitutive law for viscoelasticity, and the concept of complex 

stiffness modulus is adopted for simplifying the analysis. Hence, complex 

variables are used throughout, but the correspondence principle can be 

employed. 

The contents of this section is based on the paper [89] by 

Lekszycki and the author. Optimal design of purely eZastie structures under 

forced steady state vibration due to harmonically varying external loading 

has earlier been considered by Mr6z [90], Icerman [91] and Johnson et aZ. 
[92] . 

5.2 VIBRATION OF ONE-DIMENSIONAL VISCOELASTIC STRUCTURES UNDER HARMONIC 

EXTERNAL EXCITATION 

We consider a straight, one-dimensional structure, such as a rod, bar or 

beam, which is made of a solid, viscoelastic material with the three-

parameter constitutive relationship 

(5.1) 

between uniaxial normal (or shear) stresses, strains, and -rates. The con-

stitutive parameters Pl ' qo and are assumed to be given for the 

particular type of deformation in question. 

A coordinate axis x is embedded in the structure, which has given 

length ~ and variable cross-sections with common directions y and z 

for principal axes of inertia. The real function a(x) is assumed to 

characterize the structural design. The structure is subjected to forced, 

steady state harmonic vibration, such as axial, torsional or transverse 

vibration with a mode U(x, t) under given external loading P(x, t) . In 

order to simplify the analysis and computation, the mode and the loading 

will be taken to be complex functions of the real independent variables x 

and (time) t, i.e., they will be considered in the form 

U (x , t) 

P(x, t) 

u(x)e iwt 

( ) iwt 
P x e 

[ () . ()] iwt u l x + lU2 x e 

[ () . ()] iwt Pl x + lP2 x e 

(5.2) 

(5.3) 
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where i denotes the imaginary unit. The relevant uniaxial strain and 

stress components will then have the form 

€: (x, y , z , t) €:* (x , y , z)eiwt 

cr (x , y , z , t) * iwt cr (x, y , z)e , 

(5.4) 

where €:* and cr* = cr* + icr* 
1 2 

are time-independent, complex 

strains and stresses, respectively. 

Substituting Eqs. (5.4) into Eq. (5.1), we obtain the following 

simple and convenient time-independent stress-strain relationship 

cr*(x , y , z) k (w) €:* (x , y , z) , (5.5) 

where the real and imaginary parts of the complex stiffness modulus 

k(w) (5.6) 

are given by the frequency w of the loading and the material parameters 

Pl ' qo and ql ' as follows, 

w(ql -qOP1) 

2 2 
1 +w Pl 

(5.7) 

Due to the simple form of the stress-strain relationship (5.5), the 

equations governing the motion of our one-dimensional viscoelastic 

structure can now be written in precisely the same form as in a purely 

elastic case, provided that the structural stiffness, loading and deflec

tion, and the coefficients of relevant spatial and temporal differential 

operators, are conceived to be complex. Hence, let the equation of motion 

have the form 

M(a)U(x, t) P(x, t) o < x < ~ , 0 < t < T (5.8) 

with boundary conditions 

A(a)U(x,t) Q(x, t) x o , x ~ , 0 < t < T (5.9) 
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and initial conditions 

T(a)U(x,O) rex) o < x < JI, , t o (5.10) 

Here, Q (x , t) on the right-hand side of Eq. (5.9) is assumed to have the 

h . f ( ) iwt h (). 1 armon~c orm q x e , were q x ~s comp ex. 

Now, for the case of steady state harmonic vibration under considera

tion, we may eliminate time-dependence by substituting Eq. (5.2) for U, 

Eq. (5.3) for P , and the similar equation for Q, into Eqs. (5.8)

(5.10). Hence, we obtain the purely spatial state equation 

L (a) u (x) p(x) o < x < JI, (5.11) 

and boundary conditions 

B(a)u(x) q(x) x o , x JI, , (5.12) 

to govern our analysis problem. In Eqs. (5.11) and (5.12), L(a) and B(a) 

denote linear, homogeneous, complex, differential operators. In the 

following, the operator L(a) will be considered in the form 

m [ ( ) () ] (v) 
L(a)u(x) = v~O gv k(w) , a, x u v (x) 

which covers a number of practical applications. In (5.13), 

dVf/dxV , and the order of the differential operator L is 

operator B(a) in (5.12) is assumed to have the form 

2m • The 

5.3 TWO OBJECTIVE FUNCTIONALS FOR MINIMIZATION OF DYNAMIC STRUCTURAL 

RESPONSE 

(5.13) 

(5.14) 

An objective functional II' which is of relevance for the types of 

optimization problems under consideration, is defined as follows by Mr6z 

[93] 
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r LUI 
0 if I u I < u 

0 

Il Cl (u)dx Cl (u) (5.15 ) 
0 _ u )n if lui > u 

0 0 

Here, n is a positive real exponent and Uo is a real, positive constant 

are assumed to be given. Furthermore, or function of x • Both n and u 
o 

(5.16 ) 

Since lu(x) I represents the maximum value of the total deflection 

of any point x, 0 ~ x ~ 1 , the functional I can be interpreted as a 

global measure of the difference between the actual deflection amplitudes 

and a given comparison amplitude u 
o 

An alternative functional I2 to be considered, represents a measure 

of the work done by the external forces: Although the loading p (x , t) and 

deflection U(x, t) are dealt with in the general form (5.3) and (5.2), 

that is 

p (x , t) 

U (x , t) 

( ) iwt 
P x e 

u(x)e iwt 

(Pl (x) coswt - P2 (x) Sinwt) 

(5.3a) 

( u l (x) coswt - u2 (x) sinwt) 

+ i( ul (x) sinwt + u2 (x) coswt) , (5.2a) 

we may assume that an actual loading p* (x , t) only varies with cosine in 

time such that P2(x) = 0 and 

p* (x , t) = Pl (x) coswt , (5.17) 

whereby the associated deflection U* (x , t) becomes 

U* (x , t) u l (x) coswt - u 2 (x) sinwt . (5.18) 
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The work done by the external forces during a cycle T = 2u/w is then 

J: J: U* (x, t)P* (x , t)dxdy = .; J: Pl (x)ul (x)dx , (5.19) 

which provides a basis for selecting functional 12 as 

(5.20) 

5.4 DERIVATION OF A GENERAL SET OF GOVERNING EQUATIONS FOR OPTIMAL DESIGN 

We now consider a quite general formulation [89] for optimal design of our 

viscoelastic structure under given, harmonically varying external loading. 

Using the real function u(x) as the design variable, it is our objective 

to minimize the real part of the functional 

I = JRo C (u , u , x) dx 
o 

(5.21) 

(viz. 11 or 12 of the preceeding subsection) subject to the differen

tial constraint of Eq. (5.11) and the integral constraint of given total 

structural volume 

V ('f(U,X)dX. 
o 

(5.22) 

We assume that a geometrical minimum constraint value umin is specified 

for the design variable a(x) , such that we must everywhere have a{x) > 

a. , which may be expressed as 
m~n 

a(x) - amin 

by means of the real slack variable as(x) 

2 
a (x) 

s 
(5.23) 

To derive the governing equations for the optimization problem stated 

above, we adjoin conditions (5.22), (5.23) and (5.11) to the functional 

(5.21) by means of Lagrangian multipliers ~, n(x) and A(X) = Al (x) + 

iA2 {X) , respectively, where A(X) is the so-called adjoint variable, and 

obtain 
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1* Ji C (a , u , x) dx + \l(f f (a , x) dx - v) 
o 0 (5.24) 

2 + {rl a - a . - a } + {)., , Lu - p} . , m~n s 

Here, the scalar product*) {f, g} of the functions f and g, which are 

generally complex and which belong to the L2 space, is defined as 

{f(x) ,g(x)} r f(x) g(x)dx . 
o 

(5.25) 

Now, the stationarity condition for the real part of the augmented 

functional 1* defined in Eq. (5.24) can be written 

Re(01*) = Re(O).,1*+O 1*+0 1*+0 1*+0 1*+0 1*) = 0 , 
u a \l n as 

(5.26) 

which expresses the variation of 1* due to variations of the complex 

variables and u, and of the real variables a , \l , n and 

respectively. These variables may be considered to be mutually independent, 

and varying them independently, the stationarity requirement (5.26) then 

leads to the state equation for the actual structure, the state equation 

for the adjoint structure, the optimality condition, and some additional 

conditions. These equations will be derived in some detail in the follow

ing. 

The following properties of the scalar product are frequently used in 
the sequel, 

{f(x) , g(x)} {g(x) , f(x)} , 

{af(x) +bh(x) , g(x)} a{f (x) , g (x) } + b{h (x) , g (x) } 

where a and b are complex constants, and 

{f (x) , g (x) } ({Re (f(x)) , Re (g(x))} + {1m(f(x)) , 1m(g(X))}) 

+ i({Re(f(X)) , 1m(g(x))}-{1m(f(x)) ,Re(g(X))}) 

(5.25a) 

(5.25b) 

(5.25c) 
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5.4.1 State equation for the actual structure. Firstly, let us consider 

variation of the complex adjoint variable ).(x) • with 15).1* = {c)., Lu-p}, 

we obtain by means of (5.25c) the stationarity condition 

{Re (15),) , Re (Lu - p)} + {1m (15).) , 1m (Lu - p) } 0, (5.27) 

which, for arbitrary variation 15).1 and 15).2' gives 

Re(Lu-p) o (5.28a) 

Im(Lu - p) o • (5.28b) 

In complex form, these equations can simply be written as 

Lu - P o , (5.28) 

which is the state equation for the aatual struature. It has been assumed 

here that the complex deflection function (state variable) u(x) satisfies 

appropriate boundary conditions. 

5.4.2 State equation for the adjoint structure. We now take the variation 

of Re(I*) with respect to variation of the complex variable u(x) • As a 

first step, we obtain 

15 1* 
u 

{). , Lcu} + fo!/' ac 
au cudx (5.29 ) 

but in order to express our final. result in a convenient form, let us 

define the adjoint operator La corresponding to the operator L by the 

equation 

{A , Lcu} (5.30 ) 

With the form of L given by Eq. (5.13) and the deflection (5.25) of the 

scalar product, the left-hand side of (5.30) can, after integration by 

parts, be written as 
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{A , Lou} 

+ (5.31) 

+ vIl :I:{(-1)2V-j-1 0U(j) [9V(k , a, X)X(Vl](V-j-l)}!: ' 

where the symbol zl; identifies the difference z(£) - z(O) of an argu

ment z. Appropriate boundary conditions for A(X) are obtained from 

conditions of vanishing Dirichlet boundary terms in (5.31) at x = 0 and 

x = £ . Satisfaction of these conditions implies that the adjoint 

differential operator La defined in (5.30) can be identified as 

by means of (5.25). NOw, rewriting Eq. (5.29) in the form 

o 1* 
u 

a (ae) {L A , ou} + { au ' ou} 

and making use of (5.25c) and the well known rule 

aF 
~= 

aRe (F) . arm (F) 
a + 1 a<" 
Sl "1 

. aRe (F) 
- 1 al; 

2 

(5.32) 

(5.33) 

for partial differentiation of a complex function 

complex argument 1;, the stationarity condition 

F with respect to a 

Re(o 1*) = 0 becomes 
u 

(5.34) 

( a ae) a ( ae) = {Re L A+ aul ,Re(ou)} + {Im(L A) +Re aU
2 

,Im(ou)} = 0 

Since oUl and QU2 are arbitrary, Eq. (5.34) is equivalent to the two 

equations 

( a ae) Re L A + aUl = 0 (5.35a) 

a ( ae) Im(L A) + Re aU
2 

o (5.35b) 
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which in complex form may be written as 

(5.35) 

i.e., the state equation for the adjoint structure. Here, complex A(X) 

can be interpreted as the state variable (deflection function) of the 

adjoint structure. As was mentioned earlier, A(X) must satisfy appropria

te boundary conditions that make the boundary terms vanish in Eq. (5.31). 

It is worth noting that when the coefficients g\l (k , a , x) , 

\I~O, ••• ,m , which define the L-operator via Eq. (5.13), are independent 

or depend linearly on the complex stiffness modulus k, see Eqs. (5.5)

(5.7), then the adjoint operator La given by Eq. (5.32) reduces to 

(5.36 ) 

This implies that the adjoint structure has precisely the same design as 

the actual structure. Moreover, it consists of a material which is also the 

same, except for that its viscous coefficients Pl and ql are negative, 

cf. Eqs. (5.36), (5.13), (5.7) and (5.1). Thus, the material of the adjoint 

structure has negative damping, but is otherwise the same as that of the 

actual structure. It follows from (5.35) that the loading on the adjoint 

structure depends on the specific cost function c and is generally 

different from the loading on the actual structure. 
In cases where the optimization is based on the functional with 

the associated cost function C ~ Cl defined by Eq. (5.15), the loading 

on the adjoint structure aCl/dUl and dCl /du2 to be used in Eq. (5.35), 

are easily found to be given by 

0 if lui < u 
0 

j 1,2 
u, (5.37) 

n-l _J if lui - u ) > u 
0 lui - 0 

by means of Eqs. (5.15) and (5.16). 

If the actual loading is taken in the form of (5.17), i.e. with 

P2(x) ~ 0 , and the optimization is based on the functional 12 and 

specific cost function C ~ C2 defined by Eq. (5.20), then the loading 

to be used in Eq. (5.35) for the adjoint structure is simply given via 
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(5.38) 

This implies that the analysis problems for the actual and the adjoint 

structure become identical except for the difference between the Land 

the La operator discussed above. 

Let us note that in the special case of a purely elastic structure 

we have L = La (selfadjointness of the L operator). 

5.4.3 Optimality condition. The variation of r* in Eq. (5.24) with 

respect to variation of the real design variable a(x) is given by 

* ft de ft df d or = -oadx + \.I -oadx + {n, oa} + {A, !:u oa } 
a 0 da 0 da a~ 

(5.39) 

With differential operator L of the form given by Eq. (5.13), the last 

term in Eq. (5.39) can be written as 

{A , dd~u oa} fot - m [dgv(k, a, x) (V)](V) 
A L da oau dx 

v=O 

r I 
o v=o 

( -1) v, (v) 3gv (k , a , x) (v) 
1\ 3a u oadx (5.40 ) 

m v-l 

+ L L 
v=l j=O 

._(.)[3g () ](V-j-l)!t 
(-1))1.) ~ u v oa 

3a 0 

after integration by parts. Assuming vanishing of the boundary terms, 

m v-l ._(.)[3g (k,a,x) () ](V-j-l)!t L L (-1) ) A) v 3 u v oa = 0 
v=l j=O a 0 

(5.41) 

due to the boundary conditions, and using the definition (5.25) for scalar 

products, we can write Eq. (5.39) in the form 

de df {a;-, oa} + {\.I da ,oa} + {n , oa} + {S (u , A) ,oa} , 

where S (u , A) identifies 

S (u , A) I (-1) vA (v) 3gv (k ,:aa , x) u (v) 

v=o 

(5.42) 

(5.43) 
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The requirement of stationarity of 

trary variation ea then yields 

Re(e 1*) 
a 

with respect to arbi-

(5.44) 

which constitutes the optimality condition of our problem. 

Since the specific cost functions Cl and C2 in Eqs. (5.15) and 

(5.20) are independent of design a , the optimality condition (5.44) 

reduces when the functionals or are applied. 

5.4.4 Additional conditions. The stationarity conditions Re(e 1*) = 0 , 
II 

Re(e 1*) = 0 and Re(ea 1*) = 0 , respectively, are easily seen to re-
n s 

establish the constraint equations (5.22) and (5.23), i.e. 

v f: f(a ,x)dx 

2 
a - a. - a 

m1.n s 

and to produce the switching condition 

n a s 
o . 

o 

(5.45) 

(5.46) 

(5.47) 

It follows from Eqs. (5.46) and (5.47) that we have n = 0 in sub-

intervals of inactive minimum constraint. Consequently, the optimality 

condition (5.44) reduces in such sub-intervals. 

5.4.5 The complete set of governing equations for the general optimization 

problem consists of Eqs. (5.28), (5.35), (5.44)-(5.47), in addition to 

given boundary conditions for u(x) and boundary conditions for A(X) 

The latter conditions are deduced from the requirement of vanishing bounda

ry terms in Eq. (5.31). 

5.5 EXAMPLE: OPTIMIZATION OF SOLID, COMPOSITE, VISCOELASTIC BEAMS SUBJECT

ED TO FORCED, TRANSVERSE VIBRATION 

To exemplify the general theory for optimization of one-dimensional 

structures outlined in the preceeding sections, we now consider optimal 

design of a composite, viscoelastic beam that performs transverse vibra-
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hv 

Fig. 15. 

tions under a given external, harmonically varying, transverse load dis-

tribution P (x , t) of the form (5.3). 

The composite beam, an element of which is shown in Fig. 15, has 

given length t and width b • The beam consists of a solid, viscoelastic 

(or purely elastic) core of given variable thickness he (x) , which is 

covered by two identical, solid layers of another viscoelastic material. 

Each of these layers have non-uniform thickness hv(x) , which is taken as 

the design variable in our problem, and the total material volume 

v = 2b Jt h (x)dx 
o v 

(5.48) 

of the cover layers is prescribed. The cover thickness hv may nowhere be 

less than a prescribed minimum thickness h . ml.n 

o 

Eqs. (5.48) and (5.49) clearly correspond to Eqs. (5.22) and (5.23), 

respectively. 

(5.49) 

In fact, we may conceive the core of the beam as an originally in

dependent (viscoelastic or elastic) structure, and the problem may inter

preted as one of "optimal remodeling" [49]: namely to determine the optimal 

distribution of the viscoelastic material (damper material), such that the 

vibrational response of the remodeled, composite structure is minimized 

for a given amount of cover material. It is well known that viscoelastic 
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materials with high dissipation of energy are often successfully used in 

practise for the purpose of damping vibration and noise. 

In order to specialize the general, governing equations of Section 

5.4 to our particular problem, we note that the second area moment of 

inertia for the cross-section of the core J is J = b h 3/12 , and the 
e e e 

complex bending stiffness JeKe of the core is then given by 

(5.50) 

Similarly, the complex bending stiffness JvKv of the two cover layers is 

J K 
v v 

(5.51) 

where the second area moment of inertia J is J b h 3/6 + 

b h (h + h ) 2/2 • Note that h 
v e v v 

v v v 
is not assumed to be small in comparison 

with h 
e 

The complex state equation for the actual beam than has the form 

[ ] " 2 (J K + J K ) u" (x) - w (p A + P A ) u (x) = p (x) , 
ee vv ee vv 

(5.52) 

where Ae = b he (x) and Av = 2b hv (x) are the cross-sectional areas of 

the core and of the two cover layers, respectively, and where and 

are the mass densities of their materials. Eq. (5.52) corresponds to Eq. 

(5.28), and is equivalent to the two equations 

[ ] " 2 
(J k l+J k l)ul"- (J k 2+J k 2)u2" - w (p A +p A )ul ee vv ee vv ee vv (5.52a) 

(5.52b) 

By means of Eqs. (5.52) and (5.28), we are now able to identify the 

coefficients g",,, = 0, ••• ,m , m = 2 , of the complex differential operator 

L defined in Eq. (5.13). We find 
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o (5.53) 

With the form (5.36) of the adjoint operator La, Eqs. (5.53) give 

the following versions of the two state equations (5.35a-b) for the adjoint 

beam in our problem, 

(5.54a) 

2 ( ac) - III (p A + P A ) A = - Re --
e e v v 1 aUl 

(5.54b) 

=-Re(~) aU2 

On the basis of Eqs. (5.52a-b) and (5.54a-b), we may define real and 

imaginary parts of complex bending moments and shear forces in the actual 

and in the adjoint beam. Assuming that classical, homogeneous boundary 

conditions are specified for the actual beam, it is easily shown by means 

of Eqs. (5.31) that the adjoint beam will have the same boundary conditions 

as the actual beam [89]. 

According to Eqs. (5.43) and (5.54), the optimality condition (5.44) 

takes the following form for our example problem, 

dJv fA" (k u" - k u") + A"·(k u" + k U")] 
dh L 1 vl 1 v2 2 2 v2 1 vl 2 

v 
(5.55) 

o . 

Moreover, it is easily verified that Eq. (5.41) is satisfied, if classical 

boundary conditions are specified for the beam. 

Finally, condition (5.47) translates into the following condition in 

the present case, 

11 h (x) 
s 

o • (5.56) 
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We have now established the complete set of governing equations for 

our particular optimization problem. A numerical procedure based on 

successive iterations is developed in Ref. [89] for the solution of this 

complicated, strongly coupled and non-linear set of equations. Some 

numerical results from [89] will now be presented. 

In the following examples, the given frequency w of the loading is 

smaller than the fundamental transverse vibration frequency of the beam. 

The external, transverse load acting on the beams is chosen as p cos wt , 

where p is a uniformly distributed or concentrated, force. The beam 

deflections u (x , t) are then given by u (x , t) = u l (x) cos wt - u 2 (x) sin wt , 

cf. Rqs. (5.17) and (5.18). The load is easily identified in the following 

figures, and the spatial deflection components u l (x) and u 2 (x) are 

shown. Hatched areas in the figures indicate viscoelastic material. Zero 

thickness is allowed for the viscoelastic layers, for which Voight's 

material model, with Pl = 0 in Eq. (5.1), is used. Note that the latter 

PC05wt 

x=o x=1 

Fig. 16. 

does not imply loss of generality, because both kl and k2 given by Eqs. 

(5.7) will be different from zero in general. 

Fig. 16 shows (hatched) the optimal distribution of viscoelastic 

cover material on a uniform, doubly clamped, elastic beam. The design is 

obtained on the basis of functional 12 ' Eq. (5.20), i.e. the minimum 

dynamic compliance criterion is used. The angular frequency of the loading 

is w = 100 l/sec , and the material volume of the cover layers is taken to 

be one-third of the total beam volume. The material data chosen for the 
12 2 

cover layers are kvl = 0.206 • 10 N/m , kv/kvl = 0.5 (high dissipation 

of energy), and for the elastic core, kel = kvl and ke2« kel • The 

materials have equal mass densities. 
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The maximum value of the total deflection amplitude for the optimal 

beam in Fig. 16 is found to be 64% of the maximum total deflection 

amplitude for a corresponding, uniform beam (indicated by dashed lines in 

the figure), where the same amount of cover material is uniformly distri

buted over the core. 

The cantilever beam in Fig. 17 is subjected to a concentrated, 

harmonically varying force acting at its free end, and the design is 

obtained on the basis of the functional 11 defined by Eq. (5.15) with 

n = 4 . The same materials as in Fig. 16 are used, but the volume of layer 

material is one-quarter of the total beam volume, and the angular frequen

cy of the loading is taken to be w = 50 l/sek. In this case, the maximum 

deflection is found to be 63% of the maximum deflection of the correspond

ing, uniform cantilever. 

F=====,Jl p cos wt 

x=o x:l 

~-=:::::====-=::-::::-:=--==-=--- - - - =. - - = - - = - -

Fig. 17. 
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SECTION 6 

OPTIMAL DESIGN OF SOLID, ELASTIC, AXISYMMETRIC PLATES 

6.1 INTRODUCTION 

This section gives an account of a new, regularized mathematical formula

tion of optimal design problems for solid, elastic, axisymmetric plates of 

prescribed material volume, plate domain and boundary conditions. As a 

typical design objective, we consider minimization of the compliance 

(maximization of the stiffness) for given static loading on the plate. 

This type of problem is, to some extent, less complicated than designing 

with respect to other objectives (e.g. maximum vibration frequency or 

buckling load), but it contains all the significant features that are 

inherent in optimal design of solid, elastic plates. 

The new, regularized formulation, which alleviates some anomalies 

and difficulties encountered earlier in plate optimization problems, is 

based on a new compound plate model with two simultaneous design variables, 

namely, variable thickness of a solid part of the plate and variable con

centration of a dense system of thin, integral stiffeners attached to the 

solid plate part. Necessary conditions of optimality are derived and 

numerical solutions are presented. The results are compared with results 

obtained from optimal design formulations applied heretofore, and substan

tiate the superiority of the new, regularized formulation. 

The discussion in the following has implications for a number of 

similar two-dimensional optimization problems. It is based on the paper 

[94] by Cheng and the author. 

6.2 THE PROBLEM 

We consider the problem of finding the theoretically best plate model and 

mathematical formulation for optimal design of axisymmetric, thin, elastic, 

solid plates, whose thickness h is variable and identifies the distance 

between the upper and lower plate surface, which are assumed to be disposed 

symmetrically with respect to the plate mid-plane. The total plate volume 

is assumed to be specified, and in addition, maximum and minimum constraint 

values h max and hmin for the plate thickness function, pertinent 
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material properties, the inner and outer radii of the plate (which may be 

annular), and the boundary conditions, are assumed to be given. 

For exemplification we consider minimum compliance, i.e. maximum 

integral stiffness, as the design objective. We adopt a polar coordinate 

system with origo in the plate centre, and assume for the minimum 

compliance problem that the distribution of static load p (r , e) is of 

the special type 

p (r , e) f(r)cosne , (6.1) 

where f is a given, e - independent function, and n a given integer. Eq. 

(6.1) thus models a rotationally symmetric load distribution for n = 0 

and for n * 0 , it models a load p(r, e) that has the trace f(r) for 

e = 0 and varies harmonically with e in the circumferential direction. 

Assuming the boundary conditions to be homogeneous, the plate deflection 

W (r , e) then attains the simple form 

W(r , e) w(r)cosnt , (6.2) 

where w is independent of e • 

The assumptions introduced here offer the mathematical simplification 

that the a priori partiaZ differential equations for our problem reduce to 

ordinary differential equations after a separation of variables, which 

implies that less computer space and -time are required for the numerical 

solution procedure. Note, however, that these mathematical simplifications 

do not impede a study of possible formation of integral plate stiffeners; 

although the plate is rotationally symmetric, it possesses the possibility 

of increasing its stiffness against circumferential varying loads by form

ing concentric, circumferential stiffeners that may effectively counteract 

the circumferential curvatures of the deflection function. 

6.3 TRADITIONAL FORMULATION 

In the traditional formulation for optimal design, the plate thickness 

h (r) is used as the design variable, and the optimal solution is assumed 

to be a solid plate. In dimensionless form, where the inner and outer radii 

for an annular plate are R. and 1 , respectively, and we have R. = 0 
~ ~ 

for a full plate, the problem is posed as follows 
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With her) as the design variable, minimize 

n = f f(r)w(r)rdr 
Q 

subject to the constraints 

where 

f h(r)rdr = 1 , 
Q 

h. < h (r) < h 
m~n - max 

(6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 

Within this formulation, the optimal thickness distribution her) is 

sought in the class of continuous functions or piecewise continuous func

tions with a finite number of discontinuities, and the plate bending rigi

dity D is assumed to be isotropic, i.e. independent of orientation, and 

given by 

D 
Eh 3 (r) 

2 ' 
12 (1 - \i ) 

(6.4) 

where E is Young's modulus and \i is Poisson's ratio of the plate 

material. The optimization problem has been considered in this form in 

several papers, see e.g. Refs. [95-100]. However, as has recently been shown 

by Cheng and the author [101], the optimal thickness distribution will 

generally not belong to the aforementioned class of functions. As a matter 

of fact, if the given constraint values h and h . 
max m~n 

differ suffici-

ently from each other, the optimal thickness function will exhibit an 

infinite number of discontinuities (formation of infinitely thin 

stiffeners) in certain sub-regions of the plate domain Q. Optimal 

thickness functions of this type can obviously not be determined on the 

basis of the traditional formulation, and it is therefore necessary to re

formulate the optimization problem. 
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6.4 NEW, REGULARIZED FORMULATION WITH TWO SIMULTANEOUS DESIGN VARIABLES 

In order to be able to determine a possible global optimal design subject 

to any given set of values of hmax and hmin for an axisymmetric plate, 

we follow [94] and expand our design space by constructing a new, generali

zed plate model. This model covers an axisymmetric, integrally stiffened 

plate consisting of a solid part of variable thickness h (r) , 0 < h. < 
s m~n 

h < h 
s - max 

that is equipped with a system of infinitely thin integral 

stiffeners of variable concentration ].dr) Fig. 18 shows a radial section 

through a small ring element of the plate. The element has the radial 

extent ~r and is equipped with a finite number of stiffeners. Each 

stiffener is circumferential, has rectangular cross-section of height 

hmax - hs ' and is placed symmetrically with respect to the plate mid

plane. The aonaentpation ~(r) (or density) of the integral stiffeners 

is defined by 

lim 
~r -+0 

L ~c. . ~ 
~ 

~r 
o < ~ (r) < 1 (6.5) 

where D.c. 
~ 

is the width of the i'th stiffener of the element. 

Note that this plate model, for 

the solid plate of variable thickness 

~(r) = 0 and hs = h , reduces to 

h(r) used in the traditional formu-

lation for optimal design. On the other hand, for ~(r) * 0 and hs _ 

hmin ' the model comprises another special case, namely the integrally 

stiffened plate model with ~(r) as the only design variable, which has 

very recently been used in Refs. [102,103] for determining a number of 

numerical results that are superior to results obtained by means of the 

I 
t -------- ----------r-

hmin 
·-Ir---·--·--ils '-'T' hmax 

~, ~--- I 

Fig. 18. 

traditional formulation. 

While integrally 

stiffened plate regions are 

excluded by the former 

special case plate model 

(~ = 0 , hs = h) , and solid 

regions of intermediate 

thickness are excluded by 

the latter (~* 0 , hs = 
hmin ) , it will be shown in 

the following that the new 



www.manaraa.com

151 

generalized plate model is superior to those applied previously. In fact, 

it turns out that the optimal plate will, in general, be a compound plate 

that contains both sub-regions with integral stiffeners and sub-regions 

that are purely solid and of intermediate thickness. 

By means of the new plate model with its two design variables ~(r) 

and hs(r) , we now reformulate the plate optimization problem as follows, 

With hs(r) and ~(r) as design variables, minimize 

n = J f(r)w(r)rdr 
n 

subject to the constraints 

J [h (r) + ~ (r) (h - h (r» ]rdr n s max s 

h. < h (r) < h 
m~n - s - max 

o 2. ~ (r) < 1 , 

where 

1 , 

(6.6a) 

(6.6b) 

(6.6c) 

(6.6d) 

(6.6e) 

Now, since the optimal plate is geometrically anisotropic 

(cylindrically orthotropic) in possible sub-regions with 0 < ~(r) < 1 , 

it is necessary to consider the plate bending rigidity as a tensor (i.e. 

to depend on orientation) in the moment~curvature relationships (Hooke's 

law) for such sub-regions of the plate. In Refs. [102,103] the components 

of the bending rigidity tensor are determined via two different paths, and 

we therefore just cite the results in what follows. 

On the basis of Kirchhoff plate theory and with deflections in the 

form of Eq. (6.2), the e-independent factorials Krr , Kee and Kre of 

the radial, circumferential and twisting curvatures are given by 

K 
rr 

WOO w' 
r 

2 
nw 
-2 
r 

Kre = - ( nrw) , , (6.7) 

respectively, where primes denote differentiation with respect to r. The 

moment-curvature relations read [102] 
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or in inverse form, 

K 
rr 
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(6.8a) 

(6.8b) 

where mrr , mee and mre are the e - independent factorials of the radial 

and circumferential bending moments and the twisting moment, respectively. 

In Eqs. (6.8a-b), V is Poisson's ratio of the isotropic, linearly elastic 

plate material, and the components D 
r 

and of the plate bending 

rigidity tensor, together with the symbol V , are given by [102,103] 
r 

D D 
max s 

D 
r IlD + (1 - Il) Dmax s 

2 
De (l-V)Dre 

respectively, where Dmax and 

bending rigidities defined by 

D 
s 

D 
max 

Dre IlDmax + (l-Il)Ds 

D 
(6.9) 

2 r 
+ V D V v-

r r De 

are suitably non-dimensionalized scalar 

D 
s 

(6.10) 

Eqs. (6.8a-b) express by means of Eqs. (6.9) and (6.10) the moment

curvature relationships in possible cylindrically orthotropic sub-regions 

of the plate where 0 < Il(r) < 1 and hs < hmax • However, the above 

equations reduce precisely to the corresponding well-known relationships 

for isotropic plates in those sub-regions in which the plate is purely 

solid, that is, where Il = 0 (purely solid sub-region with plate thickness 

hs ' hmin ~ hs ~ hmax ) , or where Il = 1 (purely solid sub-region with 

plate thickness hmax ) Consequently, we can apply Eqs. (6.8) - (6.10) 

throughout the plate in the following. 
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6.5 DERIVATION OF NECESSARY CONDITIONS FOR OPTIMALITY 

The governing optimality equations for the regularized minimum compliance 

design problem (6.6a-e) can be derived by variational analysis. The 

compliance n in (6.6a) can alternatively be written as [102] 

(6.11) 

and we may use this expression in constructing an augmented functional n* 
defined by 

- A{J r h + j.l (h - h ) Jrdr - l} - J h[h - h + o2Jrdr nL s max s n s max 
(6.12) 

where the constraints (6.6b-d) are adjoined to the functional n of Eq. 

(6.11) by means of the Lagrangian multipliers A, her) , S(r) , y(r) and 

a(r) , and where the real slack-variables oCr) , ,(r) , ~(r) and nCr) 

are introduced for converting the inequality constraints on 

j.l(r) to equality constraints. 

h (r) 
s 

and 

The necessary condition for stationarity of n* with respect to the 

design variable j.l(r) is now found to be 

2( 1 1) 2 + D - - -- (K + VK ) 
r D D rr ee 

s max 

and the stationarity condition with respect to the design variable 

becomes 

A(l-j.l) + her) - S(r) 

(6.13) 

h (r) 
s 

(6.14) 



www.manaraa.com

154 

Conditions of stationarity of n* with respect to the Lagrangian 

multipliers A, A , S , y and a reestablish the plate volume constraint 

(6.6b) and the maximum and minimum constraints on hs(r) and ~(r) in 

(6.6c-d), and stationarity with respect to the slack variables 0, L , s 
and n leads to switching conditions which, when combined with the con

straints on hs and ~ , may be expressed together with appropriate Kuhn

Tecker conditions as follows, 

y(r) 0 a(r) > 0 if ~(r) = 0 

y(r) 0 a (r) 0 if 0 < ~(r) < 1 (6.15) 

y(r) > 0 a(r) 0 if ~(r) = 0 

and 

A(r) 0 S(r) > 0 if h = h 
min s 

A (r) 0 S(r) 0 if h 
min 

< h (r) < h (6.16) 
s max 

A(r) > 0 S(r) 0 if h h 
s max 

Eqs. (6.13) and (6.14) above constitute the two optimality conditions 

that are associated with the regularized formulation of the problem. The 

left-hand sides of these equations identify the gradients of the specific 

strain energy with respect to ~(r) and hs(r) , respectively, and taking 

Eqs. (6.15) and (6.16) into account, Eqs. (6.13) and (6.14) show that in 

sub-regions where one of the design variables ~(r) and hs(r) is uncon

strained, the gradient of the specific strain energy with respect to the 

particular design variable, should be constant. 

By means of Eqs. (6.13)-(6.16), we are now able to derive specific 

conditions for the occurrence of sub-regions with integral stiffeners and 

of purely solid sub-regions of intermediate thickness in the optimal 

design. 

6.5.1 Condition for sub-regions with integral stiffeners. An integrally 

stiffened sub-region is characterized by 

o < ~ (r) < 1 h. < h (r) < h 
m~n - s max 

(6.17) 
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In view of Ineqs. (6.17) and the second of Eqs. (6.15), Eq. (6.13) reduces 

to 

o - 0 [ ] max s 22 2 
h - h (l - v ) Kee + 2 (1 - v) Kre 

max s 

2 

+ Or (..l... __ l_\(K +"K )2 - A . 
h - h 0 0 ) rr v ee -

max s s max 

(6.18) 

Taking Ineqs. (6.17) and the first two of Eqs. (6.16) into account, we may 

express Eq. (6.14) as 

(6.19) 

Eliminating A between Eq. (6.18) and Ineq. (6.19) , and expressing 0 
r 

0 and 0 in terms of ]l , h and h by means of Eqs. (6.10) and 
s max s max 

the first Eqs. (6.9) , we after dividing through by h -h obtain the 
max s 

necessary condition 

h3 h 2 
max s (h2+2h h +3h 2 )(K +VK )2 

[h3+ (1- )h 3 ]2 s s max max rr ee 
]l s ]l max 

(6.20) 

for an integrally stiffened sub-region in the optimal design of a rotation

ally symmetric plate. 

6.5.2 Condition for purely solid SUb-regions of intermediate thickness. 

A purely solid sub-region of intermediate thickness is associated with 

o h. < h (r) < h 
mln s max 

By Eqs. (6.21) and the first of Eqs. (6.15), and noting that 

]l = 0 , the optimality condition (6.13) may thus be written as 

o 
r 

o 
s 

(6.21) 

for 

(6.22) 



www.manaraa.com

156 

while the optimality condition (6.14) reduces to 

since h 
s 

3h2[(1 2) 2 2(1 ) 2] 3h2 (K +VK )2 s - v Kee + - v Kre + s rr ee 

is unconstrained and ]J '" 0 . 

A (6.23) 

Combining Eqs. (6.22) and (6.23), using Eqs. (6.10), and dividing 

through by hmax - hs ' we obtain the inequality 

2 
(6.24) 

hs (2 2 ) 2 + -3- h + 2h h + 3h (K + VKse) , 
h s s max max rr 

max 

which constitutes a necessapy condition fop a pupely solid sub-pegion of 

intermediate thickness in the optimal design of a potationally symmetPic 
plate. 

Unfortunately, it does not seem possible to derive specific condi-

tions for purely solid sub-regions of minimum thickness 

thickness h max on the present basis. 

h. or maximum 
m~n 

6.5.3 Behaviour of the optimal design in the vicinity of plate edges. At a 

simply supported or free plate edge, we have 

to Krr + VKee = 0 

that h (> h . ) 
s - m~n 

since singular behaviour 

> 0 . With 

mrr = 0 , which is equivalent 

is excluded via the condition 
2 2 2 

and (l-v )K Se +2(1-v)Kre > 

o in general for a simply supported or free edge, and 2h + h > 0 , 
s max 

it is readily seen that the condition (6.24) is not satisfied. 

Hence, a pupely solid sub-pegion of intermediate thickness will 

nevep appeap at a simply suppopted or free edge of an optimally designed 
rotationally symmetPic plate. The optimal plate will either be integrally 

stiffened (note that condition (6.20) is satisfied) or solid with minimum 

or maximum thickness in the vicinity of a simply supported or free edge. 

At a clamped edge r = r* of an axisymmetric plate, we have 

w(r*) = w' (r*) = 0 , and hence Kee(r*) = Kre(r*) = 0 . In view of the 

latter conditions, the fact that h 2 + 2h h + 3h2 > 0 and that 
* *2 s smax max 

(Krr (r ) + VKee (r )) > 0 in general for a clamped edge, we see that condi-

tion (6.20) fails to be satisfied. 

Thus, a sub-region with integral stiffeners will not be found at a 

clamped edge of an optimally designed rotationally symmetric plate. In the 
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vicinity of such an edge, the plate will be purely solid, and its edge 

thickness will belong to the interval h. < h < h ml.n s - max 
The above results constitute a generalization of results obtained in 

[103] for a slightly different problem by means of the Kelley condition 

from optimal control theory. 

It is shown in Ref. [94] that all the results and conclusions of 

Sections 6.5.1, 6.5.2 and 6.5.3 also hold good for the problem of maximiz

ing a transverse vibration frequency for an axisymmetric, solid, elastic 

plate of given volume. 

6.6 NUMERICAL RESULTS AND DISCUSSION 

This section presents some numerical solutions obtained in Ref. [94] to the 

regularized formulation for minimization of plate compliance. The numerical 

procedure is outlined in [94]. The solutions are obtained by sub-dividing 

the plate into 100 ring-elements. In the following the compliance n of 

each optimal plate will be stated in proportion to the corresponding 

compliance nu of a purely solid, uniform reference plate of thickness 

h 
u 

that has the same total volume, plate radii and boundary conditions, 

and is made of the same material as the optimized plate. Poisson's ratio of 

(al 

(b) 

(el 

I 

t-----~--
I 
I 
I 
I 

f-----

I 
I 

I 

\--mE~--t .......................................... .. 
I 
I 

I 
I 
t. 

.. r 

Fig. 19. 

the plate material is taken to 

be v = 0.25 • The uniform 

reference plate is, of course, 

subjected to the same static 

loading as the optimal plate. 

Although we are able to cope 

with arbitrary static loading 

in the form of Eq. (6.1), we 

take f(r) = const. in the 

examples. 

Fig. 19 shows radial 

sections through minimum com

pliance designs ofaxisymme

tric, annular plates with 

clamped inner and outer edges. 

In each design, the unhatched 

area indicates the solid part 

of the plate, whose thickness 
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is hs(r) , and hatched areas indicate that integral stiffeners of total 

height (hmax - h s ) are placed symmetrically with respect to the plate mid

plane. The sum of the extents of the upper and lower hatched areas in the 

normal direction at a specific value of the radial coordinate r, 

represents ).I (r) • (hmax - hs (r) ) of the design. This function is plotted 

to the same scale as hs(r) in the figures, and illustrates the material 

consumption of the integral stiffeners by an equivalent thickness of purely 

solid material. The solid curve shown above each plate is the 8 - independ

ent factorial w(r) of the deflection function. 

The designs all have hu/hmin = 1.6579 hmax/hmin = 5 and Ri = 
0.2 , and they serve to illustrate the influence on the optimal design of 

the circumferential wave number n of the external loading, Eq. (6.1). 

The optimal design in Fig. 19a corresponds to n = 0 , i.e. axisymmetric 

load, and the designs in Fig. 19b and 19c correspond to n = 2 and n = 4 , 

respectively, Le. loads of the form p (r , 8) = const • cos28 and p (r , 8) = 

const • cos48 The compliances of the optimal designs are found to be 

n/n = 0.463 , 0.491 and 0.357 , for n = 0 , 2 and 4 , respectively. 
u 

The results in Fig. 19 clearly show that the significance of integral, 

circumferential stiffeners increases with increasing n. In the case of 

axisymmetric load, the optimal design, Fig. 19a, is almost entirely a 

purely solid plate, and only an examination of the numerical data reveals 

that a small sub-region with very low stiffener concentration is present. 

However, for n = 4 (Fig. 19c), most of the material volume, which is 

available for design in view of the minimum thickness constraint, is used 

for formation of stiffeners, and only small, solid sub-regions of inter

mediate thickness are found near the clamped edges of the plate. 

n/nu 

Boundary conditions Traditional Formulation New, regularized 

at inner and outer formulation with h =h 
min 

, formulation, s 
plate edge ().I = 0) , from [101] from [102] Ref. [94] 

clamped-clamped 0.536 0.415 0.357 

simple supp.-clamped 0.564 0.407 0.351 

free-clamped 0.617 0.404 0.349 

Table 2 • Comparison of minimum compliances n for axisymmetric annular 
plates determined via three different formulations for optimal design. The 
results correspond to n = 4 , R. = 0.2 , h /h. = 1.6579 , h /h. = 5 

~ u m~n max m~n 
and \I = 0.25 • 
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The regularized formulation of a general plate optimization problem 

is quite complex and involves four functions as simultaneous design varia

bles: the thickness of the solid part of the plate, the concentrations of 

two mutually orthogonal fields of integral stiffeners, and the orientation 

of the stiffeners. Results for this type of problem have only been obtained 

recently, see, e.g., Bends¢e [104,105] and Kohn and Vogelius [106], for 

elastic plates and Rozvany et al. [107-109] for plastic plates. 

101 

Ibl f-----

lei t - - - - - "---., __ 

Idl f-----

• r 

Fig. 20. 

The designs obtained in 

[941 (some of which are pre

sented here) are no doubt 

global optimal designs within 

the type of plate topology 

considered. However, these 

designs are obtained as solu

tions to a somewhat idealized 

mathematical formulation, and 

it is obvious that they must 

be regarded as limiting 

designs from the point of 

view of practical applica

tion. 

In practice it is 

necessary to modify the 

design, which implies a less 

optimal value of the p~rform-

ance index. Let us therefore 

end this section with an 

assessment of the sensitivity 

of the current type of 

optimal designs with respect 

to their most necessary type 

of modification, namely 

lumping the system of in

finitely many, infinitely 

thin integral stiffeners into a finite number of stiffeners of finite width 

(to meet non-buckling requirements, e.g.). As an example, consider the 
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optimal design of Fig. 19c; sub-divide it into 3, 4, 5 and 6 sections, 

respectively; lump the infinitely thin stiffeners appropriately (which can 

be done in different ways), and obtain the series of modified designs shown 

in Figs. 20a-d. The compliances of these modified designs are given in 

Table 3 from [94] together with minimum compliance values determined via 

the two earlier and the new formulation for optimal design. We see that 

even the design with only three lumped stiffeners has a lower compliance 

than the minimum value determined via the traditional formulation for 

in/nu 

Traditional formulation (\1 ;: 0) 0.536 from [101] 

Formulation with h ;: h 
min 

0.415 from [102 ] s 
Regularized formulation, optimal design 0.357 Fig. 19c 

Modified opt. design, 3 lumped stiffeners 0.444 Fig. 20a 

Modified opt. design, 4 lumped stiffeners 0.438 Fig. 20b 

Modified opt. design, 5 lumped stiffeners 0.413 Fig. 20c 

Modified opt. design, 6 lumped stiffeners 0.401 Fig. 20d 

Table 3. Compliances n of optimized and modified designs of 
a clamped-clamped annular plate with n = 4 , Ri = 0.2 , 
h /h. = 1.6579 , h /h. = 5 and v = 0.25 • 

u mln max mln 

optimal design. For the modified design with six lumped stiffeners, the 

compliance is already comparatively close to the compliance of the true 

optimal design. These results indicate clearly that optimal designs 

determined by means of the new, regularized formulation are rather insensi

tive with respect to reasonable modification of the type considered. 
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During the last decade of his immensely creative life, Professor William 

Prager's research was directed at two central objectives, the derivation 

of a comprehensive set of static-kinematic optimality criteria and the 

development of an optimal layout theory. As the late Professor Prager's 

closest former associate, the first author will review briefly these 

fields in the first part of this memorial lecture. 

Prager's intellectual heritage has found a number of useful applications 

since his tragic death in 1980; the most recent of these, a new approach 

to minimum-weight plate design, will be discussed in the second part of 

the lecture. 

Static-Kinematic Optimality Criteria 

This powerful approach to structural optimization was' introduced by 

Prager and Shield [1] and extended considerably by the first author's 

research group (e.g. [2-4]). In formulating a distributed parameter 

problem, the Lagrangian function associated with the equilibrium condi

tion can be regarded as a fictitious ("Pragerian" or adjoint) deflection 

field and then the Euler-Lagrange equations are interpreted as genera

lised strain-stress relationships. The latter, together with static and 

kinematic admissibility, constitute a necessary and sufficient condition 

of optimality (subject to existence) for convex problems and a necessary 

one for non-convex problems. Static-kinematic optimality criteria con

vert, in effect, a problem of structural optimization into a problem of 

(non-linear) structural analysis. While this analogy does not change the 

problem from a mathematical point of view, it provides a very useful 

insight into the nature of optimal solutions since for engineers it is 

easier to visualize (and anticipate) deflection or strain fields than 

abstract mathematical entities. Moreover, the above analogy enables us 
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to employ in optimization existing numerical and analytical techniques 

for structural analysis, e.g. energy methods and finite element pack

ages. 

In applying the above approach to the optimal plastic design of struc

tures with continuously varying cross sections [1,2], for example, we 

must find a statically admissible generalised stress field and a kinema

tically admissible generalised strain field such that the generalised 

strain components are given by the "G-gradients" [2,3,12] of the speci

fic cost function with respect to the generalised stress components. The 

specific cost function is the relationship between the "cost" per unit 

length, area or volume and the generalised stresses (or stiffnesses) and 

its integral over the structural domain is the "total cost" which is to 

be minimised subject to design constraints. The G-gradients are simply 

partial first derivatives for differentiable functions and subgradients 

(having non-unique values given by a convex combination of the limiting 

gradients at discontinuities of the derivatives) for piece-wise differ

entiable functions. For discontinuous cost functions, the G- gradients 

contain generalised functions (e. g. Dirac distributions or impulses), 

see [3]. 

In the seventies, the Prager-Shield condition [1] for optimal plastic 

design was extended to discontinuous cost functions, multiple load 

conditions, allowance for the cost of reactions or unspecified forces 

(of non-zero cost) and connections (joints), prescribed cost distribu

tion (segmentation), optimization of location of supports and segment 

boundaries and allowance for body forces (selfweight) [2,3,19]. Follow

ing a suggestion by Niordson, more recent optimality criteria [5] can 

handle limits on the spatial gradient of the cross-section distribution 

(="taper"). 

In extending static-kinematic optimality criteria to optimal elastic 

design [3], deflection, stress, buckling and natural frequency con

straints [6], with additional optimization of support conditions or seg

mentation [7] and "Niordson- constraints" [8] have been considered. In 

optimal elastic design, two kinematically admissible deflection fields 

must be considered simultaneously: the elastic deflections caused by the 

external loads and the "Pragerian" (adjoint) displacement field which is 
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the Lagrangian for the equilibrium condition. For prescribed deflection 

constraints, the latter becomes the elastic deflection field caused by 

"unit dummy loads" at the prescribed displacements. 

An Illustrative Example: Optimal Plastic Design of a Beam with One 

Movable Support 

Considering a beam (Fig. la) having a rectangular cross-section of given 

constant depth d, a variable width b and a yield stress s , the plastic 
y 

moment capacity becomes M = s bd2/4 and the cross-sectional area l/J = 
p Y 

bd. Since in plastic design the yield condition IMsl s M must be ful
p 

filled where MS denotes statically admissible bending moments, we obtain 

the specific cost function l/J = klMsl with k = 4/s d if we assume that 
y 

all cross-sections are at yield in the optimal design (IMsl = M). In 
p 

this problem the generalised strain corresponding to the bending moment 

M is the beam curvature K, = -du2/dx2 where u is "Pragerian" (adj oint) 

beam deflection and x is the distance along the beam axis. The optimal 

kinematic admissible curvatures K,k are given by the first derivatives of 

h 'f' f' k G(,I,) d"'/dMs . h h t e speCl lC cost unctlon, K, = 'I' = 'I' Wlt respect to t e 

statically admissible moments. As the specific cost function l/J is 

non-differentiable at MS = 0, the G- gradient becomes the subgradient, 

having a non-unique value of -k s K, = G(l/J) s k. The above specific cost 

function and the corresponding optimal curvature value are given in 

Fig.lg. 

In addition to the cross-sections, the location of support B (Fig. la) 

is to be optimized. For the optimal location of a support of zero cost 

we have the optimality condition (e.g. [2], p.129), uB - uB - 0 where ui 

du/dxI B· 

A class of statically admissible moment fields MS is shown in Fig. lb 

and the corresponding "Pragerian" deflection field a in Fig. lc. Kinema-

C 
tic admissibility of the latter (i.e. uE = 0) implies uE=o= I K,(xE-x)dx 

B 

= -kd(3L+a-d/2)+k(3L+a-d)2/2 - 0 or d = (3L+a)(1-1/J1). Similarly, uA- 0 
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furnishes b - (3L-a)(1-1/Ji) implying bId (3L-a)/(3L+a). Moreover. 

- + statical considerations furnish b = MB/VB • d - MB/VB where the shear 

forces to the left and right of the support B are VB - (MB+PL)/(3L-a). 

VB+ - (MB+3PL)/(3L+a). Combining the kinematic and static requirements. 

we have b = MB(3L-a)/(MB+pL) = MB(3L-a)/(MB+3pL) which is clearly in

feasible. This means that the above class of solutions is non-optimal. 

Assuming now that the cross-sectional area and moments between points D 

and E are zero (Fig. Id and le). the Pragerian deflection field is shown 

in Fig. If. Static and kinematic consideration furnish again c = Pa/VB 

- (3L-a)a/(L+a). c - (3L-a)(1-1/Ji) yielding a = L(Ji-l). It is still 

necessary to show that the above solution admits uE = O. Since for M = 0 

the curvature value is non-unique (Fig. 19) it is easy to show that all 

uE-values between kL2(2Ji-6) and kL2(3+2Ji) are admissible (the 

non-unique Pragerian deflection field is represented by the shaded area 

in Fig. If). This confirms the optimality of the above solution (Figs. 

Id and le). 

Optimal Layout Theory 

This theory [4. 9 -14] is based on two underlying concepts. the above 

mentioned static-kinematic optimality criteria and the structural uni

verse. The latter consist of all potential (or "feasible" or 

"candidate") members (centroidal axes or middle surfaces). Since a 

static-kinematic optimality condition gives a (usually non-unique) 

strain requirement also for vanishing members. its fulfilment for the 

entire structural universe constitutes a necessary and sufficient condi

tion of optimality for convex specific cost functions (with linear 

subsidiary conditions). Other formulations of the same problem involving 

unknown geometrical parameters usually result in non-convexity 

(non-uniqueness). 

The original (now termed classical) layout theory [2. 9-13]. a general

isation of Michell's pioneering effort at the turn of the century [15]. 

was used for low-density. grid-like structures in which at a given point 
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members may run in any number of directions (Fig. 2a) but the effect of 

member intersections on both cost and strength (or stiffness) is neg

lected. Consequently the specific cost ~ is a sum of functions each of 

which depends only on the strength (e.g. moment capacity) or stiffness 

of an individual member: ~ - ~l(sl) + ... + ~n(sn)' 

DO 
DO 

(b) 

Fig. 2. Classical and advanced layout theory. 

The development of advanced layout theory was prompted by the dis

coveries that optimized continua develop an infinite number of internal 

bounderies [16] and that least-weight plates contain a dense system of 

ribs [17]. Considering an elastic (or plastic) continuum, the micro

structure is first optimized locally by minimizing the material volume ~ 

per unit area (or volume) for given stiffness (or strength) parameters 

sl' s2 (and possibly s3) in the principal directions (Fig. 2b). It 

follows that the specific cost function ~(sl' s2) is a non-separable 

function of both (or all three) stiffnesses (or strength parameters). 

Advanced layout theory results in substantial extra savings if a high 

proportion of the feasible space is occupied by structural material but 

the optimal solution given by this theory tends to that of the 

"classical" layout theory if the material volume/feasible volume ratio 

tends to zero. 

Classical layout theory has been applied to least-weight trusses or 

Michell frames (e.g. [9]) but it has been particularly successful in 

optimizing least-weight grillages (beam systems). This development was 

regarded as particularly important by Prager for the following reasons 

[10] : 
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(a) Grillages constitute the first class or truly two-dimensional 

optimization problems for which closed form analytical solutions are 

available for almost all possible boundary and loading conditions. 

(b) Optimal grillages are more practical than Michell structures [15] 

because the latter are subject to instability which is ignored in their 

formulation. 

(c) The optimal rib layout of least-weight plates has been found 

similar to that of minimum weight grillages. 

(d) A computer algorithm (22,23) is available for generating analyt

ically and plotting optimal beam layouts for a wide range boundary 

conditions. 

Extensive reviews of the grillage theory [2, 9-14] show that analytical 

solutions are now available for any combination of simply supported and 

clamped boundaries, free edges and beam supported edges. Additional 

refinements include non-uniform depth, allowance for cost of supports, 

bending and shear dependent cost, upper constraint on beam density [18], 

partial discretization and allowance for se1fweight (also for moment and 

shear dependent cost) [19,20]. Although it was shown earlier that plas

tically designed least-weight solutions are also valid for elastic 

grillages with prescribed stress, compliance or natural frequency [2,6], 

optimal grillage layouts for a prescribed elastic deflection were 

derived more recently [21]. 

Another application of the classical layout theory concerns archgrids 

(now termed "Prager structures") (24-27). A Prager structure can be 

defined as a surface structure consisting of intersecting arches or 

cables for which both the middle surface and member layout are opti

mized. Alternatively, a Prager-structure can be regarded as a special 

class of Michell space-frames for which (a) either the compressive or 

the tensile permissible stress tends to zero and (b) the vertical 

position of loads is unspecified and is to be optimized. This special 

class of Michell frames always reduces to a surface structure in 3D 

space (or a line structure in a plane). Closed form analytical solutions 

are now available for any axisymmetric load in space and for any 

parallel load system in a plane and also for additional se1fweight. An 
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interesting feature of Prager structures is the fact that the total 

structural weight is always proportional to the sum of the products of 

the loads and their elevations. 

Optimal Plastic Design of Solid Plates 

It was known already in the sixties that the weight minimization of 

solid plates without an upper constraint on the thickness is not a wel1-

posed problem because the weight can be reduced to an arbitrarily small 

value by using a system of sufficiently high ribs [30,28]. More 

recently, 01hoff and Cheng [17] showed numerically that even with an 

upper constraint stiffener-like formations appear in the solution and 

their number increases with the number of finite elements used. Prager 

pointed out shortly before his death that the layout of such stiffeners 

is similar to that of least-weight grillages for the same boundary and 

loading conditions, obtained about a decade earlier by the first author 

and later confirmed by Prager (e.g. [19]). Subsequently the first 

author, 01hoff, Cheng, Taylor and Wang [28,29] obtained exact analytical 

minimum-weight solutions for plastically designed solid plates with a 

constraint on the maximum thickness. It was first established that con

sidering given principal moments for a minimum weight solution ribs 

always run in the principal directions. Studying then the local optimi

zation of solid Tresca-p1ates of variable thickness with ribs of varia

ble depth and density in the principal directions, it was found that 

within a maximum thickness constraint and depending on the given values 

of the principal moments the solution may only consist of the following 

two types of regions [28]: 

(a) a dense system of ribs in two principal directions with a plate of 

zero thickness in between the ribs; or 

(b) ribs in one principal direction only and a solid plate whose moment 

capacity equals the smaller principal moment (M2). 

The above formulation has taken the weight saving at rib intersections 

into consideration when both principal moments have the same sign. For 

principal moments of differing signs, however, the Tresca condition 

requires a local widening of the ribs adjacent to rib intersections. It 
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was shown that the weight of this extra widening approximately offsets 

the weight saving at the rib intersections. It was therefore assumed 

that in the latter (less frequent) case the effect of rib intersections 

on the structural weight can be ignored. 

On the basis of the above optimal regions, a specific cost function 

~(Ml' M2) was established [28) and optimal solutions were obtained using 

the Prager-Shield condition [1) and optimal layout theory [4, 9-14). 

It was shown subsequently by the first author, Wang and Olhoff [29) that 

the above optimal regions can be restricted further if, in addition to 

optimality criteria, static-kinematic admissibility is also taken into 

consideration. The latter investigation has established that in optimal 

region (a) above ribs can only run in one direction (with zero principal 

moment in the second direction, M2- 0) and in region (b) with non

maximum thickness the two principal moments must be equal (Ml - M2) 

giving a plate without ribs. However, in minimum-weight solutions plates 

of maximum thickness may also occur with M1 - MO' M2 - MO or M1- M2 = MO 

(sgn M1 ~ sgn M2) where MO is the maximum uniaxial moment capacity of a 

plate. 

Optimal Elastic Design of Perforated and Composite Plates 

A "perforated" plate may only have two thicknesses: a prescribed maximum 

thickness or zero thickness. The latter occurs over "perforations". 

Several mathematical studies (e.g. [31, 32) came to the conclusion that 

elastic least-weight solutions for perforated disks and plates of given 

compliance consist of regions with two sets of intersecting ribs in the 

principal directions: one such set has a first order infinitesimal 

spacing and the other one a second order infinitesimal spacing. 

A more recent investigation by the authors, Olhoff"Bendsoe, Szeto and 

Sandler [33) pointed out that on the basis of Saint Venant's principle 

the first/second order microstructure can only be optimal at lower rib 

densities. The above argument was followed up by detailed finite 

element/finite difference investigations by the first authors' research 

associates (Ong and Szeto at Monash University as well as Menkenhagen 

and Booz at Essen University) which exhibited a complete agreement of 



www.manaraa.com

0.7 

0.6 

0.5 

0.4 

174 

Reciprocal Compliance 
llC 

I 
I 

first/second order microstructure / 
first / first order microstructure I 

fJ 

0.3 i: 
0.2 

0.1 

Ol~----~--~~--~~--~--~~ o 
Fig. 3. Specific cost of various microstructures for perforated disks 

and plates 

0,5 

0,4 

0,3 

0,2 

0,1 

Reciprocal Compliance 

llC 

Specific Cost 

0,9 

Average Stiffness/Area 

0,555 

0,550 

0,545 

'" 0,540 
0,0 """"'--'----'---'----'----'--------I~ b 

0,0 0,2 0,4 0,6 0,8 1,0 
0,535 +---'---'---'---'--......... --Area 

0,18 0,19 0,20 0,21 0,22 0,23 

Figs. 4 and 5. Improvements on the prismatic first/first order micro
structure. 



www.manaraa.com

175 

various numerical solutions and with an analytical solution for first/ 

second order microstructures. These investigations show (Fig. 3) that at 

higher rib densities a first/first order prismatic microstructure is 

more economical than a first second order one and hence the latter can 

not be optimal. Further preliminary finite element analyses by Booz and 

Menkenhagen have indicated that the prismatic first/first order micro

structure can be improved further by using either corner fillets or 

circular holes (Figs. 4 and 5). Nevertheless a number of complete ana

lytical solutions for axisymmetric plates have been determined [33] 

within the constraint that the microstructure is of first/second order 

(as suggested in [31, 32]). The specific cost function for this micro

structure [33] is ~(sl,s2) = (sl- s l s 2+s 2)/(1-sls 2) with sl = d1 , s2 = 

d2/(1+d1d2-d1 ) where d1 and d2 are the first and second order rib densi

ties, sl and s2 are the specific stiffnesses for v = 0 where v is 

Poisson's ratio (see Fig. 6a). For v ~ 0 the parameters sl and s2 do not 

denote stiffnesses but for both cases the specific compliance is c = 

M1 2/s1 + M22/s2 - 2vM1M2 . For composite plates (in which the perfora

tions are filled with a material of lower stiffness and cost, the 

respective rations for the two materials being a ~ 1 and !3 ~ 1) the 

stiffnesses become sl = d1+(1-d1)/[d2-(1-d2)/a], s2 [d2+a(1-d2)]/[l-d1 
+d1d2+ad1 (1-d2)] and the specific cost W = d1+!3(1-d1 )+d2(1-d1 )(1-!3), see 

Fig. 6b for !3 - 0.2. 

Using optimal layout theory for axisymmetric perforated plates, it was 

established that the optimum solution consists of (a) unperforated 

regions and (b) regions consisting of radial ribs only. On the basis of 

the above findings, analytical optimal solutions were obtained for 

simply supported and clamped circular plates with uniformly distributed 

full and partial loading as well as a central point load. The last case 

is particularly interesting because for a single point load the compli

ance constraint also implies a prescribed deflection constraint. 

The (nondimensiona1) total weight ~ of various intuitive designs, for a 

circular perforated plate with v = 0 optimized within an assumed topo

graphy, is compared in Fig. 7 in which C is the total (nondimensiona1) 

compliance. It can be seen that, as predicted by the optimal layout 

theory, design D is optimal for all C values. 
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The optimal solution for clamped circular perforated plates may consist 

of either one or two unperforated regions and a region with radial ribs. 

The range of validity of these solutions for various v-values is shown 

in Fig. 8. 

It has also been found that for axisymmetric composite plates the solu

tion may consist of (a) regions consisting entirely of the stiffer 

material (cross-hatched in Fig. 9); (b) regions consisting entirely of 

less stiff material (hatched in Fig. 9); and (c) regions with radial 

ribs made out of the stiffer material and the gaps filled with the less 

stiff material (unhatched in Fig. 9 which gives optimal region bound-

aries for a f3 0.2). Using again static/kinematic optimality 

criteria, optimal solutions for simply supported circular composite 

plates were determined by a semi- analytical method. 
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Optimal Plastic Design of Perforated Plates 

Extending the study of plastic solid plates [28, 29] to perforated 

plates, it has been found for plastic perforated axisymmetric plates the 

least-weight solution may only consist of two types of regions: (a) 

unperforated regions; and (b) ribs in the radial direction. On the above 

basis, the second author has obtained complete solutions for several 

loadingfboundary conditions [14]. The above conclusions are being 

extended to non-axisY11lI1letric plates. It is expected that the optimal 

solution for the latter consists of unperforated regions governed geo

metrically by the yield-line theory for the Tresca yield condition and 

regions with ribs in one direction only, governed by the optimal grill

age theory (requiring a constant curvature in the rib direction). A 

combination of these two, now classical theories will furnish complete 

optimal solutions for plastic perforated plates. 
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ABSTRACT. In this paper we consider the simultaneous optimal design of 

controls and structure for an active control of a flexible structure. Pro

blem formulations related to mission control and to control of structural 

properties are identified and illustrated on a simple model problem, 

and the relationship to eigenfrequency optimization is discussed. We also 

discuss relevant design objectives for modal control of distributed struc

tures or large scale structures and examples of optimal beam designs are 

presented. 

1. INTRODUCTION. 

In active control of flexible structures optimal control techniques are 

quite commonly employed, so that the best control strategy, in some sense, 

is obtained on a rational basis ([1]). Such techniques are usually used 

under the assumption of a, a priori, fixed design of the structure as 

well as given actuator and sensor positions for the active control system. 

However, considerable improvement in the performance of the system can be 

obtained by a simultaneous design of the structure, the control system and 

the control strategy. Optimal positioning of actuators and sensors has gained 

a lot of attention in the literature (see ego [2] and references therein). 

Recently, the design of the structure has been included in studies of opti

mal control of a flexible structure ([3],[4],[5]) , and in this paper we 

will address the problem formulation and structural implications of a com

bined optimal design of structure, control strategy and control system. 

In order to illustrate the basic properties of this type of problem we treat 

a simple mass-spring system where spring-stiffness, damping and controls 

are used to optimize certain energy criteria. We only employ certain func

tionals that allow the optimal control strategy to be easily identified 

so that implications for structural design can be emphasized, and from this 

example one can see the relation of this type of problem with the well-known 

eigenfrequency optimization problems. 
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Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 



www.manaraa.com

182 

For distributed parameter structures or large scale structures control is 

often implemented via a reduced order model and the second part of the 

paper discusses optimal design of structure and controls for such systems. 

A commonly used reduced order model employs modal data for the structure 

and from this controls are designed in order to e.g. damp the vibrations 

of a few important modes ([6]). For such a modal control, optimal design 

can improve the performance of the controlled system and can also be used 

the reduce the undesirable effects of the use of a reduced order model. As 

an example we consider the so-called control spillover. This arises due to 

the local influence of actuators and results in a spillover of control 

energy into uncontrolled or unmodelled modes, and even though the system 

may remain stable the spillover degrades the system performance. However, 

via optimal design methods this spillover can be reduced considerably. 

We will in this paper emphasize the structural design problems related to 

active control of structures and only very simple control techniques will 

be treated. For further information on the control aspects we refer to 

Ref. [7] and the list of references of that paper. 

2. EXEMPLIFICATION. 

One can illustrate the main features of problems of optimal design of 

structure and controls by considering the simple 2-degree of freedom system 

in Fig. 1. 

2 

u(c) ~1 

Fia. 1. 
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The system consists of one mass and two springs, with spring stiffnesses 

k. , i -1,2 and damping coefficients ~., i "1,2 The motion of the struc-
~ ]. 

ture is controlled via the control force u which is designed in order to 

increase damping of the vibrations of spring no. 1 (mode 1). However, the 

control force also has a component that influences spring no. 2 (mode 2). 

If we use a simple velocity feedback for the control u so that u is 

proportional to the velocity vl of mode 1 

u(t) .. - a vl (t) a> 0 , (1) 

we can choose k., ~. , i .. 1,2 and a so that the energy in the system is 
]. ]. 

minimized, for any initial impulse in spring no. 1. The stateequations 

written using the statevector X" (xl ,vl ,x2,v2) are 

r 0 1 

d! 

l-~1 
-acosa-~ -- Ax A .. 

dt .. - .. 
0 

-asin9 

A measure of the effeciency of the damping is 

where 

Q .. 

o 
1 

D 

o 

o 
o 
k2 
o 

0 

1 
0 

0 

-k2 

0 

0 

1 

-~2 

and where !(t) is the solution to (2) , with initial conditions 

xeD) .. x ; E is thus the sum of the potential and kinetic energy in the 
- -0 

(2) 

(3) 

(4) 

system. A combined optimal design of structure and controller with respect 

to a minimization of E could thus take the form 
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~(t) ,. e 
At ,. 

x 
-0 

o < k . $ k. $ k < '" mln 1 max 

o < ~min $ ~ i $ ~max < '" 

O<a. $a $a <'" mln max 

(5) 

i .. 1,2 

i • 1,2 

where V and D are resource constraints on stiffness and damping. respec

tively. The solution of (5) will depend on the choice of initial condition. 

but the problem can be given a suitable reformulation that removes this 

explicit dependence. To this end, we rewrite E as follows: let ~ be a 

solution of the equation 

(6) 

then ~ is symmetric and positive definite (cf. [8]). and 

(7) 

so that 

If'''T l[ T ]"' .. '!'xTpx 
E - 2' ~ ~ ! d t - 2' - ~ ~! 0 2 -0 .. -0 

o 
(8) 

(The system is stable. so !(t) ~Q for t ~'" ). 

The purpose of our optimal design is to minimize the total energy E for 

any impulse x with a given initial energy, and expression (8) allows 
-0 

us to write a functional that is independent of x : 
-0 

which can be written as 

xT p x 
-0 --0 

(9) 

max xT ug-l ~ I[-l)!o .. maximal eigenvalue of 1[-1 ~ 1[-1. (10) 
T -0 

x x -1 
-0 -0 
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Uith this functional and the constraints on design from (5) we minimize the 

maximum of E • for any impulse with a unit initial energy. In the problem 

at hand. the control force u was designed so as to help damp out vibrations 

in spring no. 1. and we should thus only be considering impulses x in 
-0 

spring no. 1. With this in mind we can formulate the optimal design problem 

as: 

minimize [maxi .. , eigenvalue of (11) 

with: O<k. Sk.sk <co 
m1n 1 max 

etc. 

where p .• are the corresponding elements of the matrix P of (7) • 
1] • 

The equation (6) can be solved analytically and then (11) can be solved 

using standard optimization algorithms. The results show that the spring for 

which the control is designed should be as stiff as possible and the coupling 

of the two modes caused by the feedback control makes it optimal to minimize 

the stiffness of the "uncontrolled" spriog. In cases where the main concern 

is the coupling introduced via the control, this "control-spillover" can be 

reduced by solving (11) with an energy measure that only measures the energy 

in the second mode; in this case the a should be minimal. 

Note that if the coupling of the two modes is not present (Le. e· 0) • 

problem (11) corresponds to finding the optimal damping for a simple one 

mass/one spring system, for which the stiffness again should be as large 

as possible and for which the optimal value of ;1+ a of (2) is 

1.572 .lkl (see Ref. [9] for details). 

The problem formulated above optimizes the structure and controls in order 

to improve the damping characteristics of the system, i.e. the desired 

dynamics of the system is that the motion of the structure is minimal. In 

cases where specific movements are desired, such as placement of antennas, 

slewing of satelites etc., the functional of problem (5) should be modified 

to take this into account. If the desired dynamics are given as !(t) • 

then a suitable functional is 

fCO(!(t)-Z(t»T g(!(t)-!(t»dt 
o 

(12) 
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so that error is minimized. However, if precise positioning is to be achieved 

one should include requirements of the desired states at certain times as a 

constraint in (5) and more complicated types of control laws should be 

allowed in order to make the problem well posed. This type of problem is 

treated in Refs. [3] , [5] and in the preceeding chapters by Khot and Haftka. 

3. ACTIVE CONTROL DAMPING OF A CANTILEVER. 

In the control of large scale structures and distributed structures, inte

resting design criteria arise due to the difficulties in implementing dis

tributed controls, and the commonly used technique of modal control gives 

rise to design problems that are very similar to the well-known problem of 

eigenfrequency optimization (cf. lectures by N. Olhoff). To illustrate this 

we consider an active control of a cantilevered beam by a finite number M 

of actuators, distributed along the lenlth of the beam. The motion of the 

beam is governed by the equation 

a2w(x t) aw(x t) a2 ( a2 ) ~ pa(x) , +t;pa(x) , + - Ea(x)2 --w(x,t) .. l. b.(x)f.(t) 
at2 at ax2 ax 2 i-l L L 

(13) 

Here p is the mass-density of the beam - material, t; is the damping 

coefficient, a(x) is the cross-sectional area of the geometrically similar 

cross-sections and E is Young's modulus for the beam-material. The actua

tor forces are fi(t) , with actuator influence functions bi(x) ; the in

fluence function can be modelled a o-functions. We will seek to design 

the beam so that an active damping of the beam is optimal in some sense, 

and we use the varying cross-sections a(x) of the beam as a distributed 

design variable. 

A common technique for the design of controls for a distributed problem 

like (13) is to introduce a reduced order model, i.e. a finite dimensional 

approximation of (13) , and then use this model for the control design. 

Such reduced order models are conveniently constructed by introducing modal 

coordinates, and the controls are then designed from a model that takes a 

number of important modes into consideration (Refs. [6] and [10]-[13]). 

If we introduce modal coordinates, we can write the solution w(x,t) of 

(13) as 
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00 

w(x, t) a L u. (t)\P. (x) 
ial 1. 1. 

where the orthonormal modeshapes \Pi are given by 

d 2 d 2 
- (E a(x) 2 - \p. (x» = A. p a(x)\p. (x) 
dx2 dx2 1. 1. 1. 

f L p a(x)\p. (x)\p. (x) dx .. c .. 
o 1. J l.J 

(14) 

(15) 

corresponding to the natural eigenfrequencies w ... ~, ordered according 
1. 1. 

to 0 < Al S ,1..2 S ••• The modal coordinates ui (t) then satisfy the infinite 

system of ordinary differential equations: 

M 
ii.(t)+;u.(t)+A.u.(t) .. L B .. f.(t) 

1. 1. 1. 1. j .. 1 l.J J 
(16) 

with B .. a fL\p.(X)b.(X)dX ; the equations are coupled due to the control 
l.J 0 1. J 

forces. If we choose to use the control forces to damp out the vibration 

of the N lower modes, using a velocity feedback, we can set 

f.(t) .. G •• U. 
J J 1. 1. 

(17) 

where G is a M x N gain matrix. In this situation the dynamics of the 
a 

lower modes will be governed by the equation (cf. Eq. (2»: 

dz .. ( .. ) ~ u l ' ... ,~ , u l ' ... ,~ , -a 
dt 

-diag(~l'.~." ) .BG] n .... 

(18) 

We have assumed that the velocities of the lower modes can be observed 

directly, and this assumption makes the dynamics of the lower modes inde

pendent of the uncontrolled (residual) modes. The local influence of the 

actuators will, in general, make B •. * 0 for almost all i and j , and 
l.J 

thus the feedback law (17) will excite the higher modes and a spill-over 

of control energy into the higher modes will occur. ~wdal control has the 

following properties 
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i) With internal damping as in (13). a modal velocity feedback control 

can be constructed so that the stability margin of the system (18) is 

improved as compared to the uncontrolled system and at the same time the 

stability margin of the uncontrolled modes is unchanged ([6].[11]). 

ii) With visco-elastic damping (i.e. damping proportional to stiffness), 

modal control can improve the stability margin of the full system (in this 

case the internal damping increases with modenumber) (cf. [13]). 

iii) The control spill-over will. for a fixed number of actuators. decrease 

when the size of the model (18) is increased. (Refs. [11].[13].[14]). 

For the sake of algebraic simplicity it is often convenient to consider 

cases where the number of actuators is chosen to be equal to the number of 

modes; then by choosing the feedback gain as 

-1 G • B diag(al •••• ,a) a _ n (19) 

the dynamics of the controlled modes decouple. and we have independent 

modal space control (cf. Ref. [12]): 

z •• (u •• Ii.) 
-1 1 1 

o 1 (20) 

Note that for independent modal space control. the conclusion iii) above 
cannot be inVOked. 

From the remarks above we see that there are basically two types of design 
problems one should consider: 

~. Design of structure and controllers with the purpose of optimizing 

the dynamics of the controlled modes. 

!. Design of structure and controllers with the purpose of minimizing 

control spillover. 

The system of section 2 can be considered as "the smallest large scale 

structure" and both design types described above were t:reatad in that sec

tion. In Figs. 2 to 5 below and in table 1 we give results for the optimal 

design of a cantilevered beam. using the criteria of section 2 for a model 

with 2 modes. The beam is controlled with one actuator and the force of 

this actuator is proportional to the velocity of the first mode. The redu

ced order model consists of the first two modes and the design variables 
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are the feedback gain, the position of the actuator and as a distributed 

design variable we use the cross-sectional area a(x) of the beam. The 

cases are: 

Case 1. Coupling is ignored and we optimize the damping effect on mode 1. 

This problem reduces to maximizing the smallest eigenvalue, A, of the 

beam (cf. Section 2). Fig. 2. See also chapters by N. Olhoff. 

Case 2. Coupling is taken into account and we optimize the damping of 

the two first modes, for impulses in the first mode (cf. problem (11». 

Fig. 3. 

Case 3. Coupling is taken into account and we minimize the energy in the 

s.econd mode, due to control damping of impulses in the first mode. Fig. 4. 

0.5 

O.O+-------------~ 

".5 

~ Case l. Maximization of first eigenvalue. 

0.5-

------'/ 
0.1+-------------_--+ 

A 

".5-
~ Case 2. Minimization of energy in modes 1 and 

2. One actuator. with optimal position A. 

1.5 

____ -..Jr-
0.1-t------------_---1 

A 

".5 
~ Case J: Minimization of energy in mode 2. 

Actuator 3t position A. 
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TABLE 1 
Uniform Cas. 4 

Constraints: Volume s 0.2 
Cas. 1 Case 2 Case 3 Case 5 

be8111 of 
0.113 S a(x) S 0.316 vo1U11111 0.2 Min en- Min en- Min M Min M 

Objective ergy in ergy in 1 mod. 3 modee 
Bea length L-l ; t-0.01 ; p-l value 11' Max ~1 mode 1+2 mode 2 1 actuato 3 actua-

u tors 

~ wI w 1.0 - 0.48 4.4'10 
-2 0.42 4) 0.43 4) 

1) 0.5 s .. S 2.0 u 

2) Actuator between Vol 0.2 0.2 0.2 0.2 0.146 0.20 
0.9 and 1.0. 

~1 2.47 7.50 4.61 2.46 1.27 2.83 
3) When actuator fre 

to move, it will 97.1 101.8 85.1 90.4 59.6 63.7 
b. at node for A2 
mode 2 and we 
have Cas. 1. ~3 762 723 574 513 476 428 

4) Lower bounds on ~4 2926 2666 2312 2091 1811 1773 
A. •• Actuator 
p~aition. fixed. .. 0.5 - 1.48 1) 0.5 1) 0.54 1) 0.50 1T 

5) 3 actuators at Actuator 0.95 - 0.9 2)3) 0.9 2) 5) 
0.95. 0.70. 0.45. position 0.95 

We note that the maximization of the damping results in an increase of the 

eigenfrequencies (Cases 1 and 2), while the minimization of spillover result 

in a decrease of the relevant eigenfrequencies. 

The minimization of spillover considered above is only concerned with coup

ling of the first and second mode, and the criteria of spillover is the 

total energy in the second mode, due to an initial excitation of the first 

mode. It is, however, possible to give an estimate of the energy in all the 

uncontrolled modes due to initial impulses in the controlled modes and 

estimates of the peak energy or of the total energy can be obtained. In 

both cases an important measure of the coupling between the controlled and 

the uncontrolled modes is the factor (see [9],[14]) 

M 00 L 2 
CP '" I I (I p a(x)b. (x)tp. (X)dX) 

i"'l j-N+l 0 1 J 
(21) 

which is the sum of the square of the norms of the projections of the force 

influence functions b.(x) on the uncontrolled modes; the orthonormality 
1 

of the modes makes it possible to compute this factor from modal data of 

the controlled modes only: 

M [IL N (IL 2 CP "'.I p a(x)bi (x)2dx -.I p a(x)b i (x)\p. (X)dX) ] 
1"'1 0 J-l 0 J 

(22) 
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The spillover is, however, not only dependent on the coupling coefficient 

CP above, but it also depends on the dynamics of the controlled system and 

the size of the control forces needed for the damping of the controlled 

modes. Taking this into account one can write (cf. Ref. [9]): 

for the energy 

V'l+~ 
M - ---. 2), -~ 1 

in the residual modes due to an excitation 

(23) 

(24) 

z 
-0 

in the controlled modes. Here 

(18), ~ is given as 

is the stability margin of the system 

(25) 

and p(.) denote the spectral radius of a matrix. Finally, the constant 

K is 

(26) 

where E is a matrix that transforms the coefficient matrix of (18) into 

Jordan normal form. The constant M in (23) depends only on the modal data 

of the controlled modes and a minimization of M will lead to a decrease 

in the eigenfrequencies of the controlled modes. Thus, in order not to 

degrade the performance of the active control damping, lower bounds on the 

eigenfrequencies should be imposed when spillover is minimized. Notice that 

M is a non-differentiable function of the eigenfrequences of the controlled 

modes, so that, in general, non-differentiable optimization techniques 

should be used. However, for independent modal space control, the controlled 

modes decouple and one can restate the problem (see [9]) as a differentiable 

problem by employing the technique of artificial bounds (cf. chapters by J.E. 

Taylor). Fig. 5 and 6 show optimal designs obtained for this special case. 

1.5 

1.1'1---------------f 

.... 5 

!ii:...2:. Cau 4: Minimizat ion of spi llover wi th 

one controlled mode. 
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1.0 INTRODUCTION 

Numerical optimization techniques provide a uniquely general and 
versatile tool for design automation. While these methods have been devel
oped, to a large degree, by the operations research community, research in 
their application to engineering problems has been extensive as well. The 
first formal statement of nonlinear programming (numerical optimization) 
applied to structural design was offered by Schmit in 1960 [1]. Since that 
time, the field has evolved at an ever-increasing pace until it can now be 
considered to be reasonably mature. 

Much of the work in recent years has dealt with efficient ways to use 
optimization on realistic problems where the underlying analysis is expen
sive. Optimization requires the repeated analysis of proposed designs and 
this can become unacceptably expensive. However, by careful formulation of 
the design problem, considerable efficiency can be gained so that, today, 
many large structures can be designed using as few as five detailed finite 
element analyses. Therefore, the proper study of structural optimization 
includes several aspects: efficient analysis methods, proper problem 
formulation, and efficient optimization algorithms. While the subject here 
is that of the optimization algorithms themselves, these other parts cannot 
be overlooked. Indeed, a clear understanding of the mathematical and 
physical nature of the design/ analysis problem directly leads to special
ized algorithms for the optimization task. 

The subject here will be limited, to a large degree, to general opti
mization concepts, noting that other parts of this lecture series dwell in 
detail on methods of gaining maximum overall efficiency and reliability. 
In order to use the range of capabilities available today, an understanding 
of basic optimization algorithms is essential as a building block. Also, 
for many applicatons in structural and mechanical design, some of the most 
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powerful structural optimization methods do not apply, and so the funda
mental tools must be used in order to achieve the desired solution. 

Here, the general optimization problem statement will be given. With 
this, we outline a basic search strategy for optimization and will discuss 
the mathematical conditions that define an optimum design. We will then 
outline a variety of solution techniques. It will be seen here that, as 
opposed to structural analysis where the finite element method is almost 
universally used, there is seldom a clearly accepted design algorithm. 
This is not too surprising since the design objective, design variables, 
and the constraints are uniquely problem dependent. Thus, we might expect 
that the optimization algorithm will be different, depending on the nature 
of the problem and even the philosophy of the designer. 

Having outlined a variety of solution techniques, some aspects rela
tive to structural optimization will be identified. It will be seen that, 
for wide classes of design problems, the actual optimization algorithm is 
far less important than one might expect. An understanding of algorithms 
and how they fit into the overall design task provides the insight neces
sary to make the necessary choices. 

Finally methods for obtaining the sensitivity of an optimized design 
to changes in problem parameters are discussed. It is shown that the 
sensitivity of the optimized design may be discontinuous with respect to 
the new parameter. The methods are demonstrated by a structural synthesis 
example. 

2.0 THE BASIC PROBLEM STATEMENT 

The general problem to be solved is: 
ables, !, that will 

Minimize F(!) 
Subject to: 

gj(!) ~ 0 j=l,M 

hie!) = 0 k=l,L 
x. < x. < x~ i=l,N 

1 - 1 - 1 

Find the set of design vari-

[1] 

[2] 

[3] 

[4] 

Here, ! contains the design variables, which can include member dimen-
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s ions, geometri c descri pt ions, and even materi a 1 properties as examp 1 es. 
The function, F(!) is the objective to be minimized, where it is noted that 
if F(!) is to be maximized, we need only minimize its negative to have the 
problem in the form given here. The objective is most commonly taken as 
the weight of the structure since this is an easily definable parameter and 
because it is usually a good indication of cost. 

The inequality conditions of Equations 2 are constraints that must be 
satisfied for the design to be considered feasible (acceptable). An ob
vi ous ex amp 1 e is that the stress at each poi nt in the structure must be 
less than a specified value under each loading condition. Such a con
straint would be written 

g=u . ./o.-1<0 
lJ J -

[5] 

where a is the upper limit imposed on stress, and may be different for dif
ferent materials in the structure and for different load conditions. Note 
that Equation 5 is always written in normalized form. Doing so for all 
constraints (including displacement, frequency and others) effectively 
nondimensionalizes the constraints so that if g = -0.1, for example, the 
constraint is satisfied by 10%. 

Noting that a structure may be designed to support numerous independ
ent loading conditions and that the stress may be calculated at hundreds or 
even thousands of points for each loading condition, it is clear that the 
set M of inequality constraints can become extremely large, even though the 
number of design variables, N, contained in! is relatively small. 

The equality constraints, hk(!), impose precise conditions that must 
be satisfied at the optimum. Equality constraints are relatively uncommon 
in structural optimization, although they are sometimes included in multi
level optimization strategies. For example, it may be desirable to size 
the detailed dimensions of a stiffened panel as a sub-problem, while hold
ing the overall stiffness of the panel fixed. These constraints are rela
tively difficult to deal with in practical design because they impose, in 
general, a set of nonlinear equations that must be dealt with simultaneous 
to the overall optimization task. 

The conditions of Equation 4 are referred to as side constraints that 
simply limit the region of search for the optimum. These are themselves 
inequality constraints of the same form as Equation 2, but are best treated 
explicitly as bounds on the individual design variables. There are two 
reasons for this. First, side constraints can easily be incorporated into 
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the optimization algorithm to gain efficiency. Second, and often more 
important, it may be necessary to insure that designs outside these limits 
are never considered. For example, if a minimum gage constraint is imposed 
on a member thickness in the structure, it should always be enforced. If 
the optimization algorithm is allowed to propose a design with a member of 
negative thickness, the analysis may proceed without error, but would 
obviously provide erroneous results. 

At this point, no restrictions have been placed on the design task. 
The functions of Equations 1-3 may be highly nonlinear implicit functions 
of X. Also, the design variables contained in ! may be limited to a set of 
discrete values. Finally, no conditions have been imposed on the mathe
matical form of the problem, so the functions may even be discontinuous. 
Therefore, it is clear that the problem statement given here is extremely 
general and encompasses the majority of all engineering design. However, 
it will be seen that some limitations must be imposed in order to computa
tionally solve the optimization task. Some of these are a statement of the 
present state of the art, while others represent fundamental assumptions in 
the mathematics of (present) optimization algorithms. 

Among the present limitations to optimization methods are that the 
functions should be continuous in ! and have continuous first (and some
times second) derivatives. Also, the components of ! should take on only 
continuous real values. Finally, there is an underlying assumption of 
mathematical convexity. This is simply the statement that we assume that 
there is only one unique optimum solution to the problem. These assump
tions are, to a degree, more theoretical than practical. For example, 
algorithms that assume functional continuity often work quite well in the 
presence of function or derivative discontinuities, having noticeable 
difficulty only if such discontinuities exist quite near the optimum point. 
Algorithms do exist that do not assume this continuity, but these are 
usually considered to be too inefficient for application to realistic 
problems. For design tasks where the variables must take on discrete 
values, if the problem is solved assuming the design variables are contin
uous, the resul t can usually be rounded to the nearest requi red di screte 
value without major degradation of the design. Finally, for problems where 
more than one relative minimum (relative optimum) may exist, the prob
ability of finding the best optimum is enhanced either by the choice of al
gorithm for solution or by beginning the optimization from several dif
ferent starting points. It should be noted in this respect that if rela-
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tive minima exist, they exist whether optimization is used or not. In this 
regard, optimization provides an efficient tool to find the best among the 
relative minima. 

The optimization process usually begins with a proposed design, 'l, 
provided by the engineer as input. This design mayor may not satisfy all 
constraints. The design is then typically updated by modifying ~ as 

[6] 

where q is the iteration number. The vector, ~, is the search direction in 
n-dimensional space and a is a scalar move parameter. The product a~ is 
actually the change in ~ at this iteration. Thus, the optimization task is 
comprised of two parts. The first is to determine a search direction that 
will reduce the objective function without violating any constraints, and 
the second is to determine the single parameter, a, such that the design is 
improved as much as possible in this direction. This second task repre
sents a problem in the single variable, a, and is called the line search, 
or the one-dimensional search. 

The optimization process is continued until no search direction can be 
found that will further improve the design. Usually this is detected as a 
point of diminishing returns beyond which further improvement is not justi
fied by the cost to achieve it. Ideally, however, a point will be reached 
where it can be shown to be an optimum (or at least a relative optimum) on 
a theoretical basis. 

3.0 NECESSARY CONDITIONS FOR OPTIMALITY 

The theoretical conditions that are satisfied at the optimum are 
referred to as the Kuhn-Tucker conditions. These conditions are derived 
from the fact that the Lagrangian function is stationary at the optimum, 
where the Lagrangian is defined as: 

M M+L 
(~,~) = F(~) + I Ajgj(~) + I Akhk(~) [7] 
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The parameters, ~, are referred to the dual variables. The Lagrangian 
is minimum with respect to ! and maximum with respect to ~ at the optimum. 
This is referred to as a saddle point and the stationary condition leads to 
the following three necessary conditions for optimality: 

1. X* is feasible. 
2. 

3. 

A.g.(X*) = 0 
J J -

M 

A. > 0 j=l,M 
J -

yF(!*) + I A.Vg.(X*) + 
j=l J J-

'A. > 0 
J -

'Ak unrestricted in sign. 

These necessary conditions are also sufficient if the design space can be 
shown to be mathematically convex. While this is usually not possible to 
show, the Kuhn-Tucker conditions are still valuable to identify if a rela
tive minimum has been found. Also, some of the more powerful modern algo
rithms use the Kuhn-Tucker conditions as a significant part of their deri
vation. 

4.0 UNCONSTRAINED MINIMIZATION TECHNIQUES 

Whil e most engi neeri ng problems are constrai ned, unconstrai ned mi ni
mization techniques are still useful. First, for those problems that are 
actually unconstrained, these methods apply directly. Second, constrained 
prob 1 ems can often be so 1 ved by convert i ng them to a sequence of uncon
strained problems. Finally, this provides a logical building block for the 
more general constrained optimization case. In the discussion here, we 
will assume that the gradient of the objective function is available, and 
so will omit discussion of methods that rely on function values only. 

The Kuhn-Tucker conditions for unconstrained functions simply require 
that the gradient of the objective function vanishes at the optimum. The 
optimization process requires finding a search direction that will reduce 
the objective function, and then searching in that direction to gain as 
much improvement as possible. 
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4.1 Steepest Descent 

A classical approach to this task is to set the search direction equal 
to the negative of the gradient of the objective function so 

~ = -YFQD [8] 

Now search in this direction, using Equation 6. A typical approach is to 
pick three values for a (including a = 0) and evaluate the objective func
tion for each of the resulting X-vectors. Then fit a quadratic polynomial 
to these points and determine the a for which F(a) is minimized. The 
objective function is evaluated for the proposed design and, if desired, 
the polynomial approximation is repeated until a is found to the desired 
precision. Alternative methods are available for solving the one
dimensional search problem (see ref. 2), but in general, this is a rela
tively standard numerical analysis task. However, it is important that it 
be done efficiently because the evaluation of F(~) for each proposed a may 
be expensive. Once the minimum is found in direction ~, the gradient of 
the objective is calculated at this new design point and the search process 
is repeated until convergence is achieved. 

While the steepest descent method is easily understood and imple
mented, it cannot be over-emphasized that this is a notoriously inefficient 
and unreliable algortihm. Its principal value is in providing background 
and because it is normally used as the first search direction for more 
modern algorithms. 

4.2 Conjugate Directions 

A simple modification to the steepest descent method can have a dra
matic effect on the optimization efficiency. The conjugate direction of 
Fletcher and Reeves (3) is based on the use of H-conjugate directions, 
where H is the Hessian matrix. Using this method, it can be demonstrated 
that a quadratic function can be minimized in N or fewer iterations, wher
eas no proof of convergence is available for the steepest descent method. 
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Here, the first search direction is the steepest descent direction 

given by Equation 8. On subsequent iterations, the search direction is 

calculated from 
~q = -~F(~) + p~q-l [9] 

where 

Having determined the search direction, a one-dimensional search is then 

performed as before and the process is repeated until the sol ut i on has 

converged. Experience has shown that this simple modification dramatically 

improves the rate of convergence and the reliability of the optimization, 

even for the general case where the objective function is not quadratic. 

4.3 Newton's Method 

Newton's method is a classical second-order method for unconstrained 

minimization. The function is first approximated using a second-order 

Taylor series expansion: 

[10] 

where 

H is the Hessian matrix (matrix of second derivatives) of F with respect to 

X. 
Taking the gradient of Equation 10 with respect to o~ and equating it 

to zero gives the following estimate for the change in X 

[11] 

Noting that F(~) may not be quadratic, ax may be used as the search 

direction, ~, in Equation 6 and a one-dimensional search performed. In 

this case, a = 1 is a good initial estimate for the move parameter. 

Thi s method requi res that the Hess i an matri x be avai 1 ab 1 e and so is 

not usually an attractive algorithm. However, it is so powerful that it 
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may be worthwhile to actually calculate H using finite difference methods. 
Also, in some classes of structural optimization problems where approxima
tion techniques are used, the H matrix can be provided with minor effort, 
making this an attractive method. 

4.4 Variable Metric Methods 

Variable metric methods are algorithms which use gradient information 
to approximate the Hessian matrix (or its inverse) for use in Equation 11. 
The Davidon-Fletcher-Powell or DFP method (refs. 4,5) has been used for 
many years and is considered to be a powerful unconstrained minimization 
technique. A more recent algorithm known as the Broydon-Fletcher-Goldfarb
Shan no or BFGS method (refs. 6-9) is now cons i dered to be the preferred 
method because it is less sensitive to numerical imprecision. In this 
method, the inverse of the Hessian matrix is initially set to the indentity 
matrix for use in the first iteration. On subsequent iterations, the 
inverse of the Hessian matrix is approximated as 

where 
£ = !q _ !q-1 

~ = ~F(!q) - ~F(!q-1) 

o = £.~ 

t = ~TH-1~ 

[12] 

Equation 12 provides an approximation to H-1 based on first-order 
information only. This is now used in Equation 11 to provide the desired 
search direction. 
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4.5 Example 

Figure 1, taken from reference 2, shows a spring-mass system for which 

the equilibrium position is to be determined. The stiffness of spring i is 

given as 

Ki = 500 + 200(5/3-i)2 N/m [13] 

and the weights are defined as 

Wj - 50j N [14] 

The objective to be minimized is the total potential energy given by 

6 5 
PE = 1 21 K. (oL)2 + 1 W.Y. 

i=1 1 j=1 J J 
N-m [15] 

(a) Undeformed position 

-x 

(b) Deformed position 

Figure 1: Spring-Mass System 
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This problem was solved for using the following four algorithms and 
the results are given in tables 1 and 2. 

1. Steepest Descent 
2. Fletcher-Reeves conjugate direction method 
3. Broydon-Fletcher-Goldfarb-Shanno variable metric method 
4. Newton1s method 

In every case, all gradient information was calculated by finite 
differences and the function evaluations shown in Table 2 include this. 

Table 1: Optimization Results 

Design Method 
variable Initial 1 2 3 4 

Xl 10.0 10.3 10.4 10.2 10.4 
X2 20.0 20.7 21.1 20.8 21.1 
X3 30.0 31.0 31. 6 31.4 31. 7 
X4 40.0 41.3 42.0 41. 7 42.1 
X5 50.0 51.1 51.6 51.4 51.8 
VI 0.0 -2.65 -3.96 -4.64 -4.28 
V2 0.0 -5.25 -7.77 -8.19 -7.90 
V3 0.0 -7.35 -10.2 -10.0 -9.86 
V4 0.0 -7.63 -9.52 -9.19 -9.40 
V5 0.0 -4.97 -5.79 -5.43 -6.01 

5.0 CONSTRAINED FUNCTION MINIMIZATION 

The usual design task in engineering is to minimize some function such 
as weight or cost, subject to a variety of constraints. Therefore, the 
principal area of interest here is on this task, where the functions may be 
nonlinear and are usually implicit functions of the design variables. In 
this section, we discuss several algorithms for constrained optimization. 
We begin with the case where all functions are linear in the design vari
ables because this provides a basis for further discussion. Also, many 
engineering problems can be cast as linear constrained optimization prob
lems, such as limit analysis and design of structures. Finally, linear 
optimization can be used as a tool in solving the general nonlinear pro
gramming problem. Following the discussion of linear problems, the more 
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Table 2: Objective Function Versus Iteration Number 

Method 
Iteration 1 2 3 4 

0 0.0 0.0 0.0 0.0 
1 -60 -60 -60 -1256 
2 -126 -292 -292 -1618 
3 -151 -661 -666 -1987 
4 -194 -1148 -941 -2175 
5 -223 -1559 -1432 -2330 
6 -318 -1895 -1812 -2912 
7 -398 -2439 -2119 -3076 
8 -1618 -2828 -2471 -3297 
9 -1900 -3179 -2519 -3402 

10 -1958 -3540 -2572 -3539 
11 -2010 -3792 -3203 -4219 
12 -2043 -4014 -3700 -4306 
13 -2101 -4158 -3820 -4355 
14 -2141 -4198 -3902 -4377 
15 -2355 -4216 -4145 -4391 
16 -2490 -4307 -4298 -4414 
17 -2540 -4361 -4336 -4416 
18 -2557 -4390 -4340 -4416 
19 -2588 -4393 -4340 -4416 
20 -2611 -4393 -4340 
Final -3964 -4393 -4378 -4416 
Iterations 40t 22 26 19 
Functions 587 331 383 378 

t Maximum iterations allowed. 

general nonlinear programming problem is addressed and a variety of algo
rithms are identified. Finally, a simple example is presented for compar
ison of the various methods. 

5.1 Linear Constrained Minimization 

Linear programming (refs. 10,11) is the oldest and the most completely 
developed of the modern numerical optimization techniques, having been 
first introduced by Dantzig in 1948 (10). In its basic form, this method 
solves the problem 
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Subject to; 

AX = b 

X. > 0 
1 -

i=I,N 
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[16] 

[17] 

[18] 

where matrix A contains the coefficients of the constraints and has dimen

sions MxN. In practice, this form of the problem is not really useful. 

For example, in engineering, the usual situation is to consider inequality 

constraints of the form of Equation 2. Also, it is often necessary to 

allow for negative values of the design variables, Xi. 

Inequality constraints are handled by adding a non-negative "slack 

variable" so that this becomes, for the Qth inequality constraint; 

N 
I a .. X. + XN+Q = 0 

j=1 lJ J 
[19] 

While this increases the number of design variables by the number of in

equality constraints, this is not too critical an issue because very large 

linear problems can efficiently be solved. 

To deal with the case where Xi may be negative, a simple transforma

tion of variables can be used, where 

X - XI - X" i - i i [20] 

where XI and X" are required to be positive so the difference in these 

pos it i ve vari ab 1 es can be negative. Subst i tut i ng thi s into the general 

problem statement again increases the number of design variables by the 

number of negative X values to be allowed. 

The details of solving this linear constrained optimization problem 
are beyond the scope of this discussion. However, it is sufficient to note 

that the linear programming problem is easily solved by the SIMPLEX (or 

preferably, the revi sed SIMPLEX) method and that computer codes for its 

solution are readily available on most major computing systems. Thus, for 

purposes of this discussion, the linear constrained optimization problem 

can be considered to be well in hand. 
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5.2 Sequential Linear Programming 

Sequential Linear Programming (SLP), often referred to as Kelly's 

Cutt i ng Pl ane Method (ref. 12), begi ns by creating a fi rst order Taylor 

series expansion of the objective and constraint functions 

g. = g~ + Vg.(X) • 6X 
J J - J -

L u 6X. < 6X. < 6X. , - , - , 

[21] 

j=l,M [22] 

i=l,N [23] 

Thi s 1 i neari zed problem is then solved us i ng 1 i near programmi ng or 

other efficient optimization algorithm. The design is updated and a new 

1 i neari zat ion is performed, repeating the process until convergence is 

achieved. The move limits of Equation 23 are imposed to limit the design 

change to the region of applicability of the linearization and to prevent 

an unbounded solution. These move limits are reduced as the optimization 

progresses in order to effectively deal with the case where there may be 

fewer active constraints at the optimum than there are design variables (in 

this case, the linearization in the absence of move limits will cause 

oscillation or even be unbounded). This requirement to sequentially reduce 

the move limits is usually quoted as the principal disadvantage to the 

method. Also, for convex design problems, the solution will approach the 

optimum as a series of improving infeasible designs. This method is often 

considered a poor optimization algorithm. However, experience shows that 

it is often a very powerful and efficient method, and so should be con

sidered as one of our design tools. If a sequential linear programming 

approach that creates a sequence of improving feasible designs is desired, 

the Method of Centers, developed by Baldur (ref. 13) provides this. The 

concept is to move to the center of the largest hypersphere bounded by the 

linearized constraints and the current value of the linearized objective 

function. This method is effective in providing a series of improving 

feasible designs, but usually converges to the optimum at a slower rate 

than the standard SLP method. 
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5.3 Sequential Unconstrained Minimization Techniques 

These techniques use some form of penalty function to create an equi
valent unconstrained optimization problem which is then solved by the 
methods of Section 4. Perhaps the best known is the Exterior Penalty 
Funct i on method. Here, the fo 11 owi ng pseudo-objective function is mi ni
mized 

M 
= F(~) + r I MaX[gJ.(~),O]2 

p j=l 
[24] 

Here the scalar, rp' is called the penalty parameter and is initially 
set to a small positive number. The pseudo-objective function is minimized 
with rp held constant. Then rp is increased, say by a factor of two, and 
the process is repeated, beginning with the optimum X-vector obtained in 
the previous unconstrained minimization. The concept is simply to penalize 
the design only when one or more constraints become violated. The reason 
for beginning with a small value for rp and sequentially increasing it is 
to reduce the nonlinearities that would be introduced by a very large value 
of rp. This method approaches the true constrained optimum as a sequence 
of improving, but infeasible designs. 

An alternative approach is referred to as the interior penalty func
tion method, where the pseudo-objective function is 

M 
.(~,rp) = F(~) - r I 1/9J.(~) 

P j-l 
[25] 

In this case, rp begins as a large positive number and is sequentially 
reduced. It is assumed that the initial design is feasible and the penalty 
is imposed such that it grows as gj approaches zero from the negative side. 
This method produces a sequence of improving feasible designs, but has the 
di sadvantage that the pseudo-objective function is di scont i nuous at the 
constraint boundaries. 

A third approach, which possesses the desired features of both the ex
terior and interior penalty function methods, is called the extended inter
ior penalty function method. Here, the pseudo-objective function is de
fined as 
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M 
~(!,rp) = F(!) + rp .1 9J.(!) 

J=1 

9j(!) = -l/g j (!) 
9j(!) = [gj(!) - 2e]le2 

if g.(X) < e 
J - -

if g.(X) > e 
J -

[26] 

[27a] 
[27b] 

and e is a small negative number. Again, rp is sequentially reduced during 
the optimization process. This method is referred to as the linear ex
tended penalty function method (ref. 14). It has the advantage of produc
ing a sequence of improving feasible designs, while maintaining function 
continuity across the constraint boundaries. The pseudo-objective function 
is continuous and has continuous first derivatives, but discontinuous 
second derivatives. If a second-order method such as Newton's method is to 
be used to solve the unconstrained subproblem, a quadratic form of this 
penalty function may be preferable (ref. 15). 

A final sequential unconstrained minimization technique called the 
Augmented Lagrange Multiplier Method is considered to be a particularly 
powerful method (ref. 16). Here, the Lagrangian function, augmented by an 
exterior penalty term is minimized: 

M 2 
A(!,~,rp) = F(!) + I [h.~. + r ~.] 

j=1 J J P J 
[28] 

where 

[29] 

The last term under the summation in Equation 28 is simply an exterior 
penalty function. The first term in the summation is the constraint term 
of the Lagrangian function. The basis of the method is that, if the op
timum Lagrange multipliers were known, the constrained problem could be 
solved for almost any positive value for rp' and rp would not have to be 
sequentially updated. Since the values of the Lagrange multipliers are now 
known, an algorithm is needed to update them in a fashion that will con
verge to the optimum. Thus, the difference between this and the exterior 
pena 1 ty function method is that here both the penalty parameter, r p' and 
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the estimate of the Lagrange multipliers are updated. For the Lagrange 
multipliers the update formula is 

A~+1 = A~ + 2r ~. 
J J P J 

j=I,M [30] 

The attraction of this method is that it is possible to obtain a 
precise zero for active constraints, the penalty parameter rp does not have 
to be made as large, and the basic algorithm is designed to drive the 
solution toward satisfaction of the Kuhn-Tucker condition. 

In the Augmented Lagrange Multiplier method, as well as the exterior 
pena 1 ty function method, equal i ty constrai nts can eas ily be inc 1 uded, and 
this is given in the references. 

5.4 Method of Feasible Directions 

This algorithm, attributable to Zoutendijk (ref. 17) is referred to as 
a direct method because it deals with the objective and constraints direct
ly in order to determine a search direction for use in Equation 6. In this 
case, the solution for a in Equation 6 requires finding the best design 
such that the constraints are not violated. This one-dimensional search 
process can be solved using polynomial interpolation as for unconstrained 
functions except, now the a is found to minimize F(a) as well as the aj 
which will drive gj(a) to zero for j=I,M. The minimum positive value for a 
from all of these is the desired solution to the one-dimensional search. 

It is assumed that the initial design is feasible. If no constraints 
are critical, the search direction is taken as the direction of steepest 
descent or (after the first iteration) a conjugate direction. Once one or 
more constraints become active [g.(X) = 0, j e J] the search direction is 

J -
calculated from the following optimization sub-problem; 

Maximize f3 
Subject to; 

YF(!) • ~ + f3 ~ 0 
Vg.(X) • S + 6. f3 < 0 -J- - J -
S • S < 1 

j e J 

[31] 

[32] 

[33] 

[34] 
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The design variables for this sub-problem are the components of ~ as well 
as the value of the intermediate variable, p. Equation 32 is the usability 
requirement that states that the search direction must reduce the objective 
funct i on and equation 33 is the feas i bil i ty requi rement that requi res no 
active constraints become violated for some small move in this direction. 
The parameter 8 j is referred to as a push-off factor that di rects the 
search away from the critical constraints. This is because a search direc
tion tangent to the constraint boundary will quickly go outside the feas
ible region if the constraint is nonlinear. This sub-problem is easily 
solved by converting it into a form similar to linear programming. Also, 
if the initial design is outside the feasible region a search direction can 
be efficiently found which will overcome the constraint violations (ref. 
18). This method is contained in the CONMIN program (ref. 19) and has been 
widely applied to structural optimization problems. 

The feasible directions method is often considered inefficient because 
it does not follow the critical constraint, but instead, pushes away from 
them. This "zig-zagging" can be alleviated somewhat by various numerical 
techniques, but remains a theoretical issue. 

An alternative method is the Generalized Reduced Gradient method (ref. 
20). This method converts the inquality constrained problem to an equality 
constrained problem by adding slack variables as is done in linear pro
grammi ng. Then a number of dependent vari ab 1 es is chosen equal to the 
total number of constraints. A search direction is then found in terms of 
the remaining independent design variables. During the one-dimensional 
search, the dependent variables are repeatedly updated using Newton's 
method applied to the constraints. This approach is often considered to be 
more efficient, but requires both the addition of many slack variables and 
the treatment of a sub-set of design variables as dependent. 

A method that has many of the features of the General ized Reduced 
Gradient method, but does not require the addition of slack variables or 
the separation of the design variables into independent and dependent sets, 
is referred to as the Modified Feasible Directions method (ref. 21). This 
method uses the direction-finding problem of Equations 31-34, but with the 
push-off factors, 8j set to zero. The resulting search direction will be 
tangent to the critical constraints. During the one-dimensional search, 
these constraints will become violated and so it is necessary to move back 
to the constraint boundaries. Now, instead of treating some of the vari
ables as dependent for this purpose, the shortest distance back to the 
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constraint boundaries is sought in a least-squares sense. This leads to 
the perturbation vector 

[35] 

where, the matrix A contains the gradients of the critical constraints and 
G contains their values. At each proposed ~ in the one-dimensional search, 
the constraints § are calculated and Equation 35 is applied to drive them 

to zero. This method has been found to be an effective general purpose 
algorithm which is a relatively simple modification to the feasible direc
tions method, while having the essential features of the generalized re
duced gradient method. 

5.5 Sequential Quadratic Programming 

Sequential Quadratic Programming (refs. 22-27) is a relatively new 
algorithm that is considered to be quite powerful for a wide class of 
problems. This method is often called a variable metric method for con

strained optimization because of its formulation. The basic concept is to 
create a quadratic approximation to the Lagrangi an function and 1 i neari ze 
the constraints. This approximation is solved using Quadratic Programming 
(or any suitable optimizer) and the resulting perturbed design is treated 

as a search direction. A one-dimensional search is then performed in this 

direction as an unconstrained problem using a penalty function. 
The problem solved for finding the search direction is 

Minimize 
Subject to; 

S + ! STBS 
- 2 - -

c.g~ + Vg.(X) • S < 0 
J J - J - - -

j=l,M 

[36] 

[37] 

which cj is an appropriately chosen constant, and B is an approximation to 

the Hessian matrix of the Lagrangian function. This is called a variable 
metric method because an update formula is used that is similar to that of 
the variable metric methods for unconstrained minimization. Here, however, 
B is an approximation to H instead of H-1. 
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Numerous modifications can be made to improve the efficiency and reli
ability of this algorithm for engineering applications (ref. 28). Overall, 
it has been found to be a powerful method that contains many desirable 
features. 

5.6 Sequential Convex Linearizations 

This recent method has been shown to be particularly powerful for many 
structural optimization applications (ref. 29). The basic concept here is 
to fi rst 1 i neari ze the objective and constrai nt functions as is done in 
sequential linear programming. However, now instead of solving this lin
earized problem, reciprocal variables are used to create a conservative, 
convex, approximation. A typical constraint function is approximated as 

ag i ago x~ 
g. = g~ + l ---ax (x. - x~) + l ax' --x' (x. - x~) 

J J + i' , _ ii" 
[38] 

where the + summation refers to those gradient terms that are positive and 
the - summation refers to those that are negative. Similarly, this mixed 
approximation is used for the objective function. 

Now the approximate problem to be solved by the optimizer is not 
linear, but is still explicit and is easily solved. The key idea is that 
by using this mixed formulation, the essential nonlinearities of the origi
nal problem are retained. Thus, the move limits imposed during the approx
imate optimization are far less critical than for the Sequential Linear 
Programming method. 

5.7 Example 

Figure 2, from reference 2, shows a simple cantilevered beam made up 
of five rectangular cross-sections. The dimensions, band h of each sec
tion are to be designed for minimum total material volume, so there are a 
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total of ten design variables. The stress in each section is constrained 
and the deflection under the load is constrained. Also, the height was 
constrained to be less than twenty times the width for each section. 

p 

l /. 2 3 4 S 

t----- f----- r---- ---- ------=1 -x 

,1--/, 'I I" ,I, 13 I, 14-~'-/S !t----L------.,1 
y 

01 
-l bi I-
Cross section 

Figure 2: Cantilevered Beam 

P=SO,OOON 
E=200GPa 
L=SOOemO 
(j=14,OOO N/em2 
Y=Mem 

2..7 

This problem was solved by the ADS program (ref. 30) using the follow-
ing eight algorithms and the results are shown in Tables 3 and 4. 

1. Sequential linear Programming. 
2. Exterior Penalty Function Method. 
3. linear Extended Interior Penalty Function Method. 
4. Augmented lagrange Multiplier Method. 
5. Method of Feasible Directions. 
6. Modified Method of Feasible Directions. 
7. Sequential Quadratic Programming. 
8. Sequential Convex Programming. 

In each case, all gradient information was calculated by the finite 
difference method and the function evaluations shown in Table 4 includes 
this. 
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6.0 SENSITIVITY OF OPTIMIZED DESIGNS TO PROBLEM PARAMETERS 

Estimation of the sensitivity of an optimum design to some new problem 

parameter, P, (or perhaps multiple parameters) is an important issue in 

design. Two principal reasons for needing this information are first, that 

if the problem requirements are modified after the optimization is com

plete, this will provide the engineer with a measure of what effect such 

changes will have on the design, and second, this information is directly 

useful in formal multi-level and multi-discipline optimization. The dis

cussion offered here is essentially a duplication of that given in refer

ence 3l. 

The general optimization problem considered here is of the form given 

by equations 1-4. 

Equality constraints are omitted in the followind discussion only for 

brevity and their addition is a direct extension of the methods presented 

here. 

Assume the optimization problem has been solved, so the vector of 

optimum design variables, ~* is known. Now assume some new parameter, P, 

is to be changed, where P may be a load, allowable stress, material pro

perty, or any other problem parameter. It is desired to determine how the 

optimum design will change as a result of changing P. That is, we wish to 

find the total derivative dF(~*)/dP as well as the rates of change of the 

optimum values of the design variables themselves, aXi/ap. 
In references 32-35, the Kuhn-Tucker conditions at the optimum are 

used to predict the required derivatives, based on the assumption that the 

Kuhn-Tucker conditions at ~* remain in force as P is changed. Normally, 

second derivatives of the objective and the binding constraints are re

quired, as well as the Lagrange multipliers associated with the optimum 

design. 

In reference 21, a method was introduced based on the concept of a 

feasible direction, for providing the optimum sensitivity information. 

This method requires only first derivatives of the objective function and 

binding constraints. 

Here, the method of reference 21 is expanded to deal effectively with 

the possibility of a discontinuous derivative at ~*. This first-order 

method provides the sensitivity information in the classical sense of a 

derivative. A second-order method is presented here for use in those 
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design situations where second derivatives are economically available. In 
this case an approximate optimization problem is actually performed to 
estimate the design improvement which can be expected from a change in the 
new parameter. 

The three available approaches to optimum design sensitivity are com
pared using simple examples to gain a conceptual understanding of the 
methods. The methods are then demonstrated by physical example. 

6.1 Sensitivity Using the Kuhn-Tucker Conditions 

At the optimum design, X*, some subset, J, of constraints will be 
critical. The Kuhn-Tucker conditions(36) which are satisfied at this point 

are 

m 
VF(~*) + L A.Vg.(X*) = 0 

j=l J J-

g.(X*) = 0 
J -

A. ~ 0 
J 

j € J 

[39] 

[40] 

[41] 

The needed sensitivity information comes from calculating the total 
derivative of F(~*) with respect to the new parameter, P; 

dF(~*) = aF(~*)/ap + VF(~*) • dX [42] 
where 

dX. = aX./ap 
1 1 

[43] 

If the Kuhn-Tucker conditions of equations (39)-(41) are to remain 
satisfied for some change 6P in the independent parameter, P, then the rate 
of change of equation (39) with respect to P must vanish, where it is 
noted that equation (39) is actually n independent equations. This leads 
to a set of simultaneous equations which are solved for dX as well as dA 
(since the Lagrange multipliers are functions of P as well). This leads to 
the following set of simultaneous equations that are solved for dX and dA. 
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dX Cnx1 
+ = 0 [44] 

djX1 

where 

[45a] 

ag.(x*) 
B - _~J,,:-:--_ .. - ax 

1 J i 
[45b] 

= a2F(X*) + I a2gj (x*) 
Ci axiap j€J axiap 

[45c] 

_ agj(x*) 
d j - ap j€J [45d] 

The two significant features of this approach are that second-order infor

mation is required and that constraints which are critical at X* remain 

critical when the independent parameter, P, is changed. 

6.2 Sensitivity Using the Feasible Directions Concept 

Conceptually, calculation of the sensitivity to parameter P can be 

viewed as seeking the greatest improvement in the expanded design space 

which includes the new "design variable" P. Thus, we mathematically seek 

the "constrained steepest descent direction." Assuming we are free to 

ei ther increase or decrease P as necessary to improve the des i gn, the 

information is obtained from the following sub-problem. 

Treat P as an independent des i gn vari ab 1 e and add it to the set of 

variables, ~, so 

[46] 

Now solve the following direction-finding problem in the expanded space; 
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Find the components of S to 

Minimize 
Subject to; 

VF(~*) • ~ 
Vg/~*) • S ~ 0 

223 

j € J 

[47] 
[48] 

[49] 

Equation (47) represents the objective, which is to search in a direc
tion as nearly possible to the steepest descent direction. This is con
strained, however, by equation (48) which dictates that the search direc
tion be tangent to, or away from, the boundaries of the critical con
straints. Note that by virtue of the inequality condition of equation 
(48), the design may actually leave a constraint boundary if this will give 
maximum improvement. This is equivalent to saying that the Kuhn-Tucker 
conditions in force at ~* need not remain in force in the expanded design 
space. Equation (49) is required to insure a unique solution to the 
direction-finding process. 

This geometric interpretation of a constrained steepest descent direc
tion is also reached by considering a linear approximation to the problem 
in expanded space as; Find the perturbation of the design variables con
tained in the vector S which will 

Minimize [50] 

j e J [51] 

[52] 

where equation (52) arises from the need to bound the solution to the 
linearized problem. Noting that F(X*,P) is constant and g.(X*,P) = 0 for j 

- J-
e J, it is clear that equations (50)-(52) are the same as equations 
(47)-(49). 

Equations (47)-(49) represent a linear problem in Si' i=1,n+1 subject 
to a single quadratic constraint. This is solved by conversion to a linear 
programming type problem of dimension J+1 and is easily solved numeri
cally. (2) 

Having solved the direction-finding problem of equations (47)-(49), 
the design can be updated by the common relationship 
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so 
and 

x = X* + a5 - - -
Xi = Xi + aoXi /oa 

oX/oa = Si 

Considering the n+1 component, P, 

P = P* + aoP/oa 

= P* + aSn+1 
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For a specified change, 6P = P-P*, the move parameter, a, is 

a* = 6P/Sn+1 

[53] 

[54] 
[55] 

[56] 

[57] 

In the event that 5n+1 = 0, this indicates that the optimum design is 
not dependent on P and so P can be changed arbitrarily. In this case, 

dF(~*) = 0 and dX = O. 
Here it is important that the sign on 6P be the same as the sign on 

5n+1 since it was assumed that we will change P in the direction of maximum 
improvement. 

The rate of change of the optimum objective is now found for a unit 
change in P as 

dF(X*)/dP = [~F(~*) • ~]/5n+1 [58] 

and the corresponding rates of change of the optimum design variables are 

[59] 

Multiplying equations (58) and (59) by 6P gives the estimated change 
in F(X*) and X* respectively. If 6P is the opposite sign from 5n+1, equa
tions (58) and (59) still apply if equation (48) is satisfied with strict 
equality. If this is not the case, the design dictated here will leave a 
constraint for maximum improvement. Thus a search in the opposite direc
tion will violate one or more constraints. 

Consider now the case where the sign of the change in parameter P is 
specified. Now it must be recognized that if P is decreased the optimum 
design may follow one constraint surface, but if P is increased, the design 
may follow a different constraint surface. In other words, the rate of 
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change of the optimum design with respect to P may not be constant at ~*. 
In this case, an additional constraint must be imposed on the sign of 5n+1. 
For example, if P is required to be positive, the direction-finding problem 
of equations (47)-(49) becomes 

Minimize ~F(~*) • 5 - cp [60] 
5ubject to; 

~g/~*) • 5 ~ 0 [61] 

< [62] -5 + P = 0 n+1 

5 • 5 ~ 1 [63] 

The independent variables in this direction-finding problem are the 
components of ~ as well as the extra parameter, p. Here the constant, c, 
is a somewhat arbitrary positive number, say 10. The magnitude of c is not 
critical since it is used only to insure the resulting value of p will be 
positive and so 5n+1 will in turn be positive. If 6P is specified to be 
negative, equation (62) is replaced by 

[64] 

The result of the direction-finding problem is to find a search direction 
which will increase F(~*) as little as necessary, decreasing F(~*) if 
poss i b 1 e. Thus, if there is a specifi c reason to change Pin a gi ven 
direction, the optimum sensitivity is still found. 

The method of equations (60)-(63) is actually the same as that used in 
the Method of Feasible Directions for overcoming constraint violations. (2) 

The method of equations (47)-(49) and (60)-(63) is based on the 
assumption that P will be changed to gain maximum improvement (or minimum 
degradation) in the optimum objective. The only additional information 
required beyond that normally available is the gradient of the objective 
and critical constraints with respect to P. Also, it is important to note 
that the set J can include any near critical constraints which we do not 
wish to become violated for a small change in P. Finally, it should be 
noted that a search di rect i on may be des ired whi ch moves away from the 
constraint boundaries to give a more conservative estimate of dF(X*)/dP. 
This can be accomplished by adding a push-off factor to equation (48) or 
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(61) as is done in the conventional feasible directions algorithm. (2) 

6.3 Sensitivity Using Second-Order Information 

In cases where second derivatives are available, this information can 
be used to provide maximum guidance to the design process. Here, the 
information sought is not sensitivity in the mathematical sense, but rather 
is the best estimate of the new optimum based on a quadratic approximation 
to the objective and constraint functions about ~*. 

Consider a second-order Taylor series expansion about ~* of F(~*) and 
gj(~*) j e K, where K includes the set of critical and near critical con
straints (could include the entire set m). Here also, we expand the set of 

design variables so Xn+1 = P as before. 
The approximate optimization task now becomes, find the change in 

design variables, 6X, to 

where 

Minimize 

Subject to; 

F(~) = F(X*) + VF(X*) 6X 
+ ! 6XTH 6~ -

2 - F-

g.(X) = g.(X*) + Vg.(X*) 6X J- J- -J-

[65] 

+ ! 6XTH.6X ~ 0 [66] 
2 - J-

6X~ ~ 6X. ~ 6X~ 
1 1 1 

i=1,n+1 [67] 

6X = X - X* - - - [68] 

Here, P is treated as an independent variable and the move limits of 
equation (67) are imposed to limit the search to the region of validity of 
the quadratic approximation. In the event that 6P (and therefore, the new 
value of P) is specified then the optimization is carried out with respect 
to the original n variables, with 6Xn+1 = 6P. 

The problem of equations (65)-(67) requires the same information as 
sensitivity based on the Kuhn-Tucker conditions (except the Lagrange multi-
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pliers are not needed here) but is complicated by the fact that a con
strained optimization task is now required. However, the functions are now 
explicit and easily evaluated, along with their derivatives. The advantage 
here is that the approximate optimization task accounts for the complete 
set of constraints, K, and that no limiting assumptions are needed regard
ing the nature of the new optimum. Also, in the common situation in struc
tural optimization using reciprocal variables, where the constraints are 
approximately linear, only the linear portion of equation (66) is needed, 
greatly simplifying the optimization task. 

6.4 Comparison of Methods 

In the previous sections, three distinct approaches were given for 
determining the sensitivity of an optimized design to some new parameter, 
P; 

1. Based on the Kuhn-Tucker conditions at X*. 
2. Based on the Feasible Direction concept. 
3. Based on second-order expansion of the problem. 

These three approaches are compared here using simple examples to 
demonstrate, geometrically, the similarities and differences in the meth
ods. Each method can be considered to produce a search direction, sq, 
where q=l,2,3 corresponds to the particular method. The total derivative 
is proportional to sq, so any differences in the methods are reflected in 
differing search directions. 

Case 1 - Unconstrained Function 
Consider the simple two-variable unconstrained problem; 

Minimize F = 2X~ - 2X1P + p2 + 4X1 - 4P [69] 

While this is an explicit example function, it could as well represent the 
second-order approximation to a far more complicated problem. 

The problem is first solved with respect to the single variable, Xl 
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and then sensitivity is calculated with respect to the new parameter, P. 
Figure 3 is the two-variable function space for this problem, where 

initially P = 0, so the optimum with respect to Xl is F* = -2 at Xl = -l. 

The search directions for the three methods are shown on the figure, and it 
is seen that methods I and 3, using second derivatives point to the solu
tion of the quadratic problem. Method 2, being a first-order method, gives 
a steepest descent search direction. 

x2 

-1 

Figure 3. Unconstrained Problem. 

Case 2 - Constrained Problem with Discontinuous Derivative 
Figure 4 shows the results for the same problem with the addition of 

the linear inequality constraint, 

< 
g = -Xl - 4P = 0 [70] 

Now minimization with respect to Xl gives the constrained optimum, 
F=O, g=0 at Xl = O. Here the three approaches provide markedly different 
information. Method I produces a search direction which follows the con
straint for either an increase or a decrease in P. If P is increased, 
method 2 gives a direction of steepest descent, while method 3 provides a 
direction toward the quadratic approximation to the minimum. If P is 
changed in the negative direction, each method results in a move along the 
constraint boundary. Clearly, because the optimum change direction 
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--~--~~~~~~~--~--.XI 

G=O 
-1 

Figure 4. Discontinuous Sensitivities. 

(whether first or second-order) is dependent on the sign of 6P, the total 
derivative of the optimum objective is discontinuous at X*. 

Case 3 - Multiple Constraints 
Here the constrained optimization problem to be solved is 

Minimize 
Subject to; 

F = X~ + (P-1)2 [71] 

gl = -3X1 - 2P + 10 ~ 0 [72] 

g2 = -2X1 - 3P + 10 ~ 0 [73] 

The problem is first solved with P held fixed at a value of 2. Then 
the sensitivity of the optimum to P is calculated. The two-variable func
tion space and the calculated search directions are shown in Figure 5. 
This is a degenerate case which cannot be solved by method 1 due to matrix 
singularity. Here at X*, two constraints are critical. However, because 
the problem is first a function of Xl alone, one of these constraints is 
redundant. Methods 2 and 3 provide change vectors which follow the proper 
constraint boundary, depending on the sign of 6P. 

Case 4 - Dependence on the Magnitude of P 
Here the problem to be solved is 
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Minimize 
Subject to; 

5 

4 

3 

2 

1 

F - X2 + p2 - 1 

230 

g = (Xl - 5)2 + (P - 5)2 - 16 ~ 0 

--+---~----~----~~~----~-'Xl 
023 

Gl=O G2=o 
Figure 5. Multiple Constraints. 

[74] 

[75] 

The two-variable function space and the calculated search directions 
are shown in Figure 6. 

X2 

\ 
G=O 

9 ~ F=25 
X o 2 3 4 5 

Figure 6. Specified Change in P. 

Here, methods 1 and 2 provide the same search direction toward point 
D. Method 3 however, takes full advantage of the available second-order 
information to identify the new optimum based on the quadratic approxima-
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tion. If P is allowed to change freely, the new optimum is at point B. 
This is the usual result for method 3 if no move limits are imposed on the 
design changes and the actual amount by which P is changed is not speci
fied. However, if the change, 6P, is specified, method 3 provides the best 
approximation to the new optimum with respect to the original design vari
able, Xl' at point C. Here, it is important to remember that this result 
is based on a quadratic approximation to the original problem, so in prac
tice, move limits will be required to insure reasonable bounds on the 
solution. It is noteworthy that methods 1 and 2 provide the same search 
direction. This is because method I, while requiring second derivatives of 
the constrai nts, does not actually use thi s i nformat i on to update the 
approximation to the optimum design. 

Consistency of the Sensitivity Calculations 

Because the sensitivity is calculated about a numerically determined 
optimum, it is expected that the results will be dependent on the accuracy 
of X*. It is common that, while the objective function may be very near 
the theoretical optimum, the design vector, !*, is not this precise. Also, 
the gradients of the objective and constraint functions at the optimum are 
more variable in direction than in magnitude. These observations lead to 
the conclusion that the total derivative of F(!*) with respect to P is 
reasonably stable, but that the rates of change of the independent design 
variables are more strongly dependent on the accuracy of the optimum. 

This variability of the design vector sensitivities is seen from a 
simple example using linear sensitivity information. 

Figure 7 shows the two-variable function space for the following 
problem; 

Minimize 
Subject to; 

[76] 

[77] 

where initially P=2. Points A, Band C are each near the optimum, with B 
being the precise optimum. The sensitivity of each "optimumll is shown by 
the search vectors and given numerically in Table 5. 
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Figure 7. Sensitivity for Different Optima. 

Table 5: Sens i t i vit i es for various optima 

Var XA SA XB SB xC sC 

Xl 1.2 -0.8 1.0 -0.5 0.8 -0.2 

X2 0.8 -0.2 1.0 -0.5 1.2 -0.8 
F* 2.08 2.00 2.08 

dF*/dP - -2.24 -2.00 -2.24 

Thus, it is clear that the design sensitivity is dependent on the 

accuracy of ~*. However, the information provided is still as useful, 
being the constrained steepest descent direction. This simply serves as a 
reminder, that if the design space is reasonably flat that, within numer
ical accuracy, the optimum design and its sensitivity is not unique. 

6.5 Design Examples 

Figure 8 is the 10-bar truss which is commonly used to demonstrate 
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optimizatio'l procedures. The structure is loaded as shown by a single 
loading condition and is stress constrained. The allowable stress in each 
member is 25,000 ps i, wi th the exception of member 9 whi ch has a hi gher 
allowable stress. The cross-sectional areas of the members are the design 
variables and the total weight of the structure is to be minimized. 

Figure 8. 10-Bar Truss. 

Case 1: Comparison of Methods 
Table 6 gives the optimum design and sensitivity results for a nominal 

design in which the allowable stress in member 9 is 30,000 psi, and will be 
changed in order to improve the optimum. The parameters of interest are 
listed in the first column and column 2 gives the initial optimum design. 
Columns 3 and 4 give the sensitivity based on the Kuhn-Tucker conditions 
and the present linear method, respectively. For this design, member 10 is 
very near its stress limit, but the actual binding constraint is the mini
mum size of the member. Thus, based on the Kuhn-Tucker conditions, the 
sensitivity of member 10 (as well as members 2, 5 and 6) is zero. In the 
linear method, this stress constraint is included in the active set and 
method recognizes that the size of member 10 must be increased to maintain 
feasibility. 

The total derivative, dF/dOg is given for a 100% change in Og' so the 
predicted change in F* is the total derivative times the fractional change 
to be made in 0g. 

Columns 7-9 of Table 6 give the predicted design for each method for 
an allowable stress in member 9 of 40,000 psi (a 33% change from its nomi
nal value), and column 10 gives the calculated optimum. The first two 
methods predi cted essent i ally the same optimum except the present 1 i near 
method accounted for the need to increase the size of member 10. The 
quadratic method provided the result nearest the calculated optimum, as 
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would be expected. 

Case 2: Discontinuity of the Sensitivity 

Linear sensitivity of the 10 bar truss was calculated here for a 
nominal value of 37,500 psi for the allowable stress in member 9. Now the 
direction of change in the stress allowable was specified and the resulting 
problem was solved by the method of equations (60)-(64). If the direction 
of change in the allowable stress was not specified or was specified to be 
positive, the resulting sensitivities were zero, correctly indicating that 
the optimum weight cannot be reduced by changing a9. 

Table 7 gives the resulting sensitivities if the allowable stress is 
required to be reached. It is noteworthy that the projected optimum for a 
design allowable of 35,000 psi is very near the calculated optimum, even 
though the projected values of the design variables are not this precise. 

Table 7. Discontinuity in sensitivity. 

Var 

Al 
A2 
A3 

A4 

A5 

A6 

A7 

A8 

A9 

~10 
°9 
F* 
dF/da9 

X* 

7.9008 
0.1000 

8.0998 
3.9000 

0.1000 
0.1000 
5.7981 

5.5155 
3.6791 

0.1413 
39,500 
1,498 

-0.0981 
0.2043 

0.1554 
-0.0963 

0.0000 
0.2299 

0.2076 
-0.1502 

3.6356 
0.2649 

-1. 0000 

215.7 

7.8943 
0.1136 

8.1102 
3.8994 
0.1000 
0.1153 
5.8119 

5.5055 
3.9215 
0.1590 

35,000 
1,512 

X* 

7.9154 
0.1000 

8.0900 
3.9099 
0.1000 
0.1000 

5.7848 
5.5295 

3.9496 
0.1274 

35,000 
1,511 

This again underscores the somewhat non-unique nature of the optimum sensi
tivity calculations. 

This example clearly demonstrates the need to account for the possi
bility that the design sensitivity may be discontinuous at X*. In prac-
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tice, this discontinuity cannot be identified in any a priori fashion and 

so the mathematics of the procedure must be re 1 i ed on to deal with that 

situation. 

7.0 SUMMARY 

The general optimization problem statement has been outlined and a 

variety of algorithms have been identified for its solution. The examples 

given here should not be considered as a definitive comparison of methods, 

but rather a general indication of algorithmic efficiencies. In the case 

of structural optimization, it is common to create an approximate problem 

to be solved by the optimizer. Therefore, since this is an explicit prob

lem with a clear mathematical form, the actual optimization algorithm used 

for its solution becomes of lesser importance. The principal purpose here 

has been to fami 1 i ari ze the reader wi th the mathemat i ca 1 and a 1 gori thmi c 

features of the optimization task and offer sufficient references for more 

detailed study of these and other methods. 

Three procedures for calculating the sensitivity of an optimized 

design to some problem parameter have been presented and compared. The 

method based on the Kuhn-Tucker conditions assumes that the conditions in 

effect at the optimum remain in effect when P is changed. The linear 

method provides the sensitivity in the classical sense of a derivative, 

while accounting for the inequality constrained nature of design. The 

quadratic method is more appropriately considered as an improved estimate 

of the optimum using available second-order information. 

In practice, careful problem formulation can be expected to improve 

the quality of the projected optimum. For example, for many structural 

optimization problems, the use of reciprocal variables wi 11 allow much 

larger perturbations in the design without significant constraint viola

tions. 

As noted in the introduction, sensitivity information is valuable in 

its own ri ght for est i mat i ng the effect that des i gn changes wi 11 have on 

the optimum, wihout re-optimization. Additionally, this capability pro

vides a convenient tool for use in multi-level and multi-discipline design, 

particularly where distributed computing is desirable. This general area 

of study is expected to be the di rect i on of future research us i ng these 

techniques. 
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I. INTRODUCTION 

The optimization of a structure modeled by finite elements can 

proceed in two diametrically opposed directions. The first direction is 

that of interfacing a finite element software package with an optimization 

package where both packages are treated primarily as black boxes. The 

second direction is the intimate integration of the finite element 

analysis and optimization processes. Many research structural 

optimization programs followed the second path for reasons of efficiency 

and convenience to the researchers who wrote these programs. However, in 

production codes the tendency is to follow the more modular first 

direction. The integrated approach is probably justified only when it 

reflects algorithmic integration of the analYSis and optimization 

processes. This type of integration is presently at the research stage. 

The next four sections of this chapter are concerned with the 

interfacing of black-box finite element and optimization codes. The last 

chapter is devoted to a discussion of the integrated approach. 

II. THE FINITE-ELEMENT AND OPTIMIZATION INTERFACE 

The interface required to connect an optimization package with a 

finite element package is typically composed of three elements: (i) 

design variable expression; (ii) constraint and objective function 

calculation; and (iii) sensitivity calculations. 

The first element, design variable expression, is concerned with 

expressing the values of the design variables supplied by the optimization 

program as a finite element model. This part of the interface can be 

implemented as a preprocessor to the finite element program. It requires 

a strategy for selecting structural parameters as design variables and 

relating them to the finite element model. It is important not to attempt 
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Mechanical Systems. Edited by C. A. Mota Soares 
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a one-to-one correspondence between design variables and finite elements 

except for skeletal structures (trusses and frames). For structures 

containing two and three dimensional elements, the accuracy of the finite 

element analysis can be destroyed if such one-to-one correspondence is 

enforced. As an example consider the square plate design (Fig. 1) 

obtained by the author (Ref. 1) by associating a design variable with 

almost each individual element thickness. The 7 x 7 mesh was reasonable 

for analyzing a uniform thickness plate, but it is inappropriate for 

analyzing the final design shown in Fig. 1. Similar results are obtained 

by associating a design variable with each node of a boundary in shape 

optimization as shown in Fig. 2 (taken from Ref. 2) • 

- .---

t= 

r--- r-----

~ 

Figure 1: Plate design from Reference 1 

Figure 2: Optimal hole shape from Reference 2 

The second element of the interface, the calculation of objective 

function and constraints, typically requires a post processor which uses 

the structural response obtained by the finite element program to obtain 

the desired quantity. 
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The third element of the interface, the calculation of sensitivities 

is the most troublesome, and is the subject of discussion of the following 

sections. Because the techniques associated with sensitivity calculation 

are substantially different for static analysis, eigenproblems, and 

transient response, each one of these classes of problem is dealt with in 

a separate section. 

III. CALCULATION OF SENSITIVITIES FOR STATIC LOADS 

The equations of equilibrium in terms of the nodal displacement 

vector U are generated from a finite element model in the form 

KU = F (1) 

where K is the stiffness matrix and F a load vector. A typical 

constraint, such as a limit on a displacement or stress component may be 

written as 

g(U,x) ~ 0 (2 ) 

where, for the sake of simplified notation, it is assumed that g depends 

only on a single design variable x. Using the differentiation chain rule, 

we obtain 

dg/dx T ag/ax + Z dU/dx (3) 

where Z is a vector with components zi = ag/au i . The first term in Eq. 

(3) is usually zero or very easy to obtain so we discuss only the 

computation of the second term. Differentiating Eq. (1) with respect to x 

we obtain 

KdU/dx = dF/dx - (dK/dx)U 
T _1 

Premultiplying Eq. (4) by Z K obtain 
T T _1 

Z (dU/dx) = Z K [dF/dx - (dK/dx)UJ 

(4 ) 

(5) 

Numerically, the calculation of ZTdU/dX may be performed in two different 

ways. The first, called the direct method (sometimes referred to as the 

behavior space approach), consists of solving Eq. (4) for dU/dx and then 

taking the scalar product with Z. The second approach, called the adjoint 

variable method, defines an adjoint variable vector A which is the 

solution of the system 

KA = Z 

and then Eq. (3) is rewritten as 

T dg/dx = ag/ax + A [dF/dx - (dK/dx)UJ 

where use has been made of the symmetry of K. 

(6) 

(7) 



www.manaraa.com

244 

The adjoint variable method is also known as the dummy load method 

because Z is often described as a dummy load. When the g in Eq. (2) is an 

upper limit on a single displacement component, the dummy load also has a 

single non-zero component corresponding to the constrained displacement 

component. Similarly, when g is an upper limit on the stress in a truss 

member, the dummy load is composed of a pair of equal and opposite forces 

acting on the two nodes of the member. 

Both the direct and adjoint variable methods require the solution of 

a system of equations as the major component of the computational effort. 

We should note, however, that the matrix K of the equations is usually 

available in a factored form from the solution of Eq. (1) for the 

displacements. The solution for dU/dx or A is therefore much cheaper than 

the original solution of Eq. (1). The difference between the 

computational effort associated with the direct method and with the 

adjoint variable method depends on the relative number of constraints and 

design variables. The direct method requires the solution of Eq. (4) once 

for each design variable, while the adjoint variable method requires the 

solution of Eq. (6) once for each constraint. Consequently, the direct 

method is more efficient than the adjoint variable method when the number 

of design variables is smaller than the number of constraints. The 

adjoint variable method is more efficient than the direct method when the 

number of design variables is larger than the number of constraints. 

In practical design situations we usually have to consider several 

load cases. The effort associated with the direct method is approximately 

proportional to the number of load cases. The number of critical 

constraints, on the other hand, does not change significantly with the 

number of load cases, and is usually of the same order as the number of 

design variables. Therefore, in a multiple-load-case situation the 

adjoint method is preferable. 

Both the direct and adjoint methods require the derivatives of the 

stiffness matrix with respect to the design variable. When it is 

difficult to obtain this derivative it is possible to fall back on a 

finite difference approach. For example, using the forward difference 

formula we can approximate dU/dx as 

dU - U(x + ~x) - U(x) 
dx - ~x 

(8 ) 

The evaluation of dU/dx from Eq. (8) is more expensive than from Eq. 

(4) because the calculation of U(x + ~x) requires assembling a new 

stiffness matrix K(x + ~x) and solving a new system 

K(x + ~x)U(x + ~x) - F(x + ~x) (9) 
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The major difference in computational expense is due to the fact that 

Eq. (1) and Eq. (4) have the same matrix K while Eq. (9) has a new matrix 

which requires an extra factorization. Beside the computational expense 

of the finite difference approach it is also associated with numerical 

problems. The error in Eq. (8) is 

dU 
dx 

U(x + fix) - U(x) 
fix 

( 10) 

and is called the truncation error. The selection of a large fix is 

associated with high value of the truncation error. On the other hand, 

too small values of fix can cause the round-off error to become excessive. 

Occasionally it is difficult to find a good value of fix which is a good 

compromise (see Refs. 3 and 4 for discussion of optimal fix). 

A method which combines the simplicity of the finite difference 

approach with the computational efficiency of the analytical approach is 

the semi-analytical approach (Ref. 5). The finite difference method is 

used to calculate dF/dx and dK/dx and then the direct or adjoint methods 

are used for obtaining the constraint derivatives. For example, using the 

forward difference approximation 

dK - K(x + fix) - K(x) 
dx fix 

(11 ) 

where the error is 0.5 flxd 2 K(x + I;flx)/dx 2 for some 0 ::; I; ::; 1. The semi-

analytical approach, however, can occasionally suffer from excessive 

truncation errors as shown in Ref. 6 and the following example. 

Example - Cantilever beam subject to a displacement constraint 

Figure 3 shows a two-element cantilever beam under an end load. We 

want to find the derivative of the displacement at the tip with respect to 

the moment of inertia 11 and the length 1 1 • The problem is simple enough 

so that an analytical solution based on elementary beam theory is easily 

obtained: 

® 

Figure 3: Beam example for derivatives of static response 
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-p-
pR.~ 

wtip (R. ~ + 3R. ~ R. 2 + 3R.. R. ~ ) + 
3EI2 

(12) 
3EI. 

so that 

awtiP ....::E.... (q + 3q R. 2 + 3R.. R. ~ ) ( 1 3 ) ar.- 3EI~ 

(14) 

The finite element solution is based on a standard cubic beam 

element. We denote the displacement and rotation at the i-th node as WI 

and Bi , respectively. The element stiffness matrix is 

[ 12 

6R. -12 

" 1 [KE] EI 6R. 4R. 2 -6R. 2R.2 

-12 -6R. 12 -6R. (15 ) 
R.' 6R. 2R.2 -6R. 4R. 2 

so that the global stiffness matrix, corresponding to degrees of freedom 

W2, B2, W,' B, is 

II 12 II 12 12 12 
12 (- + -) -6 (- - -) -12 6 

R. ~ R.~ R.i R.~ R.i R.~ 

II 12 12 12 

K E 4 (- + -) -6 2 ( 1 6) 
R.l R.2 R.2 R.2 2 

12 12 
12 - -6 

R.~ R.~ 

12 
sym 4 

R.2 

The load vector F is T F = [O,O,p,O] and the solution of Eq. (1 ) is 

\ :: \ -
R.~ 131. + R. 2 R.i/2I 1 

U (.E ) q/2I. + R. 2R. I /I. 
(17 ) E (R. ~ + 3R.iR. 2 + 3R..R.~)/3I. + R.U312 ( w, 

B. R.2 121. + R. 2 R..1I. + R.~/I2 I 

We first use analytical methods for the derivative calculation so 

that we need (aK/aII)U and (aK/aR..)U 
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ClI 1 

where the 
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[12 
-6J1. 1 

(~) 4J1. ~ 

JI.~ 

sym 

( 12w2 - 6J1. 192 
(~) -6J1. 1W2 + 4J1.i9 2 
JI.~ 0 

0 

expression for w2 and 92 from 

[

-36 

sym 

-9w2 + 3J1. 192 

3J1. 1 W2 - Jl.i 92 

o 
o 

Using the direct method 

or 

W2 p/ll ! 
Cl 92 -K pJl. 2/I 1 
Clll W3 

~ ) 93 

0 

0 

0 

(.!: ) 
11 

Eq. 

o 
o 
o 

:] 
W2 

92 

W3 

93 

Jl. 2 

0 
0 

(17 ) was used. 

~ ] W3 

9 3 

{ -6 (1 + 

~ 2(JI. 1 + 

( 

.2. 

EI~ 

o 
o 

Jl. 1J1. 2 + 

JI.~Jl.2 + 

1 
(18 ) 

Similarly 

(19 ) 

+ Jl.U3 
Jl.V 2 

Jl.1J1.~ + Jl.U3 

~ 'l'.12 

Jl. 1J1. 2 + Jl.V2 

(20 ) 

so that Clwt " /Clll IP Clw3/Clll agrees with the result from Eq. (13). 

Similarly 

or 

W2 ~-(6P/Jl.l)(1 + Jl. 2/Jl. 1) 

~ 
(JI. i + Jl. 1J1. 2)/I 1 

Cl 92 
_1 ( 2p/ JI. 1 )( JI. 1 + JI. 2 ) (.2.) (Jl. 1 + Jl. 2 )11 1 

TI:" K 

( 0 
E 

( (Jl. 1 + Jl. 2)2/I 1 W3 

93 0 (JI. 1 + Jl. 2)I 1 

(21) 

So that Clwti /ClJl. 1 = ClW3/ClJl.1 agrees with the result from Eq. (14) • 
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T 
Using the adjoint method, Z = oWtip/oU = [O,O,l,OJ so, 

_I 
II = K Z = K 

so that, from Eq. (7) 

oWtip = _ IIT(oK/aII)U 
all 

and 

a 
a 

a 
) 

iU3I 1 + i2iU2I1 

(..!. ) i~/2I1 + i 2i l /I I 
E 

(!~ + 3!li2 + 3!1!:)/3I 1 

\ il/2I1 + i 2!I/II + !:/I2 

E-- (!~!2 + i~!1 + !~/3) 
EI~ 

+ i~/312 

(22) 

(23) 

(E ~ )(!I + !2)(-2iI/I I - 3!2i 1/I I 
1"1 

+ il/II + 2i 2i 1/I I ) = ~ (i l + i2)2 
I I 

(24 ) 

Next we compare the exact derivatives to those obtained by finite 

differences. Using the forward difference approach 

awtip : Wtip(II + ~II) - Wtip(II) 
all - ~II 

(25 ) 

and the truncation error et is approximately 

e = t 
(26) 

the relative error 

e t ~II 

(lWtip 
---- (27) 

II 

all 

so that it is enough to take ~II/II = 10 to get a negligible truncation 

error. Similarly, the truncation error for the derivative with respect to 

i l is approximately 

(28 ) 
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et 1111 

awtip - 11 + 12 

a1 1 

249 

-' and again it is enough to take 1l1 1 /(1 1 + 12) = 10 

(29) 

The error analysis 

for the semi-analytical method is more complicated. Using Eq. (23) 

aWti - T K(I 1 + IlI 1) - K(II) 
~ D ~ A U (30) 
all IlII 

and the truncation error is 

ilII 
AT a2 K U = 0 -2 

ali 
(31) 

because K is a linear function of II' The situation is not as good for 

the truncation error of aWtip /a1 1 which is approximately 

il11 T a2K pll1 1 
- A - U - -- (3q + 71112 + 4q) 

2 a1~ EII11 
(32) 

and the relative error is 

Comparing the semi-analytical error to the one obtained by the 

finite-difference approach, Eq. (29) we note that it is seven times larger 

when 11 = 1 2 , As shown in Ref. 6, this larger error for the semi-

analytical method becomes very serious with increasing number of elements. 

IV. SENSITIVITY OF VIBRATION AND BUCKLING CONSTRAINTS 

Vibration and buckling problems lead to an eigenvalue problem of the 

type 

(34 ) 

where K is the stiffness matrix, M is the mass matrix (vibration) or the 

geometric stiffness matrix (buckling) and U is the mode shape. For 

vibration problems ~ is the square of the frequency of free vibration and 

for buckling problems it is the buckling load factor. Both K and Mare 

symmetric. The mode shape is often normalized, with a symmetric, positive 

definite matrix W as 
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(35 ) 

where, in vibration problems, the normalizing matrix W is often equal to 

the mass matrix M. Equations (34) and (35) hold for all eigen-pairs 

(~k,Uk)' Differentiating these equations with respect to a design 

variable x for a particular eigen-pair we obtain 

(36 ) 

and 

where use has been made of the symmetry of the matrix W. Equations (36) 

and (37) are valid only for the case of distinct eigenvalues. In the case 

of repeated eigenvalues the repeated eigenvalues may not even be 

differentiable, and only directional derivatives may be obtained (Ref. 7). 

If only the derivatives of the eigenvalues are required they may be 

T obtained by premultiplying Eq. (36) by Uk to obtain 

T T 
d~k/dx = Uk(dK/dX - ~kdM/dx)Uk/UkMUk (38) 

When eigenvector derivatives are required Eqs. (36) and (37) are 

combined as 

_ (dK dM)U 
dx - Ilk dx k 

_ 1. UT dW U 
2 k dx k 

(39 ) 

The system (39) may be solved for the derivatives of the eigenvalue 

and the eigenvector. Care must be taken in the solution process because 

the principal minor K - IlkM is singular. Cardani and Mantegazza [Ref. 8] 

discuss several solution strategies. 

One of the more popular solution techniques is due to Nelson (Ref. 

9). Nelson's method temporarily replaces the normalization equation, Eq. 

(35), by the requirement that the largest component of the eigenvector be 

-
equal to one. Denoting this re-normalized vector U, and assuming that its 

largest component is the m-th one, Eq. (35) is replaced by 

u = 1 
m 

and Eq. (37) by 

(dUk/dX)m = 0 

(40) 

( 41) 
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Equation (36) is applicable also to Uk and is written as 

(42 ) 

where 

(43 ) 

Equation (41) is now used to reduce the order of Eq. (42) by deleting the 

m~th row and m-th column. When the eigenvalue ~k is distinct the reduced 

system is not singular and may be solved by standard techniques. Once Uk 

and dUk/dx are found, Uk and dUk/dx are easy to obtain. In fact, it is 

easy to check that 

(44 ) 

and 

(45) 

Example 

For the beam shown in Fig. 4 initially II 1 2 , and we want to 

i £ 
® 

Figure 4: Beam example for eigenvalue derivatives 

stiffen the beam for the purpose of increasing the fundamental frequency 

with the least additional mass. We assume that the mass is proportional 

to the square root of the moment of inertia 

m = a II 
where a is a given constant. We need the derivatives of the fundamental 

frequency of the beam with respect to the moments of inertia II and 1 2 , 

We employ a finite element analysis of the beam using a 2 element 



www.manaraa.com

252 

representation. The only non-zero degrees of freedom are the rotations 

6 2 , 6. at nodes 2 and 3. The element stiffness matrix is given in Eq. 

(15) and the global stiffness matrix K is found to be 

E [4(1 1 + 12) 212] 
K "' I 

212 412 

where E is Young's modulus. The element consistent mass matrix is 

54 
13J1. 
156 

The global mass matrix is found to be 

J1.2 [4(m1 + m2) - 3m2 ] 
M = 420 

- 3m2 4m2 

where mI' m2 are the masses of the two beam segments 

m1 • a II'"'; m2 = a If; 

The displacement vector U is 

U • {:: } 

(46) 

(47) 

(48) 

(49) 

(50) 

The eigenvalue ~ in Eq. (34) is the square of the frequency. and we take 

the mass matrix as the normalizing matrix W in Eq. (35). Initially II a 

12 - I and we can find the eigenvalues from the equation 

IK - ~MI = 0 

or 

EI [8 
JI. 2 

Define 

then 

so that 

2] _ ~a/IJI.2 [ 8 
4 420 - 3 

8 - 8; 
0 = 

2 + 3~ 

~1 0.4222. 

-3] ,. 0 
4 

420EII 

2 + 3~ . 23;2 - 76p 
4 - 4p 

-
~2 -2.88 

(51) 

(52) 

+ 28 
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).II z 177EII 
a9-' 

The corresponding eigenvector satisfies Eq. (34) or 

[ 4.62 

3.27 3.
2
'] I"! 2.31 a, I: ! 

and Eq. (35) with W = M 

a!;~ (8a~ - 6a 2 a. + 4a~) = 1 

The solution of the above equations gives 

Now we can go to the derivative calculation 

aK 
aT; - ).II 

aK ar;- ).II 

~ =!! [6 all 9-

aM E [: ar; - I 

E [3.16 
= I 2.63 

From Eq. (38) we obtain 

~ J -
(177EII)(~) 

~ J -

2.63J 
3.16 

a9-' 420II 

(177EII) (~) 
a9-' 4201I 

[ ~ 

[-

(53) 

(54 ) 

(55) 

(56) 

~J 
E 

[ 3~ 16 ~ J 
=1 

2 

1.5 
- :.5 J 

(57) 

(58) 

It is therefore more efficient to stiffen beam 1 than to stiffen beam 

2 in terms of minimum weight increase. This result holds at the design 

point where II - I 2 • As II is increased, we may expect that a).ll/aI 2 will 

become larger and eventually it will become more effective to increase I 2 • 

It should be noted that vibration and buckling constraints do not 

always require the solution of an eigenvalue problem. For example, one of 

the most common buckling or vibration constraints is a lower limit on the 

lowest eigenvalue, that is 

).II ~ ).Imin 

This constraint can usually be reformulated as 

KT - K - ).IminM is positive definite 

(59 ) 

(60) 
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The advantage of this formulation is that the constraint may be evaluated 

by factoring KT 

(61 ) 

where L is a lower triangular matrix with ones on its diagonal and D is a 

diagonal matrix. The condition that KT is positive definite now reduces 

to the condition that all the terms in the matrix D are positive. This 

approach has the advantage that matrix factorization is usually much 

cheaper than matrix eigensolution. The disadvantage of this alternative 

approach is that the derivatives of D are expensive to evaluate. They are 

calculated best by finite differences (Ref. 10) so that each derivative is 

as expensive to calculate as the matrix D itself. The derivatives of the 

eigenvalues (Eq. (38», on the other hand, are very inexpensive. Thus, 

the alternate approach is recommended only if the number of design 

variables is very small, or if the derivatives of K and M are not readily 

available. 

V. SENSITIVITY OF CONSTRAINTS ON TRANSIENT BEHAVIOR 

Constraints on Transient Behavior 

Compared to constraints on steady-state behavior, constraints on 

transient behavior depend on one additional parameter-time. That is, a 

typical constraint may be written as 

g(x,U,t) ~ 0 0 :> t :> t f (62) 

where for simplicity we assume that the constraint is enforced during a 

period of time beginning at zero and ending at some time t f . For actual 

computation the constraint has to be discretized at a series of time 

pOints ti 

i 1, ••. ,nt (63 ) 

The distribution of time points ti has to be dense enough to minify 

the chance of significant constraint violation between time points. This 

type of constraint discretization has the adverse effect that it greatly 

increases the number of constraints. Because the number of constraints is 

an important factor in the cost of an optimization problem, the approach 

represented by Eq. (63) is not very satisfactory. There are several 

alternative ways of removing the time dependence of a constraint that do 

not replace it by many equivalent constraints. We discuss three 

alternatives: 
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(i) !g~!!!!~£!_~!!~rior constraints. This approach replaces 

g(x,U,t) by a single constraint g(x,U). One form is 

t f 

g(x,U) = 1 J [g(x,U,t) - Ig(x,U,t)l]dt ~ 0 
t f 

o 

(64) 

Note that if the constraint g(x,U,t) ~ 0 is violated over any finite 

period of time g(x,U) ~ 0 is also violated. If, however, g(x,U,t) is not 

violated anywhere g(x,U) is zero. The disadvantage of this formulation is 

that in the feasible domain there is no indication of how near to being 

critical the constraint is. Therefore, this form of equivalent constraint 

is not suitable for optimization methods which tend to operate in the 

interior of the feasible domain (such as the method of feasible directions 

or the interior penalty function method). It is mostly used with the 

gradient projection method which operates on the outside boundary of the 

feasible domain. For use with an exterior penalty function formulation, 

g(x,U) of Eq. (64) has the disadvantage of having a discontinuous 

derivative. A continuously differentiable form which is more compatible 

with the exterior penalty function is 

- 1 g(x,U) = [r 
f J 

t f 

o 

where <a> denotes max (a,o). 

(65) 

The savings obtained by replacing the discretized constraint, Eq. 

(63) by an integrated one may seem illusory because the integral usually 

requires the evaluation of g(x,U,t) at many time points. The savings 

however are in the computations of constraint derivatives and search 

directions. The savings in derivative calculations are discussed later in 

this section. 

(ii) Equivalent interior constraint. This is another form of an 

integrated constraint 

g(x,U) 

t f 

[1- J dt/g(x,U,t)]_l ~ 0 
t f 

o 

(66) 

where the equivalent constraint g is defined only when g(x,U,t) > O. Thus 

this form is of use only with optimization techniques which are restricted 

to the interior of the feasible domain. 
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(iii) Critical point constraint. Unlike the two previous constraint 

forms this form is not an integrated constraint. Rather, the constraint 

is replaced by 

i z 1,2, ••• (67) 

where tmi are points where the constraint has a local minimum. Figure 5 

shows a typical situation. The constraint function has two local minima; 

an interior one tmt and a boundary minimum at tml = t f . 

These local minima are critical points in the sense that they 

represent time points that are likely to be involved first in constraint 

violation. The advantage of this form of equivalent constraint over the 

other two is that there is no blurring due to the integrated effect. For 

example, consider a change in design which moves the constraint g from the 

solid to the dashed line in Fig. 5. An integrated constraint g may become 

more positive indicating a beneficial effect, while the critical pOint 

constraint would indicate the increased danger of constraint violation. 

The disadvantage of the critical point formulation is that the number of 

critical points could conceivably be large. 

One attractive feature of the critical pOint constraint is that for 

the purpose of obtaining first derivatives the location of the critical 

point may be assumed to be fixed. This is shown by differentiating Eq. 

(67) with respect to a design variable x 

dg(t .) 
ml 

dx 

z 
~ 9 
u z 
::::> u.. 
.... 
Z 
<t c:: .... 
C/) 
z 
8 

-NOMINAL 
DESIGN 

--- PERTURBED 
DESIGN 

'----------'---.... TIME 

Figure 5: Critical points 

ag + ~ dU 
= ax au dx 

a", dtmi +..::.>i!. __ 

at dx 
(68) 
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The last term in Eq. (68) is always zero. At an interior minimum 

such as tmi in Fig. 5 ag/at is zero. At a boundary minimum, if ag/at is 

not zero (it must be negative) then dt ./dx is zero, because an 
ml 

infinitesimal change in the design variable cannot change the slope by a 

finite amount to make it positive (which is necessary if the minimum 

location has moved away from the boundary). 

In the following we assume that the equivalent constraint is given as 

t f 

g(x,U) z f p(x,U,t)dt ~ 0 (69) 

o 

This form obviously represents the equivalent exterior constraint of Eq. 

(64). It also represents the critical point constraint with 

p(x,U,t) = g(x,U,t)6(t - t mi ) (70) 

·The form of Eq. (69) does not include the equivalent interior 

constraint, but it corresponds to the form of the reciprocal of that 

constraint. The methods discussed in the remainder of this section for 

obtaining derivatives of g(x,U) can be adapted to the interior constraint 

by noting that 

~x [_~_1_] 
g(x,U) 

Similarly the form of Eq. (69) corresponds to the square of the constraint 

of Eq. (65), and it is easy to obtain the derivative of g from that of g2. 

Derivatives of Constraints 

The derivative of the equivalent constraint, Eq. (69) with respect to 

a design variable x is 

~ t f 
~ .. f (~+1£ dU)dt 
dx ax au dx (72 ) 

o 

To evaluate the integral we need to differentiate the equations of 

motion with respect to x. These equations are written in the general form 

AU = F(U,x,t) U(O) .. U o (73 ) 

where U is a vector of generalized degrees of freedom and F is a vector 

which includes contributions of external and internal loads. 

We now discuss several methods for calculating the constraint 

derivative Eq. (72) using Eq. (73). We start with the simplest - the 

direct method. 
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As in the steady-state case the direct method proceeds by 

differentiating Eq. (73) to obtain an equation for dU/dx. 

aF 
+ -ax ' 

where J is the Jacobian matrix 

dU (0) = 0 
dx 

(74) 

(75) 

The direct method consists of solving for dU/dx from Eq. (74), and 

then substituting into Eq. (72). The disadvantage of this method is that 

each design variable requires the solution of a system of differential 

equations, Eq. (74). When we have many design variables and few 

constraint functions we can, as in the steady-state case, use a vector of 

adjoint variables which depends only on the constraint function and not on 

the design variables. This procedure is again called the adjoint variable 

method. The first step is to premultiply Eq. (74) by the transpose of the 

adjoint vector A and integrate 

o o 

Integrating by parts we obtain 

t f t f 
[ATA + AT}.. + ATJ] ATA dU I - J dx 

0 0 

we now require A to satisfy (recall 

then 

t f 

J ap dU dt 
au dx 

o o 

(76) 

dU dt 
t f 

AT[aF _ dA U]dt 
J dx ax dx 

(77) 

0 

that p is defined by Eq. (69)) 

(78) 

(79) 

where use has been made of the fact that dU/dx is zero at t O. 

Combining Eq. (79 ) with (72 ) we get 

dg 
t f 

rap _ AT (aF _ dA 
J U)] dt (80) dx ax ax dx 

0 

Equation (78) is a system of ordinary differential equations for A which 

are integrated backwards (from t f to t = 0). This system has to be solved 

once for each constraint rather than once for each design variable. As in 

the steady-state case the direct method is preferable when the number of 
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design variables is smaller than the number of constraints, and the 

adjoint variable method is preferable when the number of design variables 

is larger than the number of constraints. 

Equation (78) takes a simpler form in the case of a single critical 

point constraint 

(81) 

If there is only one critical pOint, by integrating Eq. (81) from tmi - £ 

to tmi + £ for an infinitesimal £ it is easily shown that this is 

equivalent to 

(82) 

A third method which is available for derivative calculation is the 

Green's function approach [11J. This method is useful when the number of 

degrees of freedom in Eq. (73) is smaller than the number of design 

variables or constraints. This can happen when the order of Eq. (73) has 

been reduced by employing modal analysis. The Green's function method 

will be discussed for the csse of A = I in Eq. (73) so that Eq. (79) 

becomes 

dU = J dU dF dU (0) = 0 (83) + -
dx dx dX dx 

The solution of Eq. (83) may be written [11 J in terms of a Green's 

function K(t,'r) as 

dU 
dx 

dF 
K(t,'r) dX (·r)dT (84) 

o 

where K(t,T) satisfies 

K(t,T) - J(t)K(t,T) 

K(O,T) 0 

6(t - T)I (85) 

and where 6(t - T) is the Dirac delta function. It is easy to check, by 

direct substitution, that dU/dx defined by Eq. (84), indeed satisfies Eq. 

(83) • 

If the elements of J are bounded then it is easy to show that Eq. 

(85) is equivalent to 

K(t,T) 0 

K(T,T) I 

K(t,T) - J(t)K(t,T) 

so that the integration 

t. To see how dU/dx is 

t < T 

(86) 

o t > T 

in Eq. (84) needs to be carried out only up to T = 

evaluated with the aid of Eq. (86) assume that we 
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divide the interval 0 S t S t f into n subintervals with end pOints at 

TO - 0 < tl < ••• < tn a t f • The points Ti are dense enough to evaluate 

Eq. (89) by numerical integration and to interpolate dU/dx to other time 

pOints of interest with sufficient accuracy. We now define the initial 

value problems 

k=0,1, ••• ,n-1 (87) 

Each of the equations in (87) is integrated from Tk to Tk+ to yield 

K(T k + ' Tk ). The value of K for any other pairs of points is given by 

(see Ref. 11 for proof) 

K(Tj,Tk) .. K(Tj,T j _ )K(Tj _ ,T j _ ) ••• K(T k+ ,Tk ) j > k (88) 

The solution for K is equivalent to solving nm systems of the type of (74) 

of (81) where nm is the number of degrees of freedom of the vector U. 

Therefore, the method would become competitive when the number of design 

variables and constraints both reach or exceed nm• 

Example 

We have a nonl inear single degree of freedom system governed by the 

differential equation 

u(O) = 0 (89) 

and a constraint on the response u in the form 

g(u) .. c ~ u(t) ~ 0, (90) 

The response has been calculated and found to be monotonically 

increasing, so that using the critical pOint constraint 

We want to use the direct, adjoint variable and Green's function methods 

to calculate the derivatives of g with respect to a and b. 

The problem is simple enough so that u may be integrated directly to 

yield 

u .. b 2 t 
bt + a 

In the notation adopted in this section 

A .. a 

aF 
J = au - 2(u - b) 

(91) 

(92) 
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Direct Method. The direct method requires us to write Eq. (74) for x - a 

and x = b. For x - a we obtain 

du du • 
a da = 2(u - b) da - u du (0) z 0 

da (93) 

In general the values for u and u would be available only numerically 

and Eq. (93) will also be integrated numerically. Here, however, we have 

the closed-form solution for u, so that we can substitute 

du 2ab du ab 2 
a - - --- - - --''''''---

da bt + a da (bt + a)2 

and solve analytically to obtain 

then 

b 2 t f ~ _ - du (t ) = __ "'--_ 
da da f (btf + a)2 

du (0) .. 0 
da 

We repeat the process for x = b. Equation (74) becomes 

du du 2(u - b) a - = 2(u - b) - -db db 

Solving for du/db we obtain 

du b2t 2 + 2abt 
db -

(bt + a) 2 

and then 

~ - du b2 t 2 + 2batf 
(t ) = -

f 
db .. Cib f (btf + a) 2 

~ (0) .. 0 
db 

(94 ) 

(95) 

(96) 

(98) 

(99) 

Adjoint Method. The adjoint method requires the solution of Eq. (82) 

which becomes 

aA + 2(u - b». .. 0 ).(tf ) 

or 

• 2ab ).(tf ) a). - ---). .. 0 bt + a 

which can be integrated to yield 

). .. 1. (bt + a )2 
a btf + a 

= .:..l. ~ (t ) 
a au f 

1 .. -a 

Then dg/da is obtained from Eq. (80) which becomes 

.. -a (100) 

(101 ) 

( 102) 



www.manaraa.com

262 

~ 
da 

(103 ) 

Similarly, from Eq. (80) dg/db is 

~-
t f 

2 
t f 

(bt + a ) 2 ab b2t f + 2bat f 

f 2A(u - b)dt f bt + a dt db a btf + a (bt f + a)2 
0 0 

(104 ) 

Green's Function Method. We recast the problem as 

Ii = (u - b)2/a (105 ) 

so that the Jacobian J is 

J = 2(u - b)/a (106 ) 

and Eq. (86) becomes 

k(t,.) - [2(u - b)/a]k(t,.) a k(t,t) (107 ) 

or 

• 2b 
k(t,.) + bt + a k(t,.) = 0 ( 108) 

The solution of Eq. (108) with the initial condition K(.,.) is 

k = (b. + a)2 
bt + a 

so that from Eq. (84) 

du 
t f 

of 
da f aa kd. 

0 

similarly 

du 
t f 

db = f of kdt 
ob 

0 

t f 
b. + a (u -

= - f (-----) bt + a a 2 
0 

t f 
2(b. + a)2(u - b)d f bt + a a • 

0 

VI. SIMULTANEOUS ANALYSIS AND DESIGN 

t ~ • (109 ) 

b)2 - b2t d. (bt + a)2 and 

b2t 2 + 2abt 
2 (110) 

(bt + a) 

In its early days structural optimization employed the calculus of 

variations to obtain the Euler-Lagrange optimality differential equations 

and these were solved simultaneously with the differential equations of 

structural response. This approach is still used today for the 

optimization of individual structural elements such as beam-columns (Ref. 

12); however, for built-up structures modeled by finite elements, a nested 
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approach is typical. Resizing rules based on optimality criteria require 

that the structural response be calculated repeatedly for each set of 

trial structural design variables (see, for example, Ref. 13). This 

preference for the nested over the simultaneous approach is probably due 

to the simplicity of the structural resizing rules which are possible when 

the structural response is known. This simplicity contrasts with the 

difficulty of solving the large systems of nonlinear algebraic equations 

which are obtained from a simultaneous formulation. 

In the last twenty-five years direct search methods have been gaining 

ground as the standard for structural optimization. These techniques are 

commonly used in a nested approach, with the structural analysis equations 

repeatedly solved during each design iteration. Part of the reason for 

the popularity of the nested approach is that the structural analysis 

equations are solved by techniques which are quite different than those 

used for the design optimization. An exception is the design of a 

structure subject to constraints on its collapse load. There, the 

analysis problem ("1 imi t analysis") is often approximatec;! as a linear 

program and solved by the simplex method. The structural design problem in 

that case ("limit design") is easily formulated as a single linear program 

with the element forces and structural parameters both treated as design 

variables (Ref. 14, for example). 

In the late sixties, Schmit, Fox and their coworkers (Refs. 15-19) 

tried to integrate structural analysis and design by employing conjugate 

gradient (CG) minimization techniques for solving linear structural 

analysis problems. They found that CG methods were not competitive with 

the traditional direct Gaussian elimination techniques. More recently 

techniques for unconstrained minimization have become more efficient and 

their application to structural analY!3is has become more feasible (e.g., 

Ref. 20). The emergence of the preconditioned CG techniques (e.g., Ref. 

21) and the element-by-element (EBE) formulations of Hughes and coworkers 

(Ref. 22) make CG methods particularly attractive for structural analysis. 

In view of the increasing use of optimization methods for structural 

analysis, there is merit in considering again the simultaneous approach to 

analysis and design. This section (based on Refs. 23, 24) descr ibes the 

use of the simultaneous approach for the design of structures subject to 

stress constraints both in the linear and nonlinear range. 

Nested and Simultaneous Formulations of the Structural Design Problem 

The traditional-nested-formulation of the structural design problem 

may be written as 
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find X to minimize m(X) subject to 

gj(X'U)~O j=l ••••• n (111 ) 

where m is an objective function. X is a vector of design parameters. U is 

the displacement vector and gj are constraint functions such as stress and 

displacement constraints. The displacement vector U is the solution to a 

linear or nonlinear system of algebraic equations (the equations of 

equilibrium) 

F(U.P.X) = 0 (112) 

where P is a load vector. The optimization problem is usually solved by 

repeatedly calculating U and its derivatives with respect to the 

components of X. xj . U is calculated from Eq. (112) and ~U is calculated 
Xj 

either by differentiating Eq. (112) or by finite differences. Based on U 

and its. derivatives the constraint functions gj and their derivatives can 

be evaluated and a numerical optimization technique can use this 

information to improve X. 

A simultaneous approach treats X and U equally as design variables 

and solves the following expanded problem 

find X.U to minimize m(X) subject to 

gj(X'U) ~ 0 j = 1 ••••• n (113 ) 

and 

F(U.P.X) = O. 

The equations of equilibrium are treated here as nonlinear equality 

constraints. In comparing the simultaneous and nested approaches two 

points should be noted. First. the simultaneous approach trades the 

solution of a bigger problem against the repeated solution of smaller 

problems (the response solution). Second. sensitivity calculations for 

the simultaneous approach are very inexpensive. because gj and Fare 

usually easily differentiated with respect to both U and X. 

Penalty Function Solution Technique 

Problem (113) is replaced by 

minimize ~(X.U.r) = cm(X) + r 

where 

m 
E p[gj(X'U)] 
j=l 

(114) 
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3J if g :ii go (115 ) 

is an extended interior penalty function (Ref. 25) with go being a 

transition parameter. The constants c and c 1 are chosen to balance the 

contribution of the objective function, inequality constraints and 

equality constraints to ,. The matrix B is used to improve the 

conditioning of the last term. In the present work it was taken to be the 

element-by-element approximation to the inverse of the small-displacement 

stiffness matrix (see Refs. 22, 23) of the initial structural design. 
_I 

Because it is an element-by-element approximation, the calculation of B F 

may be performed without forming any large system stiffness matrices. 
_I 

The matrix B is intended to improve the conditioning of the 

minimization problem, and its role is explained here for the linear case 

where 

F(U,P,X) = P - KU (11 6) 
_I 

where K is the system stiffness matrix. The term containing B may be 

written as 

(117 ) 
_I 

Without the B the second-derivative matrix of Eq. (117) with respect to 

the displacement unknowns would be KTK which has the square of the 
_1 

condi tion number of K, and so is very 111 conditioned. Because B is an 
_I 

approximation to K the second-derivative matrix now has a condition 

number similar to K. 

The sequence of unconstrained problems was solved by a CG package 

based on Beale's restarted CG algorithm (Ref. 26). An initial structural 

configuration was chosen and the displacement field based on a linear 

analysis was calculated by Gaussian elimination and used for starting the 

CG algorithm. For cases when the behavior was highly nonlinear this 

initialization resulted in slow convergence, therefore the residual vector 

F(U,P,X) was replaced by F(r,U,P,X) where 

- 1 F(r,U,P,X) - A(r) F(U,A(r)P,X) (118 ) 

where A(r) is a scaling factor which was set to a small value for the 

initial penalty multiplier r l and was gradually increased to 1 as r was 
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decreased. This is equivalent to increasing the nonlinearity of the 

problem gradually as the optimization proceeds. 

Seventy-Two-Bar Truss Example 

The first example is a 72-bar truss shown in Fig. 6. The truss was 

designed subject to a maximum stress constraint of 25,000 psi, and a 

minimum area of 0.1 in 2 • Two loading cases were considered. The first 

loading case consisted of 4 downward 5000 lb loads at nodes 1-4 plus a 

5000 lb in the X-direction and 5000 lb in the Y-direction at node 1. The 

second loading condition was with the same loads scaled up by a factor of 

10. The traditional nested formulation has 72 design variables and was 

solved by Powell's projected Lagrangian technique (Ref. 27) which is a 

sequential and quadratic programming algorithm recognized as one of the 

best techniques for constrained optimization. The simultaneous 

formulation has 120 variables including 48 displacement variables, and was 

solved with the penalty technique described in the previous section. 

Figure 6: Seventy bar truss 

The results of the three optimization algorithms are compared in 

Table 1. It is seen that both solution techniques produced similar weight 
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with differences of the order of 1 percent. For both load cases the 

simultaneous approach was significantly better in terms of CPU time than 

the nested approach. 

Table 1 

Comparison of results of nested and simultaneous optimization procedures 
for 72-bar truss. 

mass (lb) 

* CPU (sec) 

mass (lb) 

* CPU (sec) 

* IBM 3084 

Antenna Example 

Penalty-function 
Formulation 

(simultaneous) 

96.5 

70.9 (20 r values) 
52.4 (10 r values) 

493.7 

222.6 (20 r values) 
258.4 (10 r values) 

Projected 
Lagrangian 

(nested) 

95.7 ~ 

90.2 ) 

498.9 ! 
288.3 

nominal loads 

higher (x 10) 
loads 

The second example is a 55 meter antenna-reflector structure shown in 

Fig. 7. The structure was supported at the six vertices of its lower 

surface and subjected to a 10000 lb tensile load at the center of its 

upper surface. The structure was designed subject to the same stress and 

minimum area constraints as the 72-bar truss. The nested approach has 420 

truss elements as design variables while the simultaneous approach has 730 

design variables including 310 displacement variables. 

The simultaneous solution procedure required 49 minutes of IBM 3084 

CPU time with 30 r values and yielded an optimum weight of 1529.0 lb. The 

nested approach based on Ref. 27 failed to complete even a single 

iteration because of convergence difficulties. As these types of 

difficulties were encountered by other researchers for large problems with 

sequential quadratic programming algorithms, we switched to the 

generalized reduced gradient algorithm (Ref. 28). Because of availability 

of computer resources the simultaneous and nested procedures were run on 

an IBM 4341. The simultaneous design procedure required 502 minutes of 

CPU time and yielded an optimum weight of 1527.9 lb. The nested approach 

based on Ref. 28 required 1961 minutes and yielded a final weight of 

1519.6 lb. The two designs were almost identical. It is interesting to 
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note the small differences between the two designs obtained by the 

simultaneous approach on the two computers. These small differences are 

thought to be due to differences in the implementation of double-precision 

accuracy on the two machines magnified by the more than 10,000 CG 

iterations required for convergence. This example clearly demonstrates 

the advantage of the simultaneous approach for large problems. 

Figure 7: Antenna reflector structure 
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ABSTRACT 

First, the historical background leading to the optimal

ity criteria approach is discussed pointing out the role of 

the traditional design methods on one hand, and Prager's work 

based on variational principles on the other hand as the two 

motivating influences. This is followed by the formal devel

opment of the method utilizing the separability properties of 

discretized structur~s or models. The importance of the single 

constraint case is pointed out and the associated particularly 

simple yet powerful optimality criteria is presented followed 

by extension to multiple constraints. Examples are used to 

illustrate the approach for displacement, stress and eigen

value related c~nstraints. 

INTRODUCTION 

Optimality Criteria (OC) methods of structural optimiza

tion, the subject of this discussion, trace their origin to 

intuitive traditional approaches to the problem of strength 

design, most directly to the Fully Stressed Design (FSD) cri

teria with its associated stress ratio resizing algorithm. 

The FSD criteria states that a structure is of minimum weight 

if every member is at its maximum allowable stress, or at 

minimum size at least under one of the loading conditions. 

This is correct for statically determinate and most indeter

minate structures. This criteria, and its relative, the 

Simultaneous Failure Modes (SFM) criteria, are based on the 

intuitive, but incomplete assumption that if a structure is 
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sized just not to fail locally and globally under its critical 

loads, then it must be an optimum structure, because one could 

not reduce the sizes and therefore the weight, any further. 

What is missing is the important influence of internal force 

distribution, also the function of the size variables in indeter

minate structures. 

This idea of characterizing an optimum structure through 

conditions that are believed to exist at optimum, and then 

apply a resizing procedure that directly satisfies those con

ditions, is the fundamental approach that designers always 

used and became formalized as the Optimality Criteria methods 

during the late 60's. Because of this ancestry in essentially 

intuitive methods, confusion persisted as to the exactness and 

validity even of the formally derived OC methods that followed. 

It is perhaps beneficial to briefly glance over the history of 

the development of analysis and optimization methods to better 

appreciate why and how optimality criteria methods were devel

oped and how they fit into the current optimization technology. 

HISTORICAL BACKGROUND 

Structural engineers were among the first to start to uti

lize computers as soon as they became available. Solutions to 

specific design problems were the first targets both in civil 

and in aeronautical engineering. At the same time developments 

were under way in general purpose structural analysis tech

nology that soon resulted in structural engineers to become 

one of the major users of computers. The resulting general 

purpose automated analysis capability, that after a few other 

names became known as the Finite Element Method (FEM), enjoyed 

rapid development. 

Recognizing the possibilities offered by computers the 

idea of developing general purpose structural optimization 

methods also emerged in the 50's. The proper framework was 

found to be the Mathematical programming (MP) methods of oper

ations research. Consequently, structural optimization was 

recast as a problem in nonlinear mathematical programming 
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(Refs. 1 and 2) opening up vast possibilities for further devel
opments. The new method quickly proved very successful for 

problems of a moderate number of design variables, such as the 
ones formerly treated by SFM. Hopes were very high, but as it 
turned out there was a price to pay for generality. While 
finite element analysis capability rose from a few hundred to 

thousands of elements, the capability of MP methods rose only 
from a few times ten to a few hundred design variables. MP 
methods clearly were not able to keep up to optimize what now 
could be routinely analyzed. There was a need towards the end 
of the 60's to increase optimization capabilities to better 
match finite element practices, at least for the simple sizing 
problem. In the course of these developments the time honored 
FSD and SFM methods were shown to be correct most of the time 
but not all of the time. SFM was easily replaced by MP methods 
because of the small number of design variables that were 
involved. This was not the case with FSD, usually applied to 
the large finite element models to perform a few resizing iter

ations to meet stress constraints. It was known to converge 
very rapidly for conventional metal structures and was accepted 
as a practical approach (Refs. 3 to 5). A method was needed 

that like FSD also exhibited weak or no dependence on the num

ber of design variables, and was applicable not only to stress 
constraints, but to other important stiffness constraints as 

well, and was theoretically respectable. Formal methods of the 
calculus of variation, applied by Prager and co-workers to speci

fic distributed parameter problems, showed great promise, sug
gesting that interpretation to discretized (e.g., FEM) models 
could lead to a new class of general purpose optimization 
methods. 

The first discretized DC methods were based on strain 
energy distributions characterizing optimum structural designs 
for stress constraints. For example as Prager showed (Ref. 6), 

if the work of the applied loads is limited as an equality con
straint, the optimum structure with uniform material properties 
has uniform energy density distribution. A similar criterion 
was proposed (Ref. 7) for discretized structures stating that 
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at optimum the ratio of strain energy to strain energy capacity 
is constant for every member. The optimality criteria of 
Refs. 6 and 7 were valid, and equivalent, for uniform material 

pronerties and stress allowables, and a single loading condi

tion. They were both heuristic outside of these conditions, 
yet very efficient, and apparently yielded correct results, 

within a practical range of deviation from these limiting 
conditions. 

The more or less heuristic discretized OC methods up 
until this point were focused on the strength design problem. 
At the same time many interesting special problems were addres
sed by Prager and co-workers (Refs. 8 to 13) using variational 
approaches. The optimality conditions were stated in terms of 

differential equations with their solutions describing the shape 
of the optimum structure. Many references could be listed; the 
ones above are only typical examples. To combine the power and 

exactness of these special variational methods with the gener

ality of finite element methods became a tempting proposition. 

It meant simply to change the integrals into summations, the 
differential equations into algebraic equations, and serendip

itously exploit the separability properties of discretized for

mulations. Turning attention to certain stiffness constraints 

theoretically valid optimality criteria were derived for dis

cretized structures with displacement constraints (Ref. 14) 
employing classical Lagrangian multiplier methods of mathemat

ical optimization. To satisfy the optimality criteria an algo
rithm was proposed based on the attitude that if it provides 

an exact direct formula for statically determinate structures, 

same as FSD, then it will converge in a few iterations for most 

practical structures, again same as FSD. The difference, how

ever, is an important one; this criteria, unlike FSD, was theo
retically correct guaranteeing at least a local optimum when 
satisfied. This new and somewhat controversial direction soon 

started to enjoy major developments and clarification by inter

ested researchers (Refs. 15 to 22). Essentially complete devel

opments were available by the mid 70's (Refs. 23 to 29), 

followed by broadening applications (Refs. 30 to 45). 
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Ironically, as will be seen, the new OC methods that were 

introduced were as efficient numerically as FSD but were not 

directly applicable to stress constraints, and could not replace 

the discredited FSD for that purpose. FSD remains the work

horse for strength design in most design offices despite its 

shortcomings. 

Optimality Criteria Methods are based on radically differ

ent thinking from the one that went into the development of the 

Mathematical programming Methods. Most MP methods concentrate 

on obtaining information from conditions around the current 

design point in design space in order to find the answer to 

two questions~ in what direction to go, and how far, to best 

reduce the weight or cost directly. This is repeated until 

no more reduction is produced between iterations within some 

selected tolerance. Optimality Criteria methods on the other 

hand, exact or heuristic, derive or state conditions which 

characterize the optimum design, and then find or change the 

design to satisfy those conditions while indirectly optimizing 

the structure. The OC approach results in finding the close 

neig~borhood of the optimum usually very quickly. This is the 

basic difference in the philosophy of the two approaches as 

observed by Haug in Ref. 46. The variational methods applied 

by Prager produced differential equations with their solutions 

defining the optimum structure. The derivable discretized OC 

methods produce uncoupled algebraic equations to be solved to 

define the optimum structure. These equations are nonlinear 

and require iterative solutions, but structural behavior, usu

ally well understood by structural engineers, has a strong, and 

usually beneficial effect resulting in fast convergence to a 

practical solution. 

Optimality criteria methods had a brief but vigorous devel

opment in the seventies including the ASOP/FASTOP production 

level capabilities for strength and aeroelastic constraints 

(Refs. 30,40,44,45). These two codes are in production use by 

a number of organizations engaged in aircraft design. Not 

only have OC methods provided an efficient capability closely 
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connected with structural behavior, but they also presented a 

severe challenge to MP methods. As pointed out earlier, OC 

methods, unlike MP methods, are not limited by the number of 

design variables. Convergence depends on structural behavior, 

usually well understood by structural engineers, inheriting 

the behavior of the stress ratio algorithm for FSD in this 

respect. A few iterations are usually sufficient for a struc

tural model with thousands of finite elements. In response to 

this challenge the computational aspects of MP methods have 

been vastly improved, while accompanied unfortunately by some 

belligerence towards OC methods. The common computational 

elements of OC and MP methods were investigated and utilized. 

As a result, researchers of MP methods turned to such useful 

concepts as variable linking, sensitivity analyses, rapid 

reanalysis techniques, substructuring, dual programming, or 

anything else to slay the OC dragon, or at least to attempt to 

catch up with it. However, it is generality that remains the 

best feature of MP methods versus efficiency of any specialized 

method. At the present time there is a very simple and power

ful OC approach for a single constraint. It is an important 

capability because in many practical cases there is a single 

overriding problem to be alleviated. For multiple constraints 

the simplicity is somewhat compromized by the need to evaluate 

the Lagrange multipliers. In that case the dividing lines are 

fast fading (Refs. 47 to 49) and Multiplier Methods (MM) would 

probably be a better common designation for a number of effi

cient OC and MP approaches. 

OPTIMALITY CRITERIA METHODS FOR DISCRETIZED STRUCTURES 
WITH STIFFNESS CONSTRAINTS 

Single Constraint 

The single constraint case is important in practice. Often 

there is an overriding single requirement that dictates the 

materia) distribution. For example, the forward swept wing of 

the X-29 experimental aircraft (Fig. 1) had to be designed, in 
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addition to strength, for divergence not to occur up to a cer

tain velocity. An optimality criteria method (Refs. 50 and 51) 

was used in the aeroelastic tailoring studies to stiffen the 

composite wing for this requirement. The finite element model 

of the wing with about two thousand elements is shown on Fig. 2. 

Only around half a dozen iterations were usually needed to 

adjust the basic FSD strength design to increase divergence 

velocity to the desired value. 

The basic ideas will be introduced by first considering 

multiple constraints, then by specializing the results for 

single constraints. Further specialization for trusses with a 

single displacement constraint will be used as the simplest way 

to illustrate the method. Finite element formulations, and 

problems associ~ted with evaluation of the Lagrangian multi

pliers in case of multiple constraints will complete the 

presentation. 

The success of numerical optimality criteria methods hinges 

on the concept of separability that results in uncoupled opti

mality criteria equations. This in turn allows the formulation 

of simple recursion relations to calculate the next values of 

the size variables in the iterative process. In our case an 

additional condition concerning the derivatives of the con-

straint functions G· = C'(X) - c· J J J also have to be satisfied. 

A function of f(X), where X = (xl' x2 ' .•• , xn) is a 

vector of the variables xi' is separable if 

[la] 

that is, if the function can be written as the sum of contri

butions, each a function of only one of the variables. In the 

simple derivation that follows both the merit function and the 

contributions Cj(X) in the constraint functions Gj(X) are 

required to be separable explicitly. Furthermore, the functions 

Cj(X) contain internal forces that in case of indeterminate 

structures are implicit functions of all the variables xi. 
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For the uncoupled optimality criteria equations that will be 

derived to be rigorously valid, in addition to separability, 

the following condition for the derivatives of Cj(X) 

has to hold 

ac.(X) 
J 

ax. 
1 

dc .. (x. ) 
1J 1 
dx. 

1 

i=l, ... , n 

also 

[ lb] 

Equation (lb) expresses a stronger condition than separability 

when implicit dependence on all the variables may be involved. 

This condition expresses the requirement for the sum of the 

implicit derivatives to vanish so that the optimality criteria 

equations uncouple leading to the simple recursion relations 

to be derived next. These conditions are satisfied for the 

stiffness related constraints (Ref. 17) considered here, but 

not for stress constraints, frustrating attempts to develop a 

rigorous yet simple method for that most important case. 

The problem of optimum sizing of a discretized structure 

can be stated as 

n 
minimize W E w. (x.) 

i=l 1 1 
[ 2a] 

subject to G. C. - C. 0, j =1, ••• , m 
J J J 

[ 2b] 

n 
where C. E c .. (x. ) 

J i=l 1J 1 
[3] 

and C. 
J 

are the limiting values of the constraints. TO derive 

the optimality criteria equations we form the Lagrangian 

n 
L(x,\) E 

i=l 
w. (x.) + 

1 1 

m 
E \. 
j=l J 

n 

E 
i=l 

C .. (x.) - C. 
1 J 1 J 

[4 ] 

and require the derivatives relative to x· 1 
to vanish. Using 

d/dx i , the opti-the shorthand notation 'i 

mality conditions are: 

for the operator 
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m ClL 
ax. = W .. 

l.,l. + L 
j=l 

A. C ... 
J l.J,l. 

= 0 i=l, ••• , n [5 ] 
l. 

and 

A.G. 
J J 

0; A. > 0 
J -

j=l, ••. , m [6 ] 

where Aj are the Lagrangian multipliers. It is also required 

usually that the sizes x. satisfy some practical constraints 
l. 

on minimum and maximum sizes, that is 010 x. < x. < x., where x. 
l. - l. - l. l. 

and 1 x. 
l. 

are the minimum and maximum acceptable sizes, 

respectively. 

We now specialize 

by dropping the index 

and (6) become 

w .. + AC .. 
l.,l. l.,l. 

and either 

A > 0; G o 
or 

A = 0; G < 0 

o 

Eqs. (5) and (6) to a single constraint 
j and the summation on j. Equations (5) 

i=l, .•• , n [7] 

[8 ] 

[9] 

If the condition AG = 0 is satisfied through Eq. (9), we do 
not have a problem, constraint G is satisfied a priori because 

of some stronger requirement on the sizes. Equation (7) can 

be rewritten in a more enlightening form by simply dividing 

through I:>y w .. 
l.,l. 

and 

C .• 
~ 
w .. 

l.,l. 

1 I = constant 

or in words: 

CHANGE IN CONSTRAINT 

to obtain 

i=l, ••. , n [10] 

CHANGE IN MERIT FUNCTION = "COST OF IMPROVEMENT" = CONSTANT 
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for all variables in an optimum structure. It should be 

remarked that this word statement does not require Eq. (lb) to 

be satisfied; it requires only that the derivatives can be cal

culated. Unlike Eq. (10), it applies for example also to stress 

constraints. In that case, however, no simple expression can 

be obtained because Eq. (lb) is not satisfied. 

This statement that in an optimum structure the cost of 
improvem~nt is the same for all design variables is of general 

validity (Ref. 17) as opposed to the earlier heuristic state

ments relating stress or energy distributions to totally exploit 

the material. It also has to be realized that for this state

ment to have meaning the variables have to represent a "dimin

ishing return of investment," a condition satisfied by size 

variables against stiffness or stress constraints. To produce 

a useful expression for computational procedures, further spe

cialization is required representing this last condition on 

diminishing return. 

We denoted the contribution of each variable to the merit 
function as Wi(x i ) and the contribution to satisfy the con

straint C by Ci(xi ). The presence of xi in the functions 

Wi(xi ) and Ci(xi ) represents a cross section property con

tributing to weight and stiffness, such as a bar area or plate 
thickness. In the case of bars and plates with only in-plane 

load carrying capacity the size variable appears to the first 

power. If bending is involved then in Ci(x i ) the inertia oj 

the cross section appears and has to be expressed in terms of 
xi. The well-known simple relationship I = axP covers many 

practical cases where "a" and Up" are constants and x is a 
bar area or plate thickness. The specialization involves simply 

factoring out xl by requiring the following relationships to 

hold: 

Wi(xi> = 

Ci(xi> = 

where wi 
after x. 

1 

wixi 

Ci/pxP> 

and c· 1 
and px~ 

1 

[11] 

[12] 

now are simply the expressions "left over" 

have been factored out respectively. 
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substituting Eqs. (11) and (12) into Eq. (7) the following 

simple expression is obtained: 

/ p+l = w. - ,,(c. x. ) 0, 
1 1 1 

i=l, •.• ,n 

This equation can ~lso be rewritten as 

and in the more useful forms 

x. = "l/p+l(c./w.)l/p+l 
1 1 1 

or 

x. = ,,( c . /w. xI?) 
1 1 1 1 

(13 ) 

[14] 

[15] 

[16] 

Equations (15) and (16) represent the simplest way to obtain 

useful expressions for the size variables using optimality 

criteria methods. In Eqs. (14 to 16) wi is constant, but 

ci' the contribution to the constraint, contains the internal 

forces in the i-th member. Equation (15) would be a direct 

sizing formula if c i also would be a constant. However, 

except in statically determinate structures and displacement 

constraint, the internal forces are functions of the relative 

values of all xi' therefore Eq. (15) is nonlinear. The c i 
have to be recomputed each time new xi have been obtained 

suggesting the recursive relations: 

or 

k+1 x. 
1 

= "l/p+l (c./w')kl/P+l 
k 1 1 

[17] 

[18] 

where k indicates the k-th iteration. These equations 

contain the essence of numerical optimality criteria methods. 
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Equation (17) has been proposed first for displacement con

straints (Ref. 14). In that case it mimics the stress ratio 

algorithm in the important aspect that both give the correct 

optimum design in a single sizing step for statically deter

minate structures where the internal forces are independent of 

the size variables. The experience of generation of engineers 

showed that in practical structures the sensitivity of internal 

forces to reasonably small changes in size variables is also 

small resulting in small changes in the internal forces and 

convergence in a few iterations. static indeterminacy is a 

question of degree, as has been discussed in detail by Hardy 

Cross of moment distribution fame half a century ago (Ref. 52). 

Cross distinguished between "normal" and "hybrid" behavior in 

this respect. Internal load distribution in frames for example 

is quite insensitive to redesign, while very sensitive in 

X-laced trusses. That is why the well-known ten bar truss is 

a good test problem. The consequence is that the convergence 

of optimality criteria methods depends on this hard-to-specify 

quality of the structure rather than on the number of design 

variables like most mathematical programming methods. Essen

tially cantilever beam wing boxes with thousands of finite 

element sizes in their model might converge in half a dozen 

iterations while a ten bar truss problem can take dozens of 

reanalyses and resizing. 

Before discussing other recursion relations that were 

found successful in practice the role of the Lagrangian multi

plier has to be examined. For a single constraint, the term 

Al / p+l in Eq. (17), or A in Eq. (18), can be viewed as a 

simple scaler. For any choice of A the relative sizes x. 
1 

represent an optimum design. The choice of A will determine 

a value of the constrained quantity associated with that rela

tive design. There is a particular value of the multiplier 

that will result in a design with the desired value of the 

constraint, thus satisfying it in an equality sense. 

For the purpose of discussing the various forms of the 

recursion relations it can be assumed that the value of A is 
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known. The methods to evaluate A will be briefly introduced 

after the recursion relations are discussed, and will be exam

ined in some detail in conjunction with the case of multiple 

constraints where they pose a more difficult problem. 

To simplify the presentation the notation 

D. 
1 

p+1 AC./W.X. 
III 

[19] 

is introduced for the right hand side of Eq. (14) which then 

becomes 

1 -= D. 
1 

i=l, ... ,n. [20] 

Equation (20) is valid at the optimum, and has been mani

pulated in a number of ways to obtain expressions that include 

an arbitrary relaxation parameter to control the step size 

between iterations. Multiplying Eq. (20) by xg on both 
1 

sides and then taking the q-th root one obtains the recursive 

relation 

k+1 x. 
1 

= X~(D,),:/q 
11 .... 

[ 21] 

where q is the arbitrary parameter to control step size. 

There are a number of ways to view this expression. One is 

that with q = P + 1 it is equivalent to Eq. (17) and with 

q = 1 to Eq. (18), capturing both. Another way is that for 

small values of q the deviation of Di from unity is accen

tuated causing larger differences in X. 
1 

The opposite is true of course for large 

ing Eqs. (3), (4), (12), and (19) it can 

between iterations. 

values of q. Examin

be seen that for 

example, if xi is smaller than it should be in order to sat

isfy the constraint, then D. will be larger than unity, 
1 

therefore Eq. (21) will have a tendency to correct that. When 

the optimum is reached D. becomes unity and Eq. (21) stops 
1 

modifying the variables xi. 

A linearized form of Eq. (21) can also be derived by 

first rewriting it as 
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Xk1.' (1 + (D. - l»l/q 
1. k 

where (Di - 1) vanishes as the optimum is approached. Then, 

expanding the term with the exponent l/q in a binomial series 

and retaining only the linear term the following linearized 

form of Eg. (21) is o~tained 

[22a] 

or 

x~+l = x~/(l - (l/g) (D. - 1» 
1. 1. 1. k 

[22b] 

if reciprocal variables are used in Eq. (21). 

Another form of Eg. (22a) can be derived by multiplying 

both sides of Eq. (19) by x. (I-a) and rearranging terms to 1. 
obtain 

k+l x. 
1. 

k x. (a+(l-a)D')k 1. 1. [23] 

where a is a relaxation parameter. This form was proposed to 

improve convergence (Ref. 20), but it is easy to see that with 

g = l/(l-a) it is equivalent to Eq. (22a). 

The performance of the various proposed recursion rela

tions was critically examined (Ref. 53), including expressions 

using reciprocal variables zi = l/x i • One can say that there 

are only three useful independent forms, Egs. (21) and (22a) 

and (0). The first one is exponential and modifies the vari

ables by multiplying them with a factor that becomes unity at 

optimum. The other two are linearized and modify the vari

ables by adding a factor that becomes zero at optimum. It is 

a sensitive measure of convergence to observe how the 

approach unity for each variable during iterations. 

D. 1. 

To use Egs. (21) or (22a) and (b) a method is needed to 

evaluate the multiplier A in each iteration. For the case 
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of a single constraint the design obtained by the current value 

of Xi can be analyzed, and then scaled simply by the formula 

k+l x. 
1 

[24] 

where Ck is the current·and C is the desired value of the 

constraint. Instead of using Eq. (24), A can also be eval

uated by back-substituting x. from the optimality criteria 
1 

expression in the form of Eq. (15) into the constraint expres-

sion and solve for A. Omitting the algebra, the expression 

that can be then back-substituted into Eq. (15) is 

1 
-l/p C . 

~C ~/p(p+1)w ~/p+1 
L.. 1 1 

i=l 

[25] 

Equations (15) and (25) are equivalent to solving the "dual 

programming" problem where x. are the primal, and A is 
1 

the dual variable. In case of multiple constraints no simple 

equivalent to Eqs. (24) and (25) can be derived. As opposed 

to the case of single constraint, were Eq. (24) is the hest 

approach, formal dual programming (Refs. 47 and 48) may pro

vi1e a view with potential for smooth transition from OC to 

MP techniques as specifics of the problem require. 

There is one more consideration that has to be discussed 

before the method is illustrated with a simple example. In 

most practical cases not all the design variables are free to 

take on values that the equations presented so far would assign 

to them. There are many reasons for this. One might want to 

simply assign certain values to some of the variables for fab

rication or whatever reasons and exclude them from the group of 

variables that are free to change. usually there are limita

tions on minimum, sometimes on maximum sizes. Even in research 

problems, involving an automated analysis module, minimum 

sizes should be stipulated to avoid unwanted mechanisms and 

therefore singularity to develop. Most frequently there is a 

design satisfying stress constraints, obtained for example by 

FSD, in which case added stiffness to limit displacements or 
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to increase system buckling loads is the optimization problem 

at hand. There is a need, therefore, to recognize a grouping 

of the design variables into active and passive groups, possibly 

changing within each iteration. To accomplish this, the equa

tions presented so far need only a minor correction of the 

target constraint value C. Consider that in addition to the 

n active xi there are p 

achieve the target value C 

passive x. whose contribution to 
~ 

is constant, therefore can be 

subtracted from C as a quantity already "payed". This con

tribution then is computed to be 

p 
E c. (x.) 

i=n+l ~ ~ 
[26] 

and all the equations presented are valid by simply replacing 

C with C* where 

C* = C - CO [27] 

In the remainder of this presentation C* will be used for 

this modified target constraint value to signify the presence 

of possible passive variables. 

Application to Trusses 

To illustrate how the equations presented so far can be 

specialized, the simplest case, trusses under displacement con

straints, will be considered. For this case the following 

definitions are valid with x. = A. to signify that the 
~ ~ 

cross section areas are the size variables 

W. (x.) 
~ ~ 

_ p v / C.(x.) - (8.S.I..) (E.A.) 
~ 1 ~~, ~~ 

D. 
~ 

p V 2 
A (S. S . ) / (E . p . A. ) 

~ ~ ~ ~ ~ 

1 n 
C* E 

i=l 

c./A. 
~ ~ 

[31] 

[32] 

[33] 

[34] 
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Li length 

p. density 
1. 

Ei Young's modulus 
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s~ member force due to actual loads P 
1. 

s~ member force due to virtual loads V 
1. 

If one combines the above expressions, Eq. (15) can be 

written as 

A~+l (1 ~ 
1. = C* L..J 

R,=1 

[35 ] 

providing a formal solution to the special dual programming 

problem of trusses with aeneralized displacement constraints. 

However, because of its simplicity Eq. (24) is recommended for 

computation of A instead of Eq. (34). Because most computa

tions are performed with finite element methods the recursive 

relations will be derived next using the conventional matrix 

formulation of the displacement method. Generalized displace

ment, and typical eigen value constraints will be considered. 

FINITE ELEMENT FORMULATION 

Displacement Constr.aints 

All the former expressions can be written in terms of 

expressions used in finite element computations. In deriving 

Eq. (7) c i was taken as constant, although it contains inter

nal forces that are functions of all the xi' and a sum of 

additional implicit derivatives should have been considered. 

These terms vanish exactly, thus the derived optimality criteria 

are exact due to satisfying the condition expressed in Eqs. (la) 

and (lb). 
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Equation (3) can be written for a single constraint as 

C 

where 

r P system displacements due to loads P 

rV system ctisplacements ctue to loads V 

K system stiffness matrix 

r' transpose of r 

Because r P and rV are solutions we have 

KrP 

KrV 

K.r~ 
1. 1. 

V K.r. = 
1. 1. 

= P 

V 

S~ 
1. 

s'! 
1. 

[36] 

[37] 

[38] 

[39] 

[40] 

where Ki , r i , and Si are element stiffness matrix, dis

placements and member nodal forces respectively. The Lagrangian 

can be written as 

L 
n 'P V E wixi + A(T Kr - C*) 

i=l 

and the optimality criteria becomes 

r'P aK V 
MX-:- r 

1 

[41 ] 

[ 42] 



www.manaraa.com

289 

This expression can be simplified by considering Eq. (37) as 

and differentiate with respect to Xi to obtain 

'P 
~rx. K + rIP aK_ 
a ax. 

1 1 

from which 

ar'P 
ax i - = _rIP aK K- l 

ax~ 
1 

o 

[43 ] 

[44] 

[45 ] 

substituting Eq. (45), and a similar one for the case of rV 

into Eq. (42), the first two terms in the parentheses cancel 

and the third one transforms to yield 

[46] 

as the optimality criteria. 

The derivative term in Eq. (46) can be simplified consider

ing the definition of K and, as an example, finite elements 

with their stiffness matrix depending linearly on xi. Then 

we have 

aK 1 
K. 

axi xi 1 
[47] 

resulting in the expression 

A 
1 'PK V 0 w. - r. . r. 

1 x. III 
1 

[48] 

or 



www.manaraa.com

290 

1 [49] 

as the optimality criteria. 

Equation (49) can be used to derive recursion relations that 

are equivalent to Eqs. (20) and (22a) and (b). It is easy to 

see that for exa~ple for trusses the product r'~k.rY is 
p V ~ ~ ~ 

equivalent to s.S.L./A. and that the right hand side of 
~ ~ ~ ~ 

Eq. (49) is equivalent to D' ~ of Eqs. (20) and (22a) and (b). 

The method of derivation presented here for the finite 

element formulation showing the satisfaction of Eqs. (la) and 

(lb) was introduced (Ref. 28) during the early development of 

discretized optimality criteria methods. It can be viewed as 

the forerunner of what later became a separate area of optimi

zation research, now referred to as "sensitivity analysis". 

System Buckling Constraint 

~he derivation of optimality criteria for constraint on 

system instability is outlined next. Details can be found in 

Refs. 25, 27 and 28. The formulation presented here is only 

one of the many possible ways to prescribe a target value ~* 

for load intensity ~ at which instability occurs. The con

straint equation may be given in the form 

[50] 

where we require the buckling displacements y, and the load 

intensity ~* to be the solution of the eigen value problem 

o 

Here KG is the geometric stiffness matrix. We can again 

write the Lagrangian as 

L 
n 
~ w.x. + A(y'Ky - ~*Y'KGY) 
i=l ~ ~ 

[ 51] 

[52] 
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to yield the optimality criteria equations 

y'Kiy 
1 = A --W.X. 

1 1 

i=l, ••• ,n [53] 

The derivation of Eq. (53) follows the same line as displace
ment constraints making use of Eq. (51) and of the fact that 

~ is not a function of the xi size variables. 

Vibration Frequency Constraint 

Derivation for constraints on frequency proceeds along 
the same lines as for constraints on system buckling. 

The constraint equation may be given in the form 

*2 y'Ky - w y'My = 0 [54] 

where w* is the target value for the frequency w, and M 
is the mass matrix. It is required that the mode shape y and 

the eigenvalue w2 be the solution of the eigen value 

problem 

2 Ky - w My 

The Lagrangian can be written as 

n *2 
L = .E wix i + A (y'Ky - w y'My) 

1=1 

to yield the optimality criteria 

1 = A 
2 

y'Kiy - w y'Miy 
w.x. 

1 1 

[55] 

[56] 

i=l, ••• , n [57] 

with the use of Eq. (55). The derivation follows the same 
steps as earlier, but one remark has to be made concerning 

sca1inq of the variables to achieve the target value w* once 

the relative values of the design have been obtained. Because 



www.manaraa.com

292 

unlike KG' the mass matrix M is the function of the design 

variables xi' without nonstructural mass scaling is ineffec

tive to change the frequency w. The scaling procedure has 

to be well thought out for a given situation involving 

nonstructural mass. 

MULTIPLE CONSTRAINTS 

The modification to multiple constraints of the expressions, 
developed for single constraints is trivial on the surface, but 

it eliminates simple scaling as the method to evaluate the 

Lagrangian multipliers A. that appear in Eq. (5). The modi-
J 

fications necessary are to replace Ci(xi ) with Cij(xi ), 

A with Aj and retain the summation as indicated in Eq. (5). 

To follow the forms of the expressions presented for single 

constraints, Eq. (5) is rewritten as 

n 
1 = E Aj 

j=l 

C ... 
lJ,l 
W •• 

[58] 
1,1 

If the requirements for the structure of the functions Wi(x i ) 

and Cij(xi) expressed in Eqs. (11) and (12) are again invoked, 

Eq. (58) becomes 

m 
1 = 1: AJ. 

J=l 

The definition for Di to be substituted in the recursion 

relations for multiple constraints then is given as 

D. 
1 

m 
= .E A. 

J=l J 

In ca~e of further specialization for trusses as a simple 

example, Eq. (33) becomes 

[59] 

[60] 
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.f A. (S~ .S". .)/ (p .A~) 
)=1 J \ lJ 1) 1 1 

where S~. and sv.. are again the member forces, but for 
lJ lJ 

[ 61] 

the j-th combination of the actual load condition P j and 

virtual load Vj associated with the j-th constraint 

condition. 

with the above modification there is no difference in the 

recursion relations for single or multiple constraints. As 

will be discussed next, there is a major difference associated 

with the evaluation of the Lagrangian multipliers. 

EVALUATION OF THE LAGRANGIAN MULTIPLIERS IN CASE OF 

MULTIPLE CONSTRAINTS 

Unless relative values of A. are known, the simple scal-
1 

ing procedure recommended in case of single constraints is not 

applicable. Essentially there are two classes of approaches to 

obtain the A. - s. One class considers the coupling effects 
) 

among the active A. - s, and the other class of approaches does 
) 

not. 

To facilitate the discussion we consider the case when 

Eqs. (11) and (12) are valid and p = 1. In that case the 

Lagrangian is written as 

n m 
L(x,A) = E w.x. + E A.G. 

i=l 1 1 j=l )) 

with 

G. = Cj Cot < 0 j=l, ••• ,m ) ) 

where 

n 

L 
c .. 

C. = 21 
J x· 

i=l 
1 

[62 ] 

[63] 

[64] 
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is the value of t~e 

has the target value 

j-th 

C* .. 
J 

constrained behavior variable that 

The optimality criteria becomes 

m 

L 
c .. 

1 = A. 2.l_ i=l, ... ,n [65] 
J 2 w.x. 

j=l ~ ~ 

It is instructive to write out Eq. (65) in the following 

form to illustrate the dual nature of the formulation: 

C* 1 C* 2 C* m 

( 66al 

w [66b] 

The equations for the "weighted" design variables represent 

the optimality conditions for any choice of Aj. The vector 

of the design variables is a sum of design vectors for each 

constraint C*j separately, mUltiplied by a coefficient Aj. 

Viewing the equations in the column direction the sum of the 

elements in each vector is the value C. of the j-th con-
J 

straint to be less than or equal to the target value C*j. If 

a constraint, say the k-th is oversatisfied, then it is not 

active and Ak = O. If the k-th constraint is not satis

fied, one would want to increase the participation of the k-th 

vector as the most cost effective component to improve con

straint satisfaction. This is achieved by increasing Ak 

through some formula involving 

of the lack of satisfaction. 

formulas 

G. = C. - C*. as the measure 
J J J 

This suggests the two updating 
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A~+l 
J 

Where 
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k k 
A. + PkG. 

J J 
[ 67a] 

[ 67b] 

is a parameter to control convergence and possibly 

change as Gj + O. Reference 54 provides formal presentation 

of the first-order multiplier iteration indicated in Eq. (67a) 

to solve the dual programming problem. The exponential form 

in Eq. (67b) was suggested in Refs. 18 and 20 somewhat heuristi

cally. These are two simple uncoupled algorithms that can be 

used with success. Initial values are needed, but inactive 

constraints are automatically elliminated. 

Historically the first uncoupled approach suggested for 

structures (Ref. 15) was very much along the heuristic lines 

of FSD. It became known as the "envelope method" because it 

suggested to obtain the optimum design for each constraint 

separately, then select for each variable the largest value 

among the separate designs. This rather practical approach 

gave surprisingly good designs that were, of course, approxi

mations violating the optimality criteria equations. It can 

certainly serve as an approach to obtain initial estimates of 

xi and Aj. 

The next class of approaches considers the coupling effect 

among the Aj leading to a set of nonlinear simultaneous equa

tions to solve. There are three obvious ways to derive essen

tially the same expressions for our special problem. The one 

given here was suggested in Ref. 42 and is the simplest in terms 

of the algebra. The constraint and the optimality criteria equa

tions can be written in the following matrix forms with typical 

elements as indicated. 
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mxn 

nxm 

1 

1 

1 
nxl 

1 

1 

1 
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nxl 

substituting Eq. (69) into Eq. (68) one obtains the linear 

equations for the A (with summation on repeated i) 

[681 

[ 691 

[701 

valid at the solution of the dual programming problem involv

ing the previous specializations. 

Equation (70) has been used with success in the iterative 

form 

[ 711 

where 

[ 721 

with summation on the repeated index i. Here is again a 

step size parameter and v represent the iteration number. 

It is to be noted that no starting values are needed if Eq. (71) 

is used. 
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There are two other ways to derive coupled equations for 

the Aj - s. The most obvious way is to do the same substitu

tion of the xi in terms of the Aj as has been done in case 

of the single constraint. That is to solve the optimality con

ditions for the xi then eliminate the xi from the con

straint equations in terms of the Aj. This results in a set 

of nonlinear equations for the Aj - s. The Newton-Raphson 

approach requires the matrix of derivatives which turns out to 

consist of the same terms as Ejk defined above. Another way 

to obtain the Aj is by formal application of the dual program

ming approach (Ref. 47). This consists of aqain expressinq the 

xi from the optimality conditions in terms of the Aj - s 

and back-substitute these expressions into the Lagrangian 

L(x,A) in terms of the A. with x. eliminated to obtain the 
J 1 

dual Lagrangian L(A,A). From the problem statement in terms 

of the Lagrangian multipliers the derivative of L(x,A) relative 

to A. set to zero expresses the conditions for the satis-
J 

faction of the constraints. The derivatives of L(A,A) rela-

tive to A. - s set to zero then provides equations in A. 
) ) 

since the xi - s have been eliminated. The equations so 

obtained are again contain the same terms as Ejk and seem

ingly nothing new has been gained. However, in the general 

case when the special conditions employed to obtain Eq. (70) 

do not hold, a direct MP method can be still used to achieve 

the condition 

[73] 

thus obtain values for the Aj - s. The formal dual program

ming approach (Refs. 47 and 48) in case of separable problems 

provides flexibility to deal with problems where the special

izations utilized in the traditional O.C. methods are not 

applicable. On the other hand to view O.C. methods through 

dual programming confuses the basic philosophy, that led to 

O.C. methods, with the resulting computational aspects, that 

can be quite similar among various approaches. Different 

roads can lead to the same place (Ref. 49) each providing a 
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different view along the way, some simpler to travel than 

others. Classical O.C. methods strive for simplicity and 

extreme efficiency. In exchange they solve only restricted 

special problems which, however, are the ones encountered the 

most frequently in practice. 

STRESS CONSTRAINTS 

Finally, a few remarks are perhaps appropriate concerning 

stress constraints, the most fundamental problem in structural 

design. Unfortunat~ly, if directly stated in terms of member 

forces and allowable stresses, stress constraints do not satisfy 

Eq. (lb), and the resulting optimality criteria equations do 

not uncouple. The traditional FSD with stress ratio algorithm 

is equivalent to neglecting the coupling terms as if Eq (lb) 

were satisfied. 

When stress constraints are stated in terms of relative 

displacements, the equations presented here apply, but two dif

ficulties arise. One is that this is a case of large number 

of constraints and requires the evaluation of as many Lagrangian 

multipliers as there are design variables. The other difficulty 

is that only in case of trusses is there a clear definition of 

relative displacements equivalent to stress constraints. Con

sequently only the case of trusses was studied with Eq. (67b) 

being simple and effective to update the large number of active 

Lagrangian multipliers. ~ spe~ial case (Ref. 42) can be created 

assuming that the optimum design is fully stressed even in some 

cases of nonuniform stress allowables. Placing opposing unit 

virtual loads at both ends of the bars and equilibrating them 

with a unit virtual internal bar force diagonalizes Eq. (71) 

and the simple formula 

_ P 2 
A. - S. (E.p./a .) 

1 1 1 1 01 
[74] 

is obtained. It is, however, not simpler than Eq. (67), valid 

only if the optimum structure is indeed fully stressed, and it 

has not been explored for multiple load conditions. However, 
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it has interesting theoretical implications for fully stressed 

optimum designs in case of nonuniform material properties. 

It can be pointed out that although Refs. 55 to 57 present 

an efficient approach, it is based on the unpopular Force Method. 

This leaves us with FSD as the most practical, best under-

stood approach (Ref. 58) that serves designers well if caution 

is exercised. In most practical applications (Refs. 50 and 51) 

an FSD design is obtained and the resulting sizes treated as 

minimum values for the design variables during optimization for 

other constraints. While this is an approach that is satis

factory in practice, theoretically it is clearly an approxima

tion. MP methods with efficient use of computational shortcuts 

may provide an approach that allows thousands of finite element 

member sizes to be treated, perhaps with creative "variable 

linking" (Ref. 59) that is beneficial, in any case, to smooth 

the design. 

Finally, particularly in research problems, puzzling 

behavior may occur, as pointed out by Prager (Ref. 60) for a 

few cases. Fortunately, problems encountered in practice are 

usually safe from pitfalls. 

EXAMPLES 

A few simple applications will be used to illustrate con

vergence behavior for various combinations of the three recur

rence relations and the three suggested methods to evaluate 

the Lagrangian multipliers. Equations (21), (22a) and (22b) 

will be referred to as options 1, 2, and 3 for the recurrence 

relations and Eqs. (67a), (67b) and (71) as options A, B, and 

C for the evaluation of the Lagrangian multipliers. The step 

size parameters Pk and qk can be modified in each 

iteration simply by a factor slightly different from unity. 

It is a good practice for small test problems to cautiously 

start with p = 0.5 and q = 2 and increase their effects 

by 10 percent in each iteration. In production applications 

when the method is expected to be applied to the same type of 
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structures repeatedly then a best combination of options with 

"tuned" parameters can he developed. 

Example 1. Three-Bar Truss Problem 

The simple structure shown in Fig. 3 is probably the one 
most studied in human history. The "variable linking" of 

Al = A3 is used to create a two-dimensional problem. The 

properties chosen here lead to particularly simple expressions. 

With material densities PI = P3 = 1/(212)lbs/in3 and 

P2 = 1/10 Ibs/in3 • the merit function becomes 

[75] 

The constraint chosen is one inch elongation of Bar number 1. 
This can be viewed either as a displacement or as a stress 
constraint of 70.710678 KSI in Bar number 1. Simple algebra 
leads to the constraint equation 

G = (LIE) (PI/Al+P2/ (Al + 12A2» - C = 0 

With L = 100 in., PI = P2 = 100 K and E 10 4 

ksi Eq. (76) simplifies to 

[ 76] 

[77] 

where in our case C = 1. (Note that the dimension of C 
is work) • 

Equations (75) and (77) are plotted on Fig. 4 with the 
optimum solution indicated graphically. Substituting Eq. (77) 
into Eq. (75) a quadratic equation is obtained providing the 

analytical solution: Al = 1.275846 and A2 = 2.368357 given 

here with probably sufficient accuracy. The merit function at 
optimum takes on the value: W = 151.268188 Ibs. 

All nine combinations of the three recursion relations 
and the three approaches to evaluate the Laqrangian multiplier 
were tested on this problem, and without scaling first. In 

this case only the converged design satisfies the constraint. 
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In case of single constraints scaling camouflages the effect 

of any approach to update the multiplier because it is suf
fici~nt by itself. The initial values for all runs were 

Al = A2 = 1, A = 100, q = 2, and p = 0.5. A multiplier of 1.1 

was used to decrease q ann to increase p each iteration. 
Table I shows the typical results using the combination 2B 

according to our earlier definition. Table II shows the results 
with the same 2B combination, but also using scaling. wide 
variations of convergence behavior can be obtained when 
experimenting with the various options. 

Example 2. Five-Bar Truss Problem 

To show the problem dependency of the convergence behavior 

the four problems indicated in Fig. 5 were solved with the pre
viously defined combinations lC to 3C and scaling. The value 

of the merit function versus iterations is plotted in Fig. 6 

for all cases. Designs are given in Table III. 

Proolem 1 is an elementary check on the methods. Problem 2 
is more difficult with both constraints active at the optimum 

and with tendency for criticality to switch during iterations. 
Problem 3 is again a trivial check but with numerical sensitiv

ity if started with unit bar areas as done here with all prob
lems. Problem 4 is almost a statically determinate problem 

explaining the quick solution by combination lC that would 
size a determinate structure in one step. 

As can be seen, an option with good convergence can be 
found for any of the problems and perhaps tuned for better per
formance if repeated optimization runs are expected. Problems 2 

and 3 were sensitive to computational accuracy and required 
double precision. This cautions against indiscriminate use of 
approximation concepts in optimization. 

Example 3. Multiple Frequency Constraints. 

An application of the optimality criterion algorithm to 
design a structure with multiple frequency constraints (Ref. 61) 

is illustrated by designing the 38 member truss shown in 
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Fig. 7(a). The elastic modulus and weight density of the mate

rial were 107psi and 0.1 lbs/in. 3 . A nonstructural mass of 

0.1 lb-s2/in., was attached at the top eight node points 4 to 

18. The relative cross-sectional area of all the members for 

the first iteration was equal to unity. The minimum gauge con

straint was equal to 0.005 in. 2 • The truss was designed to 

satisfy three constraint conditions. These were: (1) wf 
= w~ = 2500 (Case A): (2) w~ = 2500, w~ = 5000 (Case B): 

(3) wi = 2500, w~ = 5000 (Case C). It was also required 

that for Case B, the vibration Mode 1 (Fig. 7(b)) and Mode 2 

(Fig. 7(c)) be associated with wi and w~ respectively. 

However, in Case C, w~ was required to be associated with 

Mode 2 and w~ with Mode 1. The iteration history for the 

three constraints is given in Table IV. The designs satisfying 

these constraints were obtained in sequence. The distribution 

of cross-sectional areas of the members for the three designs 

are given in Table V. Details of the design procedure are given 

in Ref. 61. 

Example 4. Design of a Dome structure for Limit Load 

The algorithm used in this example is based on the opti

mality criteria (Ref. 62) that the ratio of geometric nonlinear 

strain energy densitv to mass density is equal for all ele

ments. This statement is a special case of Eq. (10). 

The 30 member three-dimensional dome structure shown in 

Fig. 8 was optimized for a concentrated load of 2000 lbs applied 

in the vertically downward direction at node 1 and with a min

imum size constraint of 0.1 in. 2 • The iteration history for 

this dome structure is given in Table VI. The weight of the 

structure after ten iterations was 779.4680 lbs. With an addi

tional twenty iterations the weight of the structure was reduced 

to 766.1880 lbs. The cross-sectional areas of the members for 

the optimum design are given in Table VII. The analysis method 

used is based on the direct minimization of the total potential. 

The procedure for scaling to limit load and the effect of the 

step size parameters is discussed in Ref. 62. 
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Example 5. Large Trusses 

A series of trusses are being shown on Fig. 9 with the 

same overall geometry but with the number of members increas

ing from 106 to 1027. The loading consists of two concentra

ted loads as shown on the first truss. This loading, with the 

other end supported by symmetry conditions, would tend to twist 

and bend the flat truss-slab. Two displacement constraints 

were imposed at the two loaded points, 10 in. at the higher 

load and 20 in. at the lower load. Both constraints were active 

allowing the truss-slab to twist in an opposite manner from the 

twist that would be induced by the loads in a structure with 

uniform member areas. This could be viewed as a "poor man's" 

aeroelastic tailoring approach. Figure 10 shows the converg

ence curves for the trusses as a function of the number of truss 

members. This set of examples was created to show that the 

number of analyses is indeed a weak function of the number of 

independent design variables if an optimality criteria algo

rithm is used. This allows direct application to large finite 

element models without artificial approximation concepts or 

variable linking that are needed by MP methods. One should 

remark that while approximation concepts might be dangerous in 

cases sensitive to accuracy (see Example 2), variable linking 

can be employed beneficially if certain smoothness of the design 

is required. 
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Figure 1. Grumman/Darpa X-29A 
Advanced Technology 
Demonstrator 

t 100 lb. 

l 

1---100 In --.-+-1.0----100 In ~ 

Figure 3. Three - Bar Truss 

Figure 2. Isometric View of 
Wing Finite Element 
Model for Prelim 
inary Design 

~ '------"-__ -">L_---....:~:::::::~ A1 

0.0 0.5 1.0 1.5 2.0 

Figure 4. Design Space for 
Three-Bar Truss 
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Figure 5. Five-Bar Truss and Problem Definitions 
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o 5 10 15 20 25 
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Figure 6. Convergence Curves for the Five-Bar 
Truss problems 
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T • 
10.. 1 LA,~" 

I· 410 In 

(8) 38 MEMBER muss ·1 

(b) MODE 1 

~ 
(c) MODE 2 

Figure 7. 38 Member Truss and 
Vibration Modes 

~ ~ 188 In 

I. 1400 In .1 

Figure 8. Shallow Truss-Dome Structure 
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;;~1I~~100 in 13,804 Ibs 
_(\ 120 in max 

,?>r;§:;' ' 20,000 Ibs 
110 in max 

40,000 Ibs ' 
( top and bottom) 
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a 
en 

a 

6X12 (1,027) 
17,455 Ibs 

Figure 9. 3-D Truss Problems 

No_ 01 Bars: 148 280 529 1,027 

a 25 50 75 100 
ITERATION NUMBER 

Figure 10. Convergence Curves for 
3-D Truss Problems 
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Table 1. Iterations for the Three-Bar Truss 
Problem with No Scaling 

IT Al A2 STRESSl W LAMBDA 01 02 
0 1.00'11000 1.11100000 99.999985 110. i1I!ll0!l100 11110. 11I000!l1!l1 !2l.482843 1 • flj~O!llf2142 
1 1.283121 2. 29733!2l 70.7h:1754 151 • 2854!l1!l1 86.746979 0.952849 1.1::0,'0454 
2 1.27689!l1 2.357945 70.710693 151.268433 3u18. 154541 0.993!l1!i12 1.427426 
3 1.270171 2.365108 7!i1.710678 151.268127 72.997498 0.997812 !i1.694675 
4 1.275991 2.366898 7!i1.71111678 151.268112 274.773193 0.999!;117 1. 347764 
5 1.275928 2.367541 70.7H1678 151.268143 102.296478 0.999451 0. 82235u! 
6 1.275897 :2.367827 7.1.710739 151.267960 185.702133 0.999645 1. 107987 
7 1.275884 2.367981 70.710678 151.268173 138.799835 0.999748 0.9579i£i3 
8 1.275874 2.368Q165 70. 71!i1678 151. 268!i151 155.697968 0.9998.14 1."'14537 
9 1.275869 2.368118 70.710678 151.268112 150.100693 0.99984.1 0.990135 

10 1.275865 2.368152 7!i1.71!i1739 151.267960 151.519913 0.999863 1.00.1833 
11 1.275864 2.368178 70.710678 151. 268143 151.224945 0.99988!;1 0.999859 
12 1.275861 2.368193 7(0.71"'739 151. 26799!i1 151.273911 0.999892 1.0!lIlMI19 
13 1.275861 2.368208 70.710678 151.268143 151.267487 0.999901 0.999999 
14 1.275859 2.368217 70.710678 151. 268036 151. 268127 0.9999!i16 1 • 00~lj(lI0Ql 
15 1.275859 2.368225 70.710678 151.268127 151. 268112 0.999913 1 • 0QI!,la!~) 1 

16 1.275858 2.368229 70.710678 151.268066 151.268112 !11.999915 1. 0!'21!ZJ!li~21!ZI 
17 1.275858 2.368235 70.710678 151. 268127 151.268173 0. 99992~1 1 • !O~if{j~lj!lj 1 

18 1.275857 2.368237 7.1.710678 151. 268!'2151 151.268051 0.999920 1. ilf!21!['r21!1l(1 
19 1.275857 2. 36824!l1 7kl.710678 151.268097 151.268112 0.999923 1.0r,l;;IW,11 2,,, 1.275857 2.368244 70.7H1678 151.268127 151.268234 121.999925 1 • !lj!')!lJ~l)!l) 1 

Table 2. Iterations for the Three-Bar Truss 
Problem with Scaling. 

IT A1 A2 STRESSl W LAMBDA 01/02 SCALER 
0 1.11I0!l1000 1.1110111000 99.999985 11111. !l10!ofil'll1I 1 11I!i1. 00000111 111.482843 1 • ql!21r11~{I~ll!,) 
1 1.268580 2.442827 70.710678 151.286301 166.133148 1.050949 1. 100;.~84 
2 1.276562 2.361213 70. 71!i1678 151.268295 142.728683 0.995195 0.926889 
3 1.275859 2.368215 70.710754 151.268!021 155.347916 ~I. 9999~16 1. !l143271 
4 1.275847 2.36834fil 7~1. 7HI678 151.268127 150. ~116769 0. 99999!i1 0.982092 
5 1.275846 2.368351 70.710678 151. 268~151 151.495651 0.999997 1. fil<;14917 
6 1.275846 2.368358 7!i1.710678 151.268112 151.25441f21 1. 0~100!il1 !iI.9992ri14 
7 1.275846 2.368356 7~1. 71!i1678 151.268097 151. 26767~1 1 • 000!1l0!il 1 .0!MI'1144 
B 1.275846 2.368357 7fil.71fil67B 151.268112 151.268234 1.00"100111 1.00!iJftl!i)::': 
9 1.275846 2.368356 70.710678 151.268097 151.268234 1.11100000 1. f2H2IQi!ij!tJfii 

HI 1.275846 2.368356 7fil.71!l1678 151.268097 151.268234 1.0!i1!i1000 1. 0~'j~i!lj!ij!2) 

Table 3. Minimum Weight Designs for the 
Five-Bar Problems 

PR OPT Al A2 A3 A4 A5 W-min 

lC 111. 0!l11~1 1. 4994 !i1.0!i110 2.1204 !iI.0fill!11 45.0155 
2C iii. 001!ll 1. 499!11 0 •• 1010 2.1199 0. !2J~;1!2j 45. !2i.239 
3C !l1.0!i'HI 1.4994 0.001([1 2.1204 fil.0rill!ZI 45. !21155 

lC 0.4944 !t1.!LJ233 0.6992 !tI.!21329 0.0!l124 15.5577 
2 2C 0.4981 Ill. 0058 .1.7044 0.011182 1ll.0!iIHI 15.1254 

3C 0.4979 0.0!l166 0.7042 !il. !i1091 0. 001!i1 15. 143!i1 

1C !il. 0~11!l1 0.0!lllftl 0. !i1!i11!l1 0.!iI!iIHI 5.0w!2J!Zl 50.!l1!2147 
3 2C 0.0!i110 !iI.1ll010 !iI.001!l1 !iI.0010 4.9999 S!ll. ,211(j47 

3C 0.0.11!l1 ~I. 0fill!i1 0.0010 0. 001!i1 4.9999 SUI.0u147 

1C 1.500!11 1.5f21!l1!l1 2.1213 2.1213 111. 001!i1 90.11I!i1,"1 
4 2C 1.S1ll11l0 1.500111 2.1213 2.1213 1iI.l1Il1Ilfil 9111. 00HI 

3C 1.5000 1.5000 2.1212 2.1213 !iI.11I01!i1 90.00-;11 
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Table 4. Iterations for the Table 5. Minimum Weight Designs 
38 Member Truss 

Problems 

ITER. NO. CASE (A) CASE(EI) CASE(C) 

29.09 29.09 29.1119 
2 21.76 21.76 21.76 
3 17.98 17.98 17.98 
4 16.44 16.44 16.44 
5 15.89 15.89 15.89 
6 15.59 15.59 15.59 
7 15.38 15.38 15.38 
8 15.24 15.33 15.24 
9 15.14 15.32 15.14 

10 15.11 15.32 15.11 
11 15.!Ct9 15.09 
12 15.08 15.W8 
13 22.96 (1.5) * 
14 24.57 (1.6) * 
15 26.2!il (1. 7>* 
16 27.84 (1.8) * 
17 29.49 (1. 9) * 
18 31.16 (2.0)* 

.. ratio of the second and first eigenvalues 

Table 6. Iterations for the 
Shallow Truss-Dome 
Structure 

ITER. NO) 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
15 
2111 
25 
3111 

WEIGHT (LEIS) 

16MI. 796!11 
98·3. 16W2 
875.2!1l96 
84!~. 2418 
818.9«148 
8Q14.911148 
795.1926 
788.2850 
783.2366 
779.4680 
776.611174 
77111. 3!~64 
767.4552 
76b.5488 
766.1880 

for the 38 Member 
Truss Problems 

ELEMENTS CASE (A) CASE(EI) CASE (C) 

1-38 0.037927 0.038::':,38 111. 07949~ 
2-34 0.W37865 W.038268 111.11>79232 
3-36 0.W53478 W.0540MI 0.111750 
4-35 0.066035 1!1.06683W 0.140917 
5-37 0.138371 111.132426 0.296488 
6-3., 0.13W!1199 111.130045 0.273760 
7-32 0.f£J65329 0.066069 0.137912 
8-31 ".037743 0.038862 0.078599 
9-33 0.073028 0.66194 11£1.158215 

10-26 0.180685 0.179983 0.373786 
11-28 0.0:',6597 0.037747 111.073884 
12-27 0.041226 0.040699 0.11187490 
13-29 0.005571 0.11117975 0.1Zf05358 
14-22 0.235310 0.233954 0.481237 
15-24 ,0.039558 111.11139012 111.11180676 
16-23 0.111111500 111.0111111714 0.0050111 
17-25 0. !2J28882 0 •• '3511134 0.i'551~0 

18 0.234603 0.233762 ".474114 
19-2!il 0.111111500 0. 0~19498 0. I!IiitS00 
21 0.056495 0.061631 0.112273 

WEIGHT 15.1118 15.32 31.16 
(LEIS) 

Table 7. Designs for the 
Shallow Truss
Dome Structure 

ELEMENT AREA 
LOCATION (SQIN) 

A 1.6926 

EI 1.3754 

C 111.2693 

D 111. 10111!11 
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1. INTRODUCTION 

The optimal design problem for linear elastic structures has 

been the subject of abundant literature, and various behavioural 

constraints have been taken into account that very often 

concern structural deformation. On the other hand, the 

structural ~ehaviour beyond the elastic limit has been 
considered in many papers dealing with optimal design for 

prescribed plastic collapse load (rigid-plastic models). 

Comprehensive surveys can be found, for istance, in Ref.s 1 to 

5. 
It can be noticed that the above mentioned problems are 
completely different: elastic approaches usually refer to 

service load conditions while plastic formulations deal with 

ultimate conditions, and suggest design solutions for which 

the actual behaviour in service conditions are to be studied 

in a separate way. In practice, the application fields of the 

proposed optimal design approaches are very different. 
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Variational formulations have been proposed for both kinds 

of problems. For plastic problems, static and kinematic 

formulations are emphasized in this way and the optimality 

criterion is found to be dependent on the specific dissipated 

power. For optimal design problems in linear elastic field, 

as well known, variational formulations very frequently 

involve an adjoint problem, and the optimality criterion 

shows an elastic energy which depends on both actual and 

adjoint problems. 

Anyway , on the basis of variational formulations, optimal 

design problems can be completely described in an analytic 

way and closed-form solutions are allowed for simple examples. 

As numerical approaches are concerned, mathematical programming 

methods and optimality criteria methods can be used, once 

problems are formulated in a discrete way. 

The limits shown by rigid-plastic models can be overcome 

by considering suitable models of elastic-plastic (or elastic

hardening) constitutive laws. Particular formulations of 

such kind of problems are to be studied if the aim of 

preserving the general form of linear elastic optimization 

problems is pursued. In particular, holonomic laws are to be 

assumed and direct formulations of analysis problems are to 

be investigated. 

In the present paper, this kind of problems is studied by 

using variational formulations, with reference to beams in 

bending. Holonomic nonlinear constitutive laws are firstly 

considered, in a general way, for optimal design problems, 

and the special form of optimality criterion is discussed. 

Analogous approaches are proposed for piecewise linear 

constitutive laws (see also Ref.6) and some analytical 

solutions for simple examples are discussed as well. 

Starting from such continuous approaches, a finite element 

formulation is also shown, which leads to numerical methods 

of solution. An iterative procedure is conceived which makes 

use of a sort of scaling factor method and of an optimal 

criteria method. Some solutions were presented in Ref.7, 

where a simple F.E. model for beams in bending was proposed. 
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In the present paper a more general numerical tool is 

discussed with reference to beam and portal frames. 

2. GENERAL CONSTITUTIVE LAW 

2.1. General formulation 

Structural optimization problems in presence of a material 

exhibiting a general non linear constitutive law are the subject 

of the present study. 

In particular, 'for the sake of simplicity, problems of beams 

in bending are dealt with. The general layout of the structure 

is given and the usual hypotheses of small depths and 

deflections are adopted. The behaviour of material is 

described by a holonomic constitutive law defined in terms 

of moment fUnction H and curvature function X (see Fig.l). 

The design variable is denoted by h; it represents a local 

geometric dimension. A linear form is assumed for the cost 

function 

f[h} " t hd 0 (2.1) 

where n denotes the domain defined by the structure geometry. 

The local bending stiffness s = M, depends on the design 
X 

variable h; therefore 

M = M(h,X) (2.2) 

If P and u denote given external load and deflection function 

respectively, the equilibrium condition reads 

P + eM (h,X»" = 0 (2.3) 
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and the compatibility condition is 

x + U" = 0 (2.4) 

where a prime denotes differentiation with respect to abscissa 

x (x £ Q). The set of Rel.s 2.2 to 2.4 together with 

appropriate boundary conditions on Q, defines the governing 

relations of the optimal design problem. 

Upper and lower bounds on deflection function u are assumed 

as behavioural constraints 

+ -u <u<u (2.5) 

and side (or technological) constraints are prescribed on 

design variable h 

C 2.6) 

2.2. Optimality criterion 

Applying the Lagrangian multipliers n and ~ to the equality 

constraints of Rel.s 2.3 an 2.4 respectively and the non-
+ negative Lagrangian multipliers ~ , ~ , a and S to the 

inequality constraints of Rel.s 2.5 and 2.6, the following 

functional can be obtained 

Ll = fQ{h + nCP + M")+ vCx + Ull) 

+ ~+(u - u+) + ~-(-u - u-)+ a(h - hmax ) 

+ S(hmin - h)} dQ (2.7) 

The stationarity conditions of Ll are necessary conditions for 

the optimality of design. The stationarity conditions with 

respect to Lagrangian multipliers provide the constraints 
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of Rel.s 2.3 to 2.6, together with the orthogonality 

constraints 

+ 
].l (u 

S(hmin - h) = 0 

The stationarity conditions with respect to h, X and u 

provide respectively 

1 + n" M'h + a - S = 0 

n" M,X + v = 0 

v" + 0 + ].l - ].l = 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

In order to write Rel.s 2.10 to 2.12, Green's formula is 

taken into account; accordingly, natural boundary conditions 

on an are 

noM' = 0 
VOll' = 0 

n' oM = 0 
v'ou = 0 

(2.13) 

In a similar way as in linear elastic optimization problems, 

an adjont problem can be defined through the equations 

presented so far. The adjont external load is furnished by 
~ + p =].l -].l and Rel. 2.12 provides the equilibrium conditions, 

where v = M~ represents the moment function. The adjont 

deflection function is given by n = u~ and in Rel. 2.11 the 

constitutive law of the adjoint problem can be recognized; 

an obvious compatibility condition is given by assuming the 

adjoint curvature function as 
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~ -n" X = 

So, ReI. s 2.11 

M~ M, 
P~ 

X 
+ M~" 

and 2.12 

~ 
0 X = 

= 0 
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read respectively 

(2.14) 

(2.15) 

(2.16) 

The adjoint problem shows an elastic behaviour, as the adjoint 

bending stiffness s~=M, (see Rel. 2.15) does not depend on 
X 

the curvature X~ and it is defined by the stress state of the 

actual problem. 

The nature of the boundary conditions of Rel.s 2.13 is now 

clear 

u~ oM' = 0 

M~ au' = 0 

u~' oM = 0 

M~'ou = 0 
(2.17) 

The optimality criterion is given by Rel. 2.10, that reads 

1 - M'h X~ + a - S= 0 (2.18) 

3. PIECEWISE LINEAR CONSTITUTIVE LAW 

3.~. General formulation 

If the behaviour of beams in bending is described by means 

of a piecewise linear constitutive law, a modified form of 

the optimal design problem can be shown. The approach proposed 

hereinafter lies in minimizing a functional, derived from an 

extremum principle of Maier /8/, with respect to deflection 

function and non negative plastic multipliers. 

The moment-curvature relationship shows a linear elastic 

branch and a set of subsequent "hardening" branches (in both 
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positive an negative sides), the total number of which will 

be denoted by b (Fig.2). Let s = s (h) and s. = s.(h) o 0 l l 
(i = 1 •.. b) denote elastic and hardening stiffness 

respectively, Ri = Ri(h) (i=l ... b) being positive parameters 
representing yield limits of moment. 

The assumed holonomic constitutive law can be described as 
follows 

M = s (X -o 

b 

~ 
i=l 

8. A.) 
l l 

M = 8·eR. + S.A. + ~.) 
l l l l l 

A.~. = 0 
l l 

A. > 0 ~. < 0 
l - l -

8. 
l 

= SIGN eM) 

(3.1) 

(3.2) 

i = 1 •.. b 

(3.4) 

The bending moment and the elastic curvature are related by 
Rel. 3.1, where the elastic curvature is expressed as a 

difference between total curvature and plastic curvature Xp. 

Plastic multipliers Ai (i=l ... b) define the plastic part of 

deformation (Xp = 81 Al + 82A2 + ••. + 8b Ab ). Functions 

~i(i=~ ... b), so-called load functions, once set equal to zero, 
given the equations of hardening branches. Clearly, the case 

A~O for all i=l ... b corresponds to a linear elastic behaviour. 
l 

Moreover, if the last stiffness sk in the positive (negative) 

side is supposed to vanishe, a perfectly-plastic behaviour is 

defined for M = Rk(M=-Rk ). 

Now, the optimal design problem can be defined for beams in 

bending which exhibit such a piecewise linear constitutive law. 

The same formulation as seen in Sect. 2.1 is proposed, to 

within Rel. 2.2, which is substituted by the set of Rel.s 

3.1 to 3.5. 
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3.2. Optimality criterion 

Looking for the optimality criterion referred to optimal 

design problems in presence of a piecewise linear constitutive 

law, a Lagrangian functional can be defined. 

L = ~l + L2 (3.6) 

where 1..1 is the functional of ReI. 2.7 and L2 takes into 
account moment-curvature relationships 

I b b 
L2= . {I;[M - s (x- z: 8.A.)}+ z: [y.(M - 8.(R.+s.A.+¢.))+ljJ.A.¢.]}d~ 

~ 0 i=l 1 1 i=l 1 1 1 1 1 1 1 1 1 ~ ) 
\0.7 

From the stationarity conditions of L, othogonality conditions 

of Rel.s 2.8 and 2.9 and boundary conditions of Rel.2.13 are 

found, while Rel.s 2.10 and 2.11 are to be respectively 
modified in the form 

b 
1 - 1;;s (X-o,h z: 

i=l 
b 
z: y.8.(R. h + 

i=l 1 1 1, 

8. A. ) 
1 1 

s. h 1...)+ a - S = 0 
1, 1 

C3. 8) 

C3.9) 

The stationarity condition of L with respect to deflection 
function u is given by Rel.2.12 and the stationarity conditions 

with respect to M,A. and cp. are to be added 
1 1 

b 
n" + 1;; + z: y. = 0 

i=l 1 
C3 .10) 

8.(S 1;; -s.y.) + ljJ.¢. > 0 
1 0 1 1 11-

i=I. .. b C3.ll) 
A.[8.(s I; - s.y.)+ ljJ.¢.] = 0 
1101111 
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-S.y. + $.A. < 0 
~ ~ ~ ~ -

i=l. .. b C3. 12) 
~.(-S.y. + $.A.) = 0 
~ ~ ~ ~ ~ 

~he orthogonality constraints of Rel.3.12, accounting for the 

assumption ~i~i=O' involve 

~. y. = 0 
~ ~ 

i=l. .. b C3. 13) 

For the adjoint problem, defined in Sect. 2.2, the constitutive 

law is furnished by Rel.s 3.9 to 3.11; from Rel.s 3.9 and 3.10 
one has 

M~ = s (X~ -
o 

b 
I 

i=l 
y. ) 
~ 

while for any A > 0 Rel.s 3.11 read 

M~ = si Yi 

C3 .14) 

(3.15 ) 

Any way a linear elastic behaviour is found for the adjoint 

problem, for which the constitutive law is meaningfully 

expressed either by ReI. 3.14, if the actual problem shows an 

elastic behaviour (Yi=O for i=l ... b) or by ReI. 3.15 if in the 
actual problem plasticity is active. 

The optimality criterion of Rel.3.8 reads 

(x~ 
b b 

1 - - I y. ) So h(X - L S . A. ) 
i=l ~ , i=l ~ ~ 

b (3.16) 

- L y.S.(R. h + s. h L) + a. - B = 0 
i=l ~ ~ ~, ~, ~ 

If Ai and Yi vanishe for any i=l ... b (linear elastic behaviour 

for both actual and adjoint problems), the optimality criterion 
shows the classic form 

~ 1 - X So h X + a. - B = 0 , 

By assuming, without loss of generality, 
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So = A 
0 

hP (3.18 ) 

s· = A. hP C3 .19) 1 1 
i=l. .. b 

R. = B. hq (3.20) 
1 1 

the optimality criterion of Rel.3.16 can be simplified in form 

~ 1 b b 1 
1 - X A PhP- (X- L e.A.)+(p-q) L y.e.B. hq- +a-S~O 

o i=l 1 1 i=l 1 1 1 
(3.21 ) 

or alternatively 

J[ bIb q-l 
l-(X - L Y·)A P hP- X - L y.e.B. h +a-S= 0 

i=l 1 0 i=l 1 1 1 
C3. 22) 

4. EXAMPLES 

4.1. Operating remarks 

In order to find analytical or numerical solutions, problems 

exhibiting the previous seen piecewise linear constitutive law 

can be described in terms of deflection function u, plastic 

multipliers Ai and load functions ~i. Accordingly, the 

corresponding optimal design problem requires design variable 

h and adjoint parameters n(=u~) and Yi to be added. In the 

adjoint problem also the external load ~+-~ is a unknown 

function. 

Thus, as the actual problem is concerned, the governing 

equations presented so far can be summarized as follows 

A.~. = 0 
1 1 

A. > 0 
1 

~. < 0 
1 

i=l. .. b 

(4.1) 

( 4.2) 

(4.3) 

(4.4) 
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8i= SIGN eM) (4.5) 

and, for the adjoint problem, one has 

+ b 
~ -~--A hPen"+ I y.)"= 0 

o i=l l 
(4.6) 

b 
-8·fA hPCn"+ I y.)+A.hPy.]+~.¢. > 0 

l 0 j=l J l l l l 

b i=l. .. b 

A.{-8.\A hPCn"+ I y.)+A.hPy.\+~.¢.}= 0 
l l 0 j=l J l l l l 

(4.7) 

The orthogonality constraint of Rel.3.13 is to be considered, 

and the optimality criterion can be employed in the form 

given by Rel.3.21 

1 b b 1 
l-n"A phP- Cu"+ I 8·~·)+Cp-q) I y.8.B.hQ- +a-S=O 

o i=l l l i=l l l l 
( 4.8 ) 

In the following, the form of moment curvature relationship is 

assumed as shown in Fig.3.The same behaviour is considered in 

both positive and negative sides and for the total number of 

hardening branches b=4 is assumed. In particular, the assump

tions 

81 = 82 = +1 

8 3 = 84 = -1 

s3 = s4 = 0 

are made. An elastic-hardening-perfectly plastic behaviour is 

described in such a way. 

4.2. Looking for closed form solutions 

Some simple examples will be discussed hereinafter, in order 

to give some elements about the way to obtaine closed-form 

solutions, as in analogous elastic optimization problems. 

For the sake of simplicity assume h . =0 and the upper bound mln 
h not to be active. Let a statically determinate beam be max 
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considered. Depending on the load, moment funtion 
. • ;t M~ ( ) be calculated and adJ olnt moment (unction M = x 

found to within the actual value F of the adjoint 

M=M(x) can 

can be 

load. If the 

abscissa x where the deflection constraints of Rel.2.5 are 

active cannot be found a-priori, also x is a unknown parameter 

in function M~(x). Anyway, if the beam is supposed to remain 

in elastic domaine, one has 

u" -M = 
A hP 

0 

( 4.9) 

n" 
-M~ 

= --
A hP 

0 

(4.10) 

and from the optimality criterion 

P-l 1 - n" A ph u" = 0 o (4.11) 

it follows 

hP +l MM~ 
= P 

Ao 
(4.12) 

Then 

u"(x) - M = 1 P 
(4.13) 

p+l (MMlf.p)p+l A 
0 

By twice integrating Rel.4.13, deflection function u is found 

to within parameters F and x as well as 2m integration constants 

(where m represents the number of integration fields). These 

parameters can be found through 2m geometric boundary conditions 

(statically determinate beams) and by prescribing the d 

deflection constraints of Rel.2.5 to be active. 

Finally, the admissibility condition for the elastic solution 

will be investigated 

(4.14 ) 
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The elastic-hardening behaviour can be investigated in a 

similar way. If Al>O is assumed (A 2=A 3=A4=0), one has 

M u" + A 1 = ---

A = _M __ 
1 A hP 

1 

n" + Yl = 

The optimality criterion reads 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

By elimitating u",n",A l and Yl from Rel.s 4.15 to 4.19, it 
follows 

1 1 MMJ( q-l 
1. - (A + A)P -- + (p - q)Yl B h = 0 

o 1 hP+l 
(4.20) 

If the function h=h(x) can be calculated from Rel.4.20, an 

analytical form of curvature function u", to be integrated, 

can be found by Rel.s 4.15 and 4.16 and the optimization 

problem is solved as in elastic cases. The admissibility 
condition for such a solution reads 

Bl hq < M < B2h q (4.21) 

Generally speaking, an optimal solution for a beam can 

involve both elastic and plastic behaviours. So, temptative 

h1potheses are to be done in order to define elastic and 

plastic regions along the beam. 

Moreover, for statically undeterminate problems, the same 

method could be employed, if moment functions are calculated 

referring to a statically determinate scheme and by founding 

a-posteriori redundancy unknown parameters. 
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4.3. Cantilever beam 

Let the statically determinate beam of Fig.4 be considered for 

which 

x2 
M = - Q -2-

M = -F x 
X E (O,Z) 

+ according to the assumption u(O)=u 

(4.22) 

In the elastic hypotesis, from Rel.4.12 and 4.13, it follows 

1 for p~l (4.23) 

z x 
1 for p~2 (4.24) 

The admissibility condition for p=q=l (sandwich beam) requires 

+ u r (4.25) 

It can be noticed that the same condition for a uniform design 

solution reads 

(4.26) 

If Rel.4.25 is not fulfilled, the behaviour beyond the elastic 

limit is to be investigated. Thus, having assumed A3>D along 

all the beam, the solution ca be calculated in the form 
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~ 5/2_ .2. ~ + 1] 
L 3 L 

~ Q L5/2 x3/2 
5 

The admissibility condition 

2 
Bl hex) < ~ 

2 

(4.27) 

(4.28) 

cannot be fulfilled at least in a suitable neighbourhood of 

x=O. Then, if the admissibility condition of the elastic 

solution (Rel.4.25) is not fulfilled, the optimal solution 

involves an elastic region for x ~(O,xl) and a plastic 

in x ~(xl,L). By using Rel.s 4.12 and 4.13 (elastic behaviour) 

and 4.20 (plastic behaviour), the following solution can be 

found 

=(QF )1/2 312 
h 2A x 

o 

_( Q _\1/2(4 5/2 ) + 
u - 2AoFI 15 x + Clx +u 

h "[(A~ + ill ~]l/2 x3/2 
u =~(.1... + .1...) QL 11/2~ 7,.2 ~~ ~ 51: 

A Al 2F 3 5 L o ... 

(4.29) 

(4.30) 
(x_L)2 

2 

Unknown parameters xl,F and Cl can be calculated through 

continuity conditions for u and u' in x=x l and by prescribing 

the yield condition in x=x l 
2 

( QF )1/2 312 _ Q xl 
Bl 2A x l -

o 2 
(4.31) 

If p=2 and q=l is assumed, the admissibility condition for 

the elastic solution of Rel.4.24 reads 

Q < 
A o 

B2 
1 

+ u 
(4.32) 

In this case, looking for plastic solutions, from Rel.4.20 it 

follows 
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(4.33) 

Let the structure of Fig.5 as another example be now considered 

for the optimal solution of which different plasticity 

conditions will be found. In the elastic hypot~sis, from Rel. 

4.12 and 4.13, it follows 

+ ~)2 

J 
u = u (1 -

1, 

7.2 
for p=l (4.34) 

h = p x 
2Aou + 

u = + [3 ( x f 13 7 x 
+ 1] 

} u 11 1- - 111-

1.713 
for p=2 (4.35 ) 

h 3P x213 = 7Ao + u 

In the case of sandwich beam (p=q=l), the admissibility condi-

tion for elastic solution implies 

(4.36) 

while the corresponding condition for a uniform design solution 

is 

(4.37) 

if M < -Bl h(x) is assumed along all the beam, the following form 

can be obtained for the design function 

A + Al P 1. 2 
h 0 = 

B 1. 2 ~ 
x + 2u Al + 1 

(4.38) 

and the admissibility condition provides 

Bll. + B2 1. (B2 - Bl ) 1-
< ~ < 

2Ao - 1 - ~+ 2Al 0 
(4.39) 

Then, depending on the behavioural constraint on deflection 

function, the optimal solution can show either an elastic or 



www.manaraa.com

329 

a plastic behaviour along all the beam. Analogously the collar 

se condition (M=-Blh) is attained for any x ~ (O,Z) 

5. FINITE ELEMENT APPROACH 

5.1. General formulation 

Finite element models which allow for formulations similar to 

the approaches seen in the previous sections are proposed 

in Ref.s 9 and 10. Operating remarks on such approaches will 

be presented in next section. In the present section the 

finite element formulation is proposed having as fundamental 

idea the continuous approach presented in Sect.s 3 and 4. 

The holonomic, piecewise linear, elastic-plastic problem is 

formulated via finite element method by suitably modelling 

displacement function u and non negative plastic multipliers 
Ai. Generally speaking, such a model allows for spreading 

plasticity along the elements, overcoming in this way the 

classic methods based on plastic hinges. 
For the sake of simplicity the beam F.E. proposed in Ref.9 is 

considered in this section. A model implying more general 

?pplications will be accounted for in next section. 

The set of governing equations represents a discrete form of 

Rel.s 4.1 to 4.5. Let ~ and ~ denote nodal external load 
vector and nodal displacement vector respectively. Similarly, A 

represents the vector of plastic multiplier and! the vector 
of load functions, the physical meaning of which follows from 

the continuous approach. Thus, in the assembled form, one has 

P - K -uu u + ~A A = 0 (5.1) 

K u - ~AA A - R - 1 = 0 (5.2) -AU 

1d ~ = 0 (5.3) 

A > 0 1 < 0 (5.4) - .- -
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Special n0tation !ct denotes a diagonal matrix defined in such a 

way that ~=diag ~d; anah)gous notations will be used in the following 

In Rel.5.l matrix K represents the elastic stiffness matrix -uu 
and the contribution of deformations to the equilibrium equations 

is taken into account through matrix K ,. ReI. 5.2 derives from 
-UA 

the assemblage after having modelled plastic multipliers; vector 

~ collects yelding limit moments. 

Now, with the view to optimal design problems, let h j (j =1. .. n h ) 

denGlte the set of design variables and let the set 0f finite elements 

be subdivided into n h subsets, each one constituted by the elements 

to which the same design variable h is attributed. The geometric 

domaine (total length) defined by the j -th subset will b~ denoted 

by Ij and the total number of elements belonging to this subset 

will be den0ted by mj(j=l ... n h ). In order to point out the role 

played by design variables in Re:J.. s 5.1 and 5.2, the assemblage 

operations are to be accounted for. If u., A. and </>. are vectors 
-l -l -l 

related to the i-th finite element, the following classic rela-

tions can be proposed 

u. 
l 

= L. 
-l 

u 

A· = Z. A i = 1 ... n (5.5) -l -l e 

1i = z. 
-l 1 

being L. 
l 

and Zicostumary connectivity matrices and n e the 

total number of finite elements. Now, with obvious notations 

and in accordance with the assumptions of Rel.s 3.18 to 3.20. 

n h m. 
J 

L~ k i K = .L hI? I L. -uu J=l J j=l -l -uu -l 

n h m. 

~UA = I hI? I J L~ k i Z.= KT 
j=l J i=l -l -UA -l -AU 

(5.6) 
nh m· 

J 
Z~ i 

.!SA).. = I hI? I ~AA Z. 
j=l J i=l 

-l -l 

n h m. 
J 

z~ i R = . I h9 I r 
J =1 J i=l -l 

and 
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Finally, in discrete form, the cost function of Rel.2.1 and 

behavioural and side constraints of Rel.2.5 and 2.6 can be 
respectively formulated as 

nh 
r = L 

j=l 
.Q.. 

J 
h. 

J 
(5.8) 

T u - Q < 0 (5.9) - -

h . < h. < hmax 
j =1. .. nh (5.18) mln - J -

5.2. Optimality criterion 

Looking for the optimality criterion, the discrete for~ of 

Lagrangian functional L of Rel.3.6 is 

nh 
T(p L = .L .Q.. h. + 

J J 21 _ 
J =1 

T{ 
~U + ·K u -l -AU -

A 
-

K -uu u + K -UA ~) 

- R - ~) + ~T .td A 

{o..(h. -h )+S·(h. -h.)} 
J J max J mln J 

(5.11) 

where 11 > 0 and o.·,S.>O. The orthogonality constraints read 
.l:: - - J J-

l!.d(! ~ - Q) = 0 (5.12) 

o..(h.-h ) = 0 j =1. .. nh J J max 
S·(h . - h.) = J IDln J 

0 (5.13) 

and the stationarity conditions with respect to vectors ~, A 

and 1 provide respectively 

~AU ~ - KAA l + .td ~ > 0 

Ad(~AU ~ - KAA l + .td ~)=Q 

(5.14) 

(5.15) 
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(5.16) 

The optimality criterion lS given by the stationarity conditions 

with respect to the design variables, that read 

m. 

1. + p hI?-l 'i' J {n T L ~ (- k i L. u + k i z. 2J 
J J j~l -l -uu -l - -UA-l 

+ AT Z ~ (k:i- L. _u - ~~ \ z. _A)} 
- -l -AU -l AA -l 

q-l ~j T ZT. ri 0 
- q h. . L. Y -l - + cx J' - SJ' = 

-J J =1 
j =1 ... nh 

From Rel.s 5.3 and 5.16 the following orthogonality constraint 

is derived 

1d y. ::: 0 (5.18) 

and the optimality criterion can be simplified in the form 

m· 
1. + p hI?-l .IJ nT L~(-ki L. u + k i z. 1) 

J J l=l -l -uu -l -UA -l 

m· 
q-l J T T i 

+(p-q)h. 'i' Y. z. r +cx.-S. =0 
J ih -l J. J 

(5.19) 

j =1. .. n h 

5.3. Numerical procedure 

The solution of the optimal design problem previous formulated 

can be obtained by solving the system of simultaneous equations 

and inequalities of Rel.s 5.1 to 5.4, 5.9, 5.10 and 5.14 to 

5.17. Two different (actual and adjoint) analysis problems can 

be focussed, which are related by optimality criterion of ReI. 

5.17 (or 5.19). Thus, a suitable numerical iterative procedure 

can be proposed. 

For the sake of simplicity, assume technological contraints of 

Rel.s 5.10 not to be active and just one of contraints of Rel.s 

5.9 to be active.so, Re1.s 5.13 involve CXj =Bj =0 (j=1. .. n h ) 

and Rel.5.12 implies just one nonvanishing term in the dual 
T load vector! = :!'. 1!..' The iterative procedure can be summarized 

as follows 



www.manaraa.com

333 

a) for a given design solution hj(j=l ... n h ) solve the analysis 

problem of Rel.s 5.1 to 5.4; 

b) modify the solution by defining a design factor f, in such 

a way the design hJ=ffi j implies one (the k-th) of the 

behavioural constraints to be active; 

c) solve the adjoint problem, assuming a unitary load, 

corresponding to the k-th term of vector F; 

d) by using the optimality criterion '_ define a set of nh 
factors sJ' for having a new design h. = s· h! (j=l ... n h ) 

J J J 
and return to step a). 

Such a procedure is summarized in Table 1. 

6. AN OUTLINE OF THE NONLINEAR FINITE ELEMENT BEAM MODEL AND 
ITS IMPLICATIONS ON THE OPTIMUM DESIGN FORMULATION 

Having in mind to take into account the nonlinear material 

behaviour throughout the optimum design process, a suitable 

finite element model has to be considered. Selection of such 

a model is essentially led by the purpose of modifying as 

little as possible the optimal design procedure developed for 

elastic materials and based on optimality criteria. A model 

which has been thought to correspond to this dictate and has 

been firstly proposed in Ref.9 and then refined in Ref.ll, in 

the framework of theory of plasticity, will be now re-consi

dered in order to clarify peculiar features of the optimal 

design formulation based on finite elements and previously 

presented. 

6.1 Basic concepts 

For the sake of brevity and in so far as understanding of this 

paper needs, only the main ideas are redrawn from the 
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referenced works 9,10,11 to which the Reader may turn for 

deeper informations. 

Note that adopting such a model involves some notations to be 

modified with respect to the constitutive relations seen in 

previous Section, whereas the basic concepts are preserved. 

Mean axial strain o(x) and curvature X(x) govern the 

deformability of any cross section, supposed to be symmetric 

about z-axis and placed on a point x on centroidal axis of 

a straight beam element. According to slender beam theory 

only the axial strain E is considered to be significant; 

because of the Bernoulli hypothesis E is related to 0 and X 

by the following relation 

E(x,z) = o(x) - zX(x) (6.1) 

In turn, 0 and X depend on axial and transversal displacement 

u and v, according to the compatibility relations 

o(x) = du/dx 

X(x) = -d2v/dx2 
(6.2a,b) 

If 0 and X are considered as generalized (global} strains,the 

generalized stresses are defined through the virtual work 

equation 

(6.3) 

so that it is 

N(x) = fA o(x,z) dA 
(6.4a,b) 

r 
M(x) = J A a ( x , z) z dA 

Neglecting the influence of shear stress on yielding, material 

behaviour at a point B(z) of the cross section x is conceived 

to be governed by the linearized constitutive curve of Fig.6a, 

that is described by the following relations 
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T 
1B ( z) = QB a B ( z) - b.B ~ ( z) - E.B 

E.~ = [r l · .. r y+ -ry+l " .-ry++yJ 
] (6.5d,e) 

(6.5f-h) 

where p represents the plastic part of strain E:B(z), which is 

expressed as summation of variables ~B(z). In the framework of 

the theory of plasticity ~B(z) are measures of plastic defor

mations. In the context of the present design formulation they 
should be better considered as simple deviations from lineari

ty, since finite (no incremental) form of Rel.s 6.5 implies 

holonomic behaviour. 
Hardening matrix b.B colets the slopes 0f branches in Fig.6b 

and, for the optimization model, might be simply hB= diagLh 1 , - y 
y = 1. .. Y with y = y+ + y- (no interaetion between branches). 

Note that ~B' b.B' E.B are constants and the variables of Rel.s 
6.5 are functions of z only. 
In short, the element model is based on independent interpola

tion of displacements u(x), vex) and of multipliers ~(x,z). 

As displacement model ~(x), ensuring continuity for u, v and 

dv/dx after assemblage, a linear distribution for u(x) and a 
cubic distribution for vex), integrated by a fourth order 

bubble function, is assumed. Hence the vector u of the nodal 

degrees of freedom will collect 7 parameters 

with 

~(x) = ( U(X)] __ 
.!J!.(x) u 

vex) 

uT = {ul u2 vl v2 81 82 a} 

(6.6a,b) 

where ui ' vi' 8i ( i=1,2) are the axial, transversal misplace

ments and rotations at the ends of the element; a is an 

additional parameter homogeneous with a displacement. 

Parameter a concerns the bubble function and shows that, by 
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virtue of the independence between displacement and multiplier 

fields, hierarchic models and relevant procedure can be used 

when it needs. The assumed displacement model ~(x) determines, 

by means of eq.s 6.1 and 6.2 the strain distribution: 

8(x) is constant and X(x) parabolically along the element. 

Multipliers A are independently interpolated as follows 

= A (z) A-(x) ASS 
s s y y = 1 ... Y (6.7) 

where 

-
ASS = A ex zs) 

y y rr' ( 6.8) 

are parameters which define the distribution of multipliers 

according to the interpolation polynomials A (z) and A (x). 
s rr" 

Rel.6.8 shows that A~s are the values that the multipliers 

assume at points Zs (s = 1. .. S) placed on cross section 

x (3 = 1. .. S)(see Fig.9c). In other words, spreading of non-
s 

linearity (plasticity) is controlled by S cross sections and 

within them by S suitably chosen control points. The total 

number of parameters A for a beam element is Y x S x S. 
The crucial point to be discussed is the mutual independence 

of the interpolation models ~(x) and As(z) As(X) for 

displacement and multiplier fields, respectively. 

In fact, any arbitrarily chosen interpolation for p, determined 

through the Rel.6.5b by Rel.s 6.7,8, might be not compatible 

with the total strains defined by Rel.s 6.1,2 and by the 

displacement model ~(x). This lack of compatibility would 

produce non vanishing distributions of the generalized 

stresses W(x), M(x) even in an isolated element subject to 

plastic strains only, which is unacceptable because of its 

static determinacy. This inconvenience is avoided by enforcing 

that N(x) be constant and M(x) vary parabolically with x, as 

consistency with the assumed displacement model requires. The 

above action, not constraining the order of polynomials 

As(z) A (x), is an operative interpretation for the beam 
s 

element and derives from a general procedure illustrated in 

Ref .11. 
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Good description of the structural behaviour, given by the 

model outline, permits to reduce the number of the discretizing 

elements and hence the number of the nodal variables. 

6.2. Explicit expression for the constitutive matrices 

Application of the optimality criterion requires that the 

matrices formally introduced by Rel.s 5.6 be derived with 

respect to the design variables. As consequence, calculus of 

such derivatives needs that ~uu' ~UA' ~AA and ~ be made in an 

explicit form, also suitable for an efficient organization of 

computations and for a rational employement of computer devices. 

The sectional behaviour will be firstly considered and then 

the elemental model will be derived, having in mind to 

evidentiate which components depend on the design variables 

and which do not. 

A consistency condition, similar to 6.3, is written for 

yield function and plastic multipliers distributed along a 

cross section, thus defining the generalized yield function 

f and the generalized multipliers 1 

fT ! = fA ¢~(z) AB(Z) dA (6.9) 

The sectional behaviour is assumed to be governed by relations 

quite analogous to Rel.6.5 but expressed in terms of sectional 

generalized variables 

g = ~~g - ~ !) 
f T g h 1 (6.l0a-e) = n - r -

1 > 0 f < 0 fT 1 = 0 

Besides the elastic matrix ~, the arrays ~, hand r contain 

geometric properties of the cross sections as it will be 

shown in the following. 

Supposing that for a section s EB(z) and AB(z) be expressed 

as functions of these generalized quantities g and 1 through 

the interpolation matrices ~(z) and A(z) 
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EB(Z) = .§.(Z)g AB(Z) = l!(z)l (6.lla,b) 

from Rel.s 6.3 and 6.9 we have 

Q = fA .§.T(z) 0B(Z) dA,! = fA ~T(z) ~B(z)dA (6.l2a,b) 

Comparing expressions derived from Rel.s 6.10a,b with those 

obtained by introducing Rel.s 6.5a,b and 6.11 in Rel.6.12a 
and Rel.s 6.5a,c,d in Rel.6.l2b it results 

d = E r - -qq n = -1 
Iqq Iql 

(6.13a-d) 

r = J A AT !:.B dA 

where 

I.qq = t .§.T(z) .§.(z) dA 

I.ql = Ilq = .§.T(z) ~B ~(z) dA t 
I.ll = t ~T(z) T 

~B ~B flC z) +1:. 
E t ~T(z) 

(6.l4a-d) 

0.B ~(z) dA 

r = t !? (z) !:.B dA -

Definition of matrices nand h requires that r be non -qq 
singular which is true if the entries of ~(z) are linearly 
independent. In this case r is symmetric and positive--qq 
-defined. 

Moreover, 0. is symmetric and positive semidefinite, as it can 

be proved, when 0.B = Q or is symmetric and positive semidefi

nite. 
Expression of matrices r are completely determined once 

interpolation functions ~(z) and ~(z) have been fixed. 

According to Bernoulli hypothesis we assume 

.§.(z) ~ [l-z] (6.15) 

Onthis basis, r can be calculated and produces the well-
-qq IA 01 -known matrix 3. = E 0 I where A is the area and I is the 

moment of inertia of a cross section. 
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For ~(z) a Lagrangian polynomial is considered and as zero 

points (control points) 3 points are selected along z-axis. 

Their 

a way 

up to 

coordinates z (s=1 ... 3) can be 

that any J PCZ)dA, where P(z) 
. A 

2S-1, lS exactly calculated by 

J P(z) dA = I w P(z) 
A 1 s s s 

suitably chosen in such 

is a polynomial of degree 

a weighted summation 

(6.16) 

provided that coefficients Ws be correctly evaluated in 

dependence on the shape of the cross section (see Ref.lU. 

It has been shown that Ws and Zs can be expressed as 

= A Vi s (6.17a,b) 
z =lTTAz s s 

where wand z are numerical values tabulated for certain s s 
total numbers S of control points. In order to express the 

integrals as funtion of cross section areas only, the follo

wing relation between the cross section area A and the moment 

of inertia I is assumed, 

(6.18) 

where a is a coefficient which can be calculated for different 

types of profiles (for IPE beams a ~ 3). 
It is worth-while noting that the only arrays depending on A, 

among those introduced in this section, are 3, ~, Q and r. It 

is also evident that using such a model leads to assume as 

design variable the cross section area of the straight beam 

element. Now the beam element model can be formulated. Again 

the starting point is given by constitutive relations of the 

same form as Rel.s 6.5 and 6.10, but in terms of generalized 

variables for the element 

(J = Q (~ - !i ~) 

.1 = NT (J - H A 

A > ° 
R (6.19a-e) 

in which generalized stresses and strains (J and E have to be 

redefined for the element through consistent relations 
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involving generalized stresses g and generalized strains g 

introduced for the cross section 

(6.20) 

Similarly for generalized yield functions~ and generalized 

multipliers A one obtains 

(6.21) 

L is the length of the finite element. 

Henceforth the procedure is very similar to the previous one. 

Combining the elemental interpolation relations 

g(x) = Q(x) ~ 

!(x) = ~(x) A 
(6.22a,b) 

with the consistency conditions of Rel.s 6.20,21, after some 

algebra, one has 

N = J: ~? (x) n ~(x) dx 

H = f: ~T(x) h ~(x) dx (6.23a-c) 

R = J: ~? (x) r dx 

where 

~(x) = .£ Q(x) Q-l (6.24) 

is the stress interpolation function (g(x) = s(x)~) and D is 

the generalized elastic matrix 

JL T 
Q = 0 Q (x) .£ Q(x) dx (6.25) 

that is symmetric and positive definite since d is so and 

Q(x) consists of functions linearly independent. 

It remain to define Q(x) and ~(x). 

Once the displacement model ~(x) has been assumed, one can 

define 
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(
O(X)] 

9.(x) = = 
x(x) 

= ~(x) u (6.26) 

where u collects the nodal displacement, in a generalized sense, 

as, for istance, in Rel.6.6b. 

Interpolation matrix £(x) is defined by identifying as genera

lized strains ~ quantities which represent purely straining 

modes. So, if u is partitioned into rigid modes Q and straining 

modes £, we can write 

u = [Ap A€J { : j 
and since ~(x) A -p = 0 (6.27a-c) 

it results 

~(x) = ~(x) A € 
In the case of the previously considered displacement model, ~ 
is a vector of 4 elements to be chosen among the 7 entries of 

~, being R=3 the number of rigid motions for a plane beam 

element. In this way it is also possible to avoid that an 
isolated unloaded element be suhject to a stress state when 
only a plastic deformation distribution exists. 

As for the beam section model, ~(x) is assumed tel be a Lagrangian PQ. 

J.,ynomial such that the integral expression of !!,.!i and ~ can be sub
stituted by summation like ReI. 6.16. From ReI. 6. 7 it ~an be argued 

that ~(x) and ~(z) in general comprise Lagrangian PCllyoomial of 

different order, since the control points number s for ~ (z) nay be different 

from the control sections number S eoncerning ~(x). 
Constitutive equations combined with the compatibility equation 

.f. = f ~ and equilibrium conditions give the following expressions 
for the constitutive matrices 

~uu = ~? !2. f, ~UA = ~~A = fT !2.!!, T 
~AA = !! +!! Q!! 

(6.28a-c) 
in which only Q !! and H are functions of the design variables 

Ai. Also the vector 

L J R = J ~T(x) r dx with r -
o - A 

(6.29) 
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depends on the design variables Ai' 

For the outlined model Rel.s 5.6 have to be modified since the 

dependence of the constitutive matrices on the design variables 

is different. Rel.s 5.6 preserve their symbolic validity in 

general and an operative validity only for the less refined 

model proposed in Ref. 9. 

We have now s(')und reasons to emphasize the noticeable merits 

of the adopted nonlinear beam model for the optimal design 

procedure. In fact it makes possible to evidentiate the 

design variables Ai in all the arrays which must be derived 

with respect to them in order to check the optimality condi

tion 

(6.30) 
(for i = 1. .. number 0f design variables)where _Kuu' K ,-KT 

-Ul\--AU 

~nd R are obtained by assembling the homonymous arrays in 

Rel.s 6.28a-c and 6.29,(see Re~.s 5.5,6). starred quantities 

derive from the adjoint problem, and are rather easy to 

calculate, as it is shown in Appendix. 

In Rel.s 6.28a-c and 6.29, not only we meet again 

Q = E iq q = E J A .§. T ( z) .§. ( z) dA = E J A L;] [1 - z 1 dA = E f- ~ ~ 1 
(6.31) 

but again, the use of Lagrangian polynomials for ~(z) and 

Gaussian points as control (zero) points, permits to consider 

algebraic summations instead of the integrals defining ~, ~ 

and £, and hence allows to evidentiate the design variables. 

Thus we can write 

d = d a: - -A- (6.32a-d) 

in which the overlined quantities do not depend to the cross 

section areas and on moments of inertia. 

For the same reasons, not only Q but also ~, Hand R can be 

expressed as algebraic summations from which the design 

variables can be again drawn out. 

So,it is 
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where overline as the same meaning as above. 

Matrices defined by Rel.s 6.28a-c become 

k = CT QA is C -uu 

~n =!iA B + f? Hr QA is HA N 

Hence the required derivatives are simply 

(l~uu 
CT 

(lQA _ 
C 

~ = (lA. D 
l l 

(l~uA (lkT 
CT 

(lQA _ 
CT 

(lHA -Au N QA is N ~ = ~ (lA. Q HA + (lA. 
l l 

(lNT 
l l 

(l~n -T -T NT 
(lQA A is HA N is HAH ar.- = N (lA. QA + N (lA. -A 

l l l 

NT NT 
(IN (l!iA 

QA 
- -A- H + Q (lA. H + (lA. - -A 

l l 

(6.33a-d) 

(6.34a-c) 

(6.35a-c) 

Similarly, derivatives of the assembled matrices in the 

optimal conditions of Rel.6.30 can be calculated. 

6.3. Concluding remarks on merits of the adopted model in 

view of the optimal design procedure 

The model taken into consideration in the present finite 
element optimal design approach allows to describe the inelastic 

(nonlinear) behaviour of members subject to both axial force 

and bending moment. Measures of deviation from linearity are 

modelled over the cross section and along the element length 

independently of the displacement field. In this way it is 

possible a good description of material nonlinearity with an 

accuracy degree which can be selected separately from that 

suggested by load conditions for displacements. 

What above summarized has the following impact on the proposed 

optimal design approach: 

a) Description needs for frames in nonlinear range can be very 
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well satisfied even if the structure is discretized with 

only one element for any beam column member; 

b) As consequence, more refined subdivisions into finite 

elements are involved by need to have more than one design 

variable for any member; 

c) In spite of a certain complexity of formulation, computatio 

nal burden is considerably reduced because of a suitable 

interpolation of parameters that represent nonlinearity; 

d) In addition, the above interpolation models allow that the 

design variables be easily evidentiated; 

e) For this reason optimality criterion can be made explicit 

and numerically checked on the basis of quantities which 

can be efficiently handled by a properly devised design

-synthesis integrated system; 

f) Finally, slight modifications are to be given to similarly 

founded elastic optimum design procedure, which is a purpose 

basically postulated. 
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APPENDIX 

Starred quantities of the adjoint problem, needed to complete 

the check of the optimality criterion of Rel.6.30, can be 

calculated by 'shrewdly' handling the analysis procedure. 

Let the adjoint problem be written as follows ~+) 

K 
x 

K AX pX u = -uu -uA 

K 
x 

~n 
AX 

.c£.d 
'Ix > 0 U - + -AU 

~(~Au 
x 

.!Sn 
AX u + .c£.d :/) = 0 

_Ax + A vX > 0 
- -d 

.c£.d(-~X + ~d ~~) = 0 

Since ld ~ = Q, from Rel.l.e it derives 

<p AX = 0 
-d -

X Moreover, Rel.l.a solved with respect to u gives 

(la-e) 

( 2) 

~x = ~~~ (~~ + .!SuA ~x) (3) 

which,6ubstituted in (l.b), yields 

~d ~X + ~Au ~~~ pX - (~AA - ~Au .!S~~ .!SuA)~X > 0 (4) 

This inequality can be expressed in terms of Q, D Nand 

(+) The quantities of the adjoint problem have the same meaning 
as in the previous sections but here they are indicated 
with different symbols to underline their mechanic 
interpretation. 
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H as 

= NT D C K-J. plf 
- - -uu 

where A = (!!T ~ !! - .!i) 

and 

Since 

Z = D C K- l CT D - -uu -

K- l pJf = uJf 
-uu -0 

and consequently 
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D 

NT 2. Q ~~ = NT !2.(Q ~~) =!!T D £~ =!!T Q.:l 
Rel. 5 becomes 

!!T Q.:l - A AJf + 1d ~~ ~ Q 

(5 ) 

(5 I ) 

(5") 

(6) 

(7) 

(8 ) 

Now let Rel. lc be considered. Since the left-hand side term 

of Rel.8 is equal to the expression multiplied by ld in Rel. 

lc, this last can be rewritten as 

(9a) 

Matrix ~ is partitioned ~ on the basis of the 3 subvectors li ' 
~ ~ 

lj and lk' with i, j, k £ I, J, K. 

Sets I,J,K collect the indices which denote, in the adopted 

inelastic analysis procedure by holonomic steps, the plasticity 

conditions that are active, no active, no active in the current 

and active in the previous step, respectively. One obtains l· A.. A .. 
-ll -lJ 

A", (N_T -(Je~l - A.. A .. 
-u -J l -J J 

and in an 

Ad (~$ - -J 

NT 
-k 

where 1I 

Ak · Ak · 
- l - J 

expanded form 
~ ~ (J 1- (A .. A. +A .. -e -ll -l -lJ 
~ Jf 

(Jl-(A .. A·+A .. -e -Jl -l -JJ 
~ !( 

(J 1 - (Ak · A. + Ak . -e - l -l - J 

= 0 i~ < 0 
J 

A. k ] A~ -l -i 
~jk ~i + 1d ~Jf) = 0 

~kk lk 

~~) 
v~ = 0 
-J 
~ 

~k 

(9b) 

(9c) 

(lOa,b,c) 

The entries of the diagonal matrix ~d can be rearranged to form 

the vectors ~i'~j and ~k constrained as follows 
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A. > 0 
-l -

A. = 0 
-J 
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~k = 0 (11a,b,c) 

Taking into account Rel.s lOa and lla, the first row in Rel.s 

9c becomes 

~I £:1 - (~ii ~~ + ~ij ~j + A~k ~~) = 0 (12) 

Because of Rel.2 and ineq.s of Rel.s lOb,c it results 

A~ = 0 -J -
A~ = 0 
-k 

Hence Rel.12 reduces to 

N~ 0~ - A .. A~ = 0 
-l -eJ.. -ll-l 

from which 

\~. = -1 (T ~) 
1\ A .. N. 0 1 
-l -ll -l -e 

Substitution of vector A~ in Rel.3 yields u~. 
-l -

So , computation of the adjoint quantities ~~ 

(14 ) 

and A~ simply 

requires that the arrays appearing in the right-hand sides of 

Rel.s 3 and 15 be suitably saved during the analysis procedure. 
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COMPUTER-AUTO~..ATED DESIGN OF BUILDING FRAHEWCRKS 
UNDER VARIOUS PERFORMANCE CONDITIONS 

INTRODUCTION 

Donald E. Grierson 
Solid Mechanics Civision 

University of Waterloo, Canada 

This study addresses the task faced by designers of struc

tures for which "limit-states" criteria must be satisfied at one 

or more distinct loading levels. For example, the specified 

limit states may concern acce?table elastic displacements under 

service loads, accep.table elastic stresses under factored ser

vice loads, and adequate strength reserve under ultimate loads 

against ~uckling instability and/or plastic collapse of the 

structure. Ideally, while satisfying the various performance 

criteria, the most economical design of the structure is sought. 

~he conventional ap?roach to such design is to separately 

pro~ortion the structure to satisfy one set of performance cri

teria (e.g., stress limits), and to then modify the structure 

to satis~y the one or more other sets of criteria that are of 

concern to the design (e.g., displacement limits, failure limits, 

etc.). A drawback of this approach, however, is that decisions 

taken at anyone time to satisfy some of the performance cri

teria are usually made in the absence of explicit information 

as to their consequences for the other criteria. As such, they 

may result in the violation of criteria that were otherwise sat

isfied at a previous design stage. Moreover, such an approach 

makes it difficult to have explicit concern for design economy. 

At best, a somewhat cuuwersome trial-and-error process is re

quired to achieve a reasonaLly efficient design. 

An earlier study Ly Crierson and Schmit [1] considered thin

walled structures comprised of bar, membrane and/or shear panel 

elements under uniaxial stress, and develo~)ed a computer-automated 

synthesis capability whereLy a minimuu weigilt structure is found 

while sa'cisfying any combination of limit states criteria con-

NATO ASI Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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cerning acceptable elastic stresses and displacements under ser

vice loads and adequate post-elastic strength reserve of the 

structure under ultimate loads. As well, fabrication conditions 

can be imposed to ensure member-continuity and structure-symmetry 

requirements. 

Further studies by Chiu [2] and by Grierson and Chiu [3,4] 

extended the design methoQ to planar frameworks comprised of 

beam ana colwnn members under combined axial and bending stresses. 

These studies took simultaneous account of service and ultimate 

performance criteria, but considered the sizes of the cross

sections for the members of the structure as continuous variables 

to the synthesis process (see Fig. 1, where different types of 

member sizing variables are graphically illustrated). In theory, 

this aesign approach tacitly assumes tile availability of custom

fabricated sections that have the exact size, stiffness and 

strength properties requirea for the r,lembers of the minimum 

weig~t structure. 

CDI ~~ =I CONTINUOUS VAlUATION 
1,.1 •• _ieall 

Cbl ~X~I REGULAR-DISCRETE 
VARIATION 
1e.1.. IIC litall 

Cel II IRREGULAR- DISCRETE 

db VARIATION 
hi""'"1,,1_1 

Figure 1 Different Types of Member Sizing Variables for Design 

Still further studies by Lee [5] and by Grierson and Lee 

[6,7] extended the design method such that the sizes of the 

cross-sections for the members of planar frameworks can be taken 

as discrete variables to the design. For the case when both 

elastic and plastic performance criteria must be satisfied, the 

design cross-section for each member is selected from among a 

specified set of regular-discrete sections (specifically, a set 
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of discrete cross-sections of different sizes but of the same 

shape; see Fig. Ib). For the case when elastic stress and/or 

displacement criteria alone are to be satisfied, the design 

cross-section for each member can instead be selected from anong 

available commercial-standard sections (which do not obey a con

stant-shape rule as their size varies; see Fig. lc). 

The strategy employed by the synthesis technique to classify 

the databank of standard steel sections is quite general and 

independent of the units of measurement adopted for the design, 

[7]. This implies that the design nethod may be directly applied 

for a variety of different steel codes (Canadian, American, 

Japanese, European, etc.). Studies by Cameron [8] and by Grierson 

and Cameron [9] have thus far extended the synthesis capability 

to allow computer-automated design for the standard steel sections 

specified by both the canadian Institute of Steel Construction 

[10] and the American Institute of Steel Construction [11]; stress 

criteria specified by canadian limits states design [12] and by 

American working stress design [13] and load and resistance 

factor design [14] are directly accounted for. 

Further studies by Hall [15] and by Grierson and Hall [16] 

have extended the design method to account for structure in

stability in the presence of large (second-order) displacements. 

A modified Newton-Raphsen technique enables the second-order 

analysis and the structural design process to be conducted simul

taneously. 

Still further on-going studies by Kramer [17] and by Grierson 

and Kramer [18] are extending the design method to account for 

frequency, stress and displacement limit states under dynamic 

loads. 

The essential details of the design method are first des

cribed in the following, and then the designs of two frameworks 

are presented to illustrate the method. 

THE DESIGN PROBLEM 

For the purposes of this study, all loads are taken as being 

static and the distinct loading levels associated with the vari-
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ous limit states are proportionally related to each other. The 

framework is discretized into an assemblage of n prismatic mem

bers, which may be of a variety of types (wide-flange beams, 

hollow-box columns, double-angle bracing struts, etc.). The 

design variable for each member i is its cross-section area a .. 
1 

In its general form, the minimum weight design problem is: 

n 
Minimize: L 

i=l 

Subject to: O. 
A] 

~k 

a Am 

a. 
1 

w.a. 
1 1 

< o. 
] 

< Ok 

< a m 

s A. 
1 

< o. (j 1,2, ... ,d) 
] 

< ok (k 1,2, ... ,s) 

< a (m 1,2, ... ,p) m 

(i 1,2, ... ,n) 

(la) 

(lb) 

(lc) 

(ld) 

(Ie) 

Equation (la) defines the weight of the structure (w. is the 
1 

weight coefficient for member i)i eqs. (lb) define the d service-

load constraints on displacements o. (quantities with under- and 
] 

super-imposed 'hat' A denote specified lower- and upper-bounds, 

respectively); eqs. (lc) define the s service-load constraints 

on stresses ok; eqs. (ld) define the p ultimate-load constraints 

on plastic collapse-load factors am; eqs. (Ie) require each mem

ber cross-section area a. to belong to a specified set of dis-
1 

crete section areas A. = {al,a2,"}" Depending on the design, 
1 1 

eqs. (lb) and (lc) may account for small (first-order) or large 

(second-order) displacement effects for the structure. The lower 

and upper bounds on displacements and stresses account for the 

two possible senses of response action (e.g., left or right sway, 

tensile or compressive stress). The compressive stress bounds, 

which serve to guard against local buckling of members and of 

flange and web elements of cross-sections, are progressively up

dated to reflect the member and section properties that prevail 

at each stage of the design history [8]. 
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FORMULATION OF THE DESIGN 

In their present form, the performance constraints eqs. (lb), 

(lc) and (ld) are but implicit functions of the sizing variables 

for the design. To facilitate the numerical implementation of 

the synthesis process, these constraints are formulated as ex

plici t functions of the sizing variables through the use of sensi

tivity analysis techniques. 

Service-Load Constraints. The (global-axis) stiffness matrix 

Ki for a planar member i can be expressed as: 

K. = K~ a. + K~ I. + K~ 
-l -l l -l l -l Hi (2 ) 

A B where, for the member, K. and K. are constant matrices that cor-
-l -l 

respond to the first-order axial and bending stiffness proper-

ties, the constant matrix K~ corresponds to the second-order 
-l 

geometric stiffness properties, a. and I. are the cross-section 
l l 

area and moment of inertia, and Ni is the member axial force 

(i.e., that prevailing at anyone stage of iterative design pro-

cess). The geometric stiffness term in eq. (2) is omitted if 

the design only has concern for first-order displacement and 

stress effects. 

To facilitate formulation of the service-load constraints 

eqs. (lc) and (ld) at each design stage, the stiffness matrix ~i 
for each member i is expressed as a linear function of the cross

section area a. as follows 
l 

K. = K~ a. + K~ k. 
-l -l l -l l 

a. 
l 

a. 
l 

* K. 
-l 

a. 
l 

(3 ) 

where K~ = K~ + k. K~ + o. K~ is taken as a constant matrix for 
-l -l l -l l ~l 

the current design stage, in which k. is a constant that depends 
l 

on the shape of the cross-section and o. is the prevailing axial 
l *. 

stress for the cross-section. The matrix K. is updated for each 
-l 

design stage. 

Recognizing that elastic displacements and stresses vary 

inversely with the member cross-section areas a., corresponding 
l 

'good' quality performance constraints are achieved by formula-

ting them as explicit-linear functions of the 'reciprocal' sizing 

variables 
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x. = l/a. 
1 1 

(i 1,2, ... ,n) (4) 

To this end, first-order Taylor's series expansions are employed 

to formulate the displacement constraints eqs. (lb) as 

n Clo. 0 

o. < o~ + 2: (~) (x.-x~) < o. 
AJ J i=l oXi 1 1 J 

and the stress constraints eqs. (lc) as 

n ClO k ° 
?k ~ 0ko + L (---) 
" i=l Clx i 

(j 1,2, ... ,d) (5) 

(k 1,2, ... , s) (6) 

where the superscript ° indicates known quantities evaluated for 

the current design stage (e.g., the initial 'trial' design), and 

the x. are the sizing variables to the next weight optimization. 
1 

The displacement and stress gradients in eqs. (5) and (6) 

are evaluated using 'virtual-load' sensitivity analysis tech

niques in conjunction with elastic structural analysis [19]. 
Each displacement gradient 

Cl o. 0 

(ClX~ ) 
1 

o 

is 

-b~ 
-J 

found as 

(!5. - 1 
ClK 

Clx. 
1 

0 

1 T ° 
~) (u.K.u) (7) 

x? -J-1-

1 

and each stress gradient is found as 

ClO k ° Clu ° ClK 
t T _tT -1 1 T 0 

(Clx. ) (Cl~. ) (!5. Clx. ~) =--0 (~k!5.i~) (8) 
-k -k x. 

1 1 1 1 

* where, from eqs. (3) and (4), _K = L K. = L K./x. is the stiffness 
-1 -1 1 

matrix for the structure, ~ is the vector of nodal displacements 

due to the applied load vector P_' and u. and uk are vectors of 
-J -

'virtual' nodal displacements due to 'virtual' load vectors b. 
-J 

and ~k. For designs where large (second-order) displacement 

effects are to be accounted for, the various vectors of dis

placements are found using a two-cycle secant-stiffness second

order analysis procedure, 

The specified vector 

[15] . 

b. identifies the particular displace
-J 

ment o. 
J 

then o. 
J 

2), and 

of concern to the design (e.g., if b~ = [0,1,0, ... ,0] 
-J 

= U2' the displacement corresponding to degree-of-freedom 

~k is row k of the global-axis stress matrix for the 
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member associated with the stress ok. Equations (7) and (8) are 

based on the assumption that the vectors ~, Ej and ~k are all 

invariant with changes in the design; i.e., ap/ax. = ab./ax. 
- 1. -J 1. 

atk/ax. = O. This recognizes that the applied load vector p 
- 1. 

excludes structure self-weight, that b. is always a constant 
-J 

vector, and that ~k is a constant vector for truss structures; 

at the final stage of the synthesis history, there is negligible 

error inherent in this assumption for flexural structures, for 

which vectors ~k are functions of variable menber neutral-axis 

positions [2]. 
The displacement and stress values oj and ok for the current 

design that appear in eqs. (5) and (6) can be expressed as 

o~ 
J 

n dO. 0 

L (~) 
i=l 1. 

x? 
1. 

x'? 
1. 

(9) 

Therefore, from eqs. (5), (6) and (9), and adopting the concise 

notation d? = (ao./ax.)O and s?k = (aok/ax.)O, the 'explicit-
1.J J 1. 1. 1. . 

linear' performance constraints on elastic displacements are 

n 
O. < L d'? x. < O. 
AJ i=l 1.J 1. J 

(j 1,2, .•• ,d) (10) 

and on elastic stresses, 

(k 1,2, ... ,s) (11) 

ultimate-Load Constraints. Consistent with the service-load 

constraints, the ultimate-load constraints are also formu

lated in terms of the reciprocal sizing variables x. defined by 
1. 

eq. (4). To this end, first-order Taylor's series expansions 

and sensitivity analysis techniques are employed to fornulate 

the load-factor constraints eqs. (ld) as the 'explicit-linear' 

constraints [1] 

o 

x. < a. 
1. m 

(m 1,2, ••• ,p) (12) 
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where, again, the superscript ° denotes quantities evaluated for 

the current design stage, and the x. are the variables to the 
1 

next weight optimization. 

The load factor a O in eq. (12) defines the load level at 
m 

which plastic-collapse mechanism m forms for the current design. 

It is evaluated using a 'finite-incremental' plastic analysis 

technique due to Franchi [21] as 

a O 

m 

n 
L 

i=l 
(13) 

where R is the vector of plastic capacities for all members of 

the structure (the subvector R. refers to that for member i) and 
-1 

~ is the vector of member plastic deformation-rates associated -m 
with collapse mechanism m (the subvector~. refers to that for -1m 
member i). Moreover, the load-factor sensitivity gradient 

in eq. (12) is evaluated as [1] 

1 

x? 
1 

T- ° (R.A. ) 
-l-lm 

(14) 

Equation (14) derives, in part, from the fact that for fixed struc

ture topology the vector ~ of plastic deformation-rates charac-m 
terizing collapse mechanism m is invariant with changes in the 

design (i.e., a~ lax. = 0). -m 1 

To facilitate efficient plastic analy~sfor each design 

stage, a piecewiselinear (PWL) yield condition is adopted to 

govern plastic behaviour at the two end-sections j and k of each 

member i. As such, the vector R. of plastic capacities for each 
-1 

member i can be expressed as [2,3] 

R~ 
-1 

T T 
[R.i Rk ] 
-] -

(15) 

where the components of the subvectors R. = Rk are functions of 
-] -

the 'principal' axial and/or bending plastic capacities Nand 
p 

M for the member. For a member under axial or bending stress 
p T T 

alone, R. = [N iN ] or R. = [M , M i M , M ], respectively. For 
-1 p P -1 P P P P T T 

a member under combined axial and bending stresses, R. = Rk = 
-] -

[rl,rZ, ... ], where each component r~ is the orthogonal distance 
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from the origin of the stress space to a particular linear yield 

surface of the PWL yield condition for the cross-section. 

The principal axial plastic capacity N . of each member i is 
pl 

linearly related to the cross-section area a. as 
l 

N . = a a. 
pl y l 

(16) 

where a is the material yield stress. For all members i having 
y 

the same cross-section shape, the principal bending plastic capa-

city M . is related to a. as 
pl l 

M . 
pl 

a m.a:· s 
y l l 

(17) 

where the constant m. depends only on the shape of the cross
l 

section. Having the member cross-section areas a~ = a. (i=1,2, 
l l 

•.. ,n) from the previous weight optimization, the vector R. of 
-l 

plastic capacities for each member i, eqs. (15), is updated 

through eqs. (16) and (17). Then, plastic sensitivity analysis 

is conducted to formulate the explicit ultimate-load constraints 

eqs. (12) for the next weight optimization. 

The number p of ultimate-load constraints comprising eqs. 

(12) progressively increases from stage to stage of the synthesis 

process as different collapse mechanisms become 'critical' to the 

design (i.e., the constraint set for each load case is progres

sively augmented to account for any 'new' mechanism that forms 

at the lowest load level for any given design stage). As such, 

each collapse mechanism m referred to by eqs. (12) is either a 

new 'critical' mechanism for the current design, or it is a me

chanism that has been accounted for by the weight optimization 

of the previous design stage. In the former case, the load fac

tor a and the vector ~ of plastic deformation-rates for the m -m 
mechanism are determined directly by the plastic analysis for 

the current design stage. The corresponding ultimate-load con

straint eq. (12) is then formulated through eq. (14) and added to 

the constraint set for the next weight optimization. For the 

latter case, however, the vector ~ is already known from a plas--m 
tic analysis conducted at a previous design stage (recall that 

~ is invariant with changes in the design). As such, the load -m 
factor a is updated through eq. (13) directly (i.e., without 

m 
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need for further plastic analysis). Thereafter, the corresponding 

ultimate load constraint eq. (12) is updated through eq. (14) for 

the next weight optimization. 

The Explicit Design Problem. From eqs. (4), (10), (11) and (12), 

and adopting the concise notation pim (dum/dxi)O, the minimum 

weight design problem eqs. (1) is expressed explicitly in terms of 

the reciprocal sizing variables x. as 
1 

Minimize: 

Subject to: 

n 
L 

i=l 
w./x. 

1 1 

n 
8. < L d? .x. < 8. 
AJ i=l lJ 1 J 

(18a) 

(j=1,2, ... ,d) (18b) 

(k=1,2, ... ,s) (18c) 

n 
L 

i=l 
p? x. < U - 2u O 

1m 1 m m (m=1,2, ... ,p) (18d) 

x. s X. 
1 1 

(18e) 

where the components of each discrete set X. ~ {Xl,X2,"'}' in 
1 1 

eqs. (18e) are the reciprocals of the cross-section areas com-

prising the corresponding discrete set A. in eqs. (Ie). 
1 

THE SYNTHESIS PROCESS 

The discrete weight optimization problem eqs. (18) is solved 

for each design stage using a 'generalized optimality criteria' 

technique due to Fleury [22]. After each design stage, the sensi

tivity coefficients d? .,s?k and p? are updated, if necessary lJ 1 1m 
new ultimate-load constraints are added to the constraint set, 

and the weight optimization is repeated to find an improved (lower 

weight) design. The iterative process terminates vrith the final 

design when structure weight convergence occurs with no constraint 

infeasibilities. 

The flowchart in Fig. 2 presents the general strategy of the 

design method for computer implementation. The central activity 
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SOLVE -fiGHT OPTIMIZATION 
,""OIUM 1 f!I FOR CURRENT DESIGN STAGE 

N 

Figure 2 : Structural Synthesis Flowchart 

of the synthesis process involves the formulation and solution 

of the weight optimization problem eqs. (18) for each design 

stage. 

For designs that account for standard steel sections (Fig. 

l(c)), the synthesis process is conducted in two distinct phases. 

The first phase involves a specified number (e.g., three) of 

design stages for which the member sizes are taken to be continu

ous variables so as to establish a reasonably well-proportioned 

structure as the starting basis for the second design phase in

volving discrete standard sections. Thereafter, a 'section

selection' technique [5] is employed to identify the discrete 

sets of reciprocal areas X. in eq. (18e) from the databank of 
1 

standard sections specified for the design. 

Designs that account for large (second-order) displacement 

effects are also conducted in two distinct phases. The first 

phase involves a specified number (e.g., three) of design stages 

for which first-order effects are alone considered so as to 

establish a reasonably well-proportioned structure as the start

ing basis for the second phase of the design involving both 

first-order and second-order effects. 

Referring to Fig. 2, the basic computer input concerns typi

cal structural analysis data plus the performance and fabrication 

conditions for the design. For the case of design using standard 

sections, the standard-section category for each member is speci

fied (i.e., wide-flange or tee, etc.). For each design stage 
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(e.g., the initial 'trial' design), the weight optimization prob

lem eqs. (18) is formulated using the previously described sensi

tivity analysis techniques. To ensure the fabrication require

ments relating to member continuity and structure symmetry, the 

formulation is done in terms of a corresponding reduced set of 

independent sizing variables through the use of a 'design-variable

linking' technique [20]. Recognizing, with a view to numerical 

efficiency, that but a limited number of the performance condi

tions will actually control the design, a 'constraint-selection' 

technique [5] is applied to retain only those conditions in eqs. 

(18) that are potentially 'active' for the current design stage. 

To avoid oscillating or divergent behaviour of the synthesis 

history, which may occur at intermediate design stages as a con

sequence of the approximate nature of the performance conditions, 

a 'move-limit' technique [5] is applied that takes a weighted 

average of the design points existing before and after solving 

eqs. (18) as the basis for updating the design for the next 

stage. 

EXAMPLE APPLICATIONS 

Two steel frameworks are considered in the following. In 

each case, several comparative designs are conducted for illus

tration purposes. Designs are conducted using a STRuctural 

SYnthesis computer program named STRUSY developed at the Universit~ 

of Waterlo~, Canada [2,5,8,15]. 

Two-Storey Frame 

A variety of different designs of the pin-support frame in 

Figure 3(a) are presented in the following to illustrate the 

synthesis technique and associated computer implementation, [9]. 

Specifically, for the five independent loading schemes indicated 

in Figure 3(b), the following three design cases are considered: 

Case 1: Limit-states design using Canadian standard steel 

sections [10,12] 

Case 2: Working-stress design using American standard steel 

sections [11,13] 
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Figure :3 TWO-Storey Frame (aJ Geometry; (b) Loading 

Case 3: Design under both service and plastic-collapse perform

ance constraints using discrete steel sections [6] 

It is assumed that shear stresses and second-order geometric 

(P-~) effects are negligible and that members are braced against 

lateral buckling. Note that the plastic collapse constraints 

eqs. (18d) are eliminated from the weight optimization pro~lem 

for design cases 1 and 2. For each case, for comparison purposes, 

a corresponding design where member sizes are taken as continuous 

variables is also presented, for which eqs. (18e) are replaced 

in the weight optimization problem by the side-constraints 

x < x. < x. 
1 1 

(i=1,2, ... ,n) (19) 

where, from eq. (4), x.=l/a. and x.=l/a., in which a. and a. are 
Al 1 1 Al Al 1 

the specified lower- and upper-bounds on the cross-section area 

for member i, respectively. The load factors y. (i=1,2,3,4) in 
1 

Fig. 3(b) take on different values depending on the loading 
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levels at which the various performance conditions are imposed. 

To satisfy conventional fabrication requirements concerning 

member continuity and structure symnetry, the twelve elements 

for the frame (denoted by 0 in Fig. 3(a)) are linked together 

into four independent member groups (denoted by 0 in Fig. 3(a)); 

i.e., the girder for each storey is required to be a prismatic 

member and the two columns for each storey are required to be 

identical prismatic members. 

Stress and displacement performance conditions are imposed 

for each design case. Member stresses under the five loading 

schemes are constrained at all joint connections and load points, 

for a total of eighty stress conditions. The midspan vertical 

deflection of each girder under loading scheme I is limited to 

1/360 of its span length; i.e., 34 mm (1.33 in). The lateral 

deflection of each storey under loading schemes II and III is 

limited to 1/400 of the height of the frame at that level; i.e., 

11.5 rom (0.45 in) for the bottom storey and 19 rom (0.75 in) for 

the top storey. The displacement conditions are imposed at the 

service load level for all design cases, in which case Yl = Y2 = 
1.0 for loading schemes I, II and III in Figure 3(b). 

CASE 1: CISC Limit-States Design, [12] In keeping with the 

limit-states design philosophy of ref. [12], the stress and dis

placement performance conditions are imposed at two different 

loading levels. Namely, stresses are constrained under factored 

service loads while displacements are constrained under unfac

tored service loads. For the stress conditions, the design loads 

are defined by setting Yl = Y3 = 1.25, Y2 = 1.50 and Y4 = 
0.7 x 1.5 = 1.05 for the five loading schemes in Fig. 3(b). 

All members of the frame are specified to be of the same 

steel grade: density = 7.85 x 10- 6 kg/mm 3 (0.284 lb/in 3 ); Young's 

modulus E = 2 X 10 5 MPa (29 x 10 6 psi); yield stress Fy = 300 MPa 

(43.5 x 10 3 psi). Allowable stresses for the members are limited 

to 90% of the steel yield stress; i.e., 270 MPa (39.2 x 10 3 psi). 

The design cross-section for each member is to be selected from 

among the Canadian standard wide-flange (W or vMF) sections 

specified by CISC [10]. 

Upon applying the STRUSY computer program [2,5,8,15] to 
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Two-storey Frame Synthesis History for Design Case 1 

conduct the design process (Fig. 2), the minimum-weight struc

ture is found after seven design stages requiring a total CPU 

time of 12.1 seconds on an lB~1 4341 computer (University of 

Waterloo, Canada). The ClSC design standard sections found for 

the members are given in Table 1. The history of the synthesis 

process is illustrated in Fig. 4. The convergence to the mini

mum-weight structure is monotonic, except at the transition bet

ween the first design phase involving continuous sizing variables 

and the second design phase involving discrete standard sections 

as sizing variables. A corresponding synthesis history for which 

member sizes were considered as continuous variables to the design 

is also illustrated in Fig. 4; to provide a basis for comparison, 

the fundamental shape and stiffness properties of the individual 

member cross-sections were taken to be those of the minimum

weight ClSC standard section design. As expected, the final 

structure weight for th.e latter design is less than that for the 

final design using standard sections. 
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CASE 2: AISC Working-Stress Design, [13] For this design case, 

the stress and displacement performance conditions are both im

posed at the specified service-load level in keeping with the 

working-stress design philosophy of ref. [13]. For the stress 

conditions, the design loads are defined by setting Yl = Y2 

1.0 and Y3 = Y4 = 0.75 for the five loading schemes in Fig. 3(b). 

For the steel grade adopted for the design, the density and 

Young's modulus are the same as for design case 1 while the yield 

stress F 248 MPa (36 x 10 3 psi). Allowable stresses are lim-
y 

ited to 60% of the steel yield stress; i.e., 149 MPa (21.6 x 10 3 

psi). The design cross-section for each member is to be selected 

from among the American standard wide-flange (W) sections speci

fied by AISC [11]. 

Upon applying the STRUSY computer program [2,5,8,15], the 

minimum-weight structure is found after seven design stages re

quiring a total CPU time of 14.4 seconds on an IBM 4341 computer. 

The AISC design standard sections found for the members are given 

in Table 1. The history of the synthesis process is illustrated 

in Fig. 5. As for design case 1, the convergence to the minimum

weight structure is essentially monotonic. The synthesis history 

for a corresponding continuous-variable design is also illustrated 

in Fig. 5. The fundamental shape and stiffness properties of 

the member cross-sections for this design were taken to be those 

of the minimum-weight AISC standard section design. 

CASE 3: Service and Plastic Collapse Performance Conditions. 

For this design case, the stress and displacement performance 

conditions are imposed exactly as for design case 1. In addi

tion, ultimate-load constraints are imposed such that the plastic 

collapse load factor for the frame under loading schemes I, IV 

and V is limited to be not less than 2.35 (i.e., the frame is 

required to be capable of withstanding a 135% overload beyond 

the service load level without failure occurring in any plastic 

mechanism mode), for which Yl = Y2 = Y3 = 2.35 and Y4 0.7 x 

2.35 = 1.65 for loading schemes I, IV and V in Figure 3(b). 

All members of the frame are specified to have the same 

steel grade as for design case 1. Each member is specified to 

have a wide-flange cross-section having the 'constant-shape' 
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T~o-Storey Frame Synthesis History for Design Case 2 

characteristics indicated in Figure 6(a); for the given values 

of the three constants C I , C2 and C 3 , and any cross-section 

area a, the parameters k, m and n directly define the stiffness, 

strength and neutral-axis position of the corresponding section. 

These section parameters remain constant throughout the synthesis 

history. 

For the plastic analyses that are conducted over the syn

thesis history to establish the load-factor performance conditions 

governing the design, ideal plastic behaviour is assumed confined 

to the element end-sections defined by joint connections and load 

points. The eight-sided piecewiselinear yield surface in Figure 

6(b) is adopted to govern plastic behaviour at each such section 

(the orthogonal distances rl, r2, ... , rs from the origin of the 

stress space to the linear yield modes are fixed functions of the 

principal flexural and axial plastic capacities M and N for any p p 
section that maintains a constant shape regardless of its size), 

[ 2] • 

The design cross-section areas of the members are to be sel

ected from among an available set of 180 discrete area values; 
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Two-storey Frame Design Case 3 
(a) Wide-Flange Cross-Section 
(b) Piecewise linear Yield Condition 

commencing with a lower-bound area of 2000 mm 2 , the discrete 

area values increment by 500 mm 2 up to an upper-bound area of 

92000 mm 2 • 

Upon applying the STRUSY computer program [2,5,8,15], the 

minimum-weight structure was found after fourteen design stages 

requiring a total CPU time of 42.6 seconds on an IBM 4341 com

puter. The discrete design cross-section areas found for the 

members are given in Table 1. The history of the synthesis pro

cess is illustrated in Figure 7 (the non-monotonic convergence 

behaviour at intermediate design stages occurs as a consequence 

of new plastic collapse load-factor constraints becoming active 

in the design). The five mechanisms shown in Figure 8 were 

identified as the most 'critical' failure modes for the frame 

at various stages of the synthesis history; the particular stages 
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at which they became critical are indicated in Figure 7. The 

collapse-load factors indicated in Figure 8 are those prevailing 

for the various mechanism modes at the final design stage. Plas

tic collapse mode 5 is alone active at the final design stage 

under loading scheme I (the corresponding load factor is not 

exactly equal to the limit value of 2.35 because of the discrete 

nature of the member sizing variables) . 

The synthesis history for a corresponding continuous-variable 

design is also illustrated in Figure 7. The fundaDental section 

properties for this design were taken to be the sane as those 

specified for the discrete section design. 

Table 1 Design Cross-Sections for Minimum-Weight T~o-Storey Frame 

Design Case 1 Design Case 2 Case 3 
Member Element 
Group No. Designation Area Designation Area Area 

(ClSC, metric) (mm 2 ) (AlSC, imperial) (mm 2 ) Cmm 2 ) 

1 1,2,3,4 W410 x 54 6810 W 21 x 44 8387 8000 

2 7,8,9,10 W610 x 101 13000 W 24 x 76 14452 14500 

3 5,6 W410 x 54 6810 W 18 x 40 7613 7000 

4 11,12 WWF700 x 141 18100 W 24 x 84 15935 14500 

The ten-storey rigid frame shown in Figure 9(a) is to be 

designed accounting for large (second-order) displacement effects 

under the single loading scheme shown in Figure 9(b). For com

parison purposes, a corresponding first-order (small displacement) 

design is also conducted. For both designs, member sizes are 

taken as continuous variables, in which case eqs. (18e) are re

placed by eqs. (19) in the weight optimization problem. The 

limits put 

to be a. == 
Al 

on the sizing variable for each member i are taken 

2850 mm 2 and a. == 57000 mm 2 (which represent the sec-
1 

tion areas of the smallest and largest W-shapes available in 

Canada). All members are specified to have the same steel grade 

as for the previous two-storey frame example design case I, 
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as well as the 'constant-shape' wide-flange cross-section char

acteristics indicated in Figure 9(c). 

To satisfy conventional fabrication requirements concerning 

member continuity and structure symmetry, the fifty elements of 

the frame (i.e., the 30 girder elements and 20 column elements 

defined by joints and load points in Figure 9(b)) are linked 

together into twenty independent sizing groups (denoted by 0 in 

Figure 9(a)); i.e., the girder for each storey is required to 

be a prismatic member and the two columns for each storey are 

required to be identical prismatic members. 

Stress and displacement performance conditions are imposed 

for both the first-order and second-order designs of the frame. 

In the latter case, the sensitivity coefficients d~. and s~k 
lJ l 

in eqs. (18b) and (18c) are calculated accounting for second-

order (P-~) displacement effects. Horizontal sway displacement 

constraints are imposed at each storey, for a total of ten dis

placement conditions. The maximum horizontal sway permitted at 

any storey level is H/150, where H is the storey height measured 

from the supports (sway displacements of substantial magnitude 

have been arbitrarily permitted so that pronounced second-order 

effects will occur). Member stresses are constrained at all 

joints and load points, for a total of eighty stress conditions. 

Allowable stresses for the members are limited to the steel yield 

stress, i.e., 300 MPa (while not shown herein, it is readily 

possible to consider stress bounds that progressively change over 

the design history so as to account for the changing slenderness 

properties of the member cross-sections as the design evolves 

towards the minimum-weight structure, [8]. 

Upon applying the STRUSY program [2,5,8,15] to conduct the 

first-order design of the frame, the minimum-weight structure is 

found after six design stages requiring 49.3 seconds of CPU time 

(IBM 4341). The corresponding second-order design requires eight 

design stages and 70.0 seconds of CPU time. The results for the 

two designs are given in Table 2 and illustrated in Figure 10. 

Note from Figure 10 that the two designs are identical for the 

first three stages, after which the second-order design becomes 

heavier as a consequence of the large displacement (P-~) effects. 

Even then, the optimal weight shown in Figure 10 for the second-
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Table 2 Final Designs for Ten-Storey Frame 

M FIRST-ORDER DESIGN SECOND-ORDER DESIGN 
E 
M LINKING MOMENT OF MOMENT OF % DIFFERENCE IN 
B GROUP AREA INERTIA AREA INERTIA AREA w.r.t. E 

(mm2 ) ()( lOb mmlt) (mm 2 ) ()( 106 DIID It) R FIRST-ORDER DESIGN 

1 3 667 59.1 3 694 59.9 0.74 

2 5 745 145 5 780 147 0.61 

3 6 511 194 6 595 199 1.29 

G 4 7 301 225 7 412 232 1.52 
I 
R 5 7 903 264 8 433 300 6.71 
D 
E 6 9 024 318 9 577 358 6.13 
R 
5 7 9 679 366 10 190 405 5.28 

8 10 178 404 10 691 446 5.04 

9 11 061 432 11 950 505 8.04 

10 9 279 364 9 439 376 1.72 

11 4 722 39.8 4 744 40.1 0.47 

12 7 639 38.6 7 704 39.2 0.85 

13 8 076 75.4 8 168 77.2 1.14 

C 14 8 795 81.7 8 901 83.7 1.21 
0 
L 15 10 157 104 10 327 107 1.67 
U 
M 16 11 024 128 11 268 134 2.21 
N 
S 17 12 262 146 12 572 153 2.53 

18 12 328 205 12 568 213 1.95 

19 13 474 244 13 668 251 1.44 

20 15 480 277 15 633 291 0.98 
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order design represents only a 3.5% increase over that for the 

first-order design. This small weight increase is a direct 

consequence of the design synthesis optimization capability, 

which optimally redistributes the structural weight between the 

girders and columns to account for second-order effects. Such 

optimal weight redistribution is implied by the last column of 

Table 2, from which it can be determined that the total weight 

of the girders increased by 4.2% while that for the columns 

increased by only 1.5% (i.e., 76% of the additional structural 

weight required to accomodate the second-order effects is taken 

up by the girders). 
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OPTIMUM CONTROL OF STRUCTURES 

Raphael T. Haftka 
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Blacksburg, Virginia 24061 USA 

Introduction 

In the past decade the interest in using active control systems to 

improve structural performance has increased dramatically. The basic idea 

is to build structures which use an active control system as a substitute 

for strength, stiffness or damping. An early application of the concept 

was the gust-alleviation system designed to prolong the fatigue life of 

the aging fleet of B-52 bombers. In that application, sensors were used 

to anticipate gust loads on the wing, and control surface on the wing were 

deflected to cancel part of these gust loads. Today, these types of 

systems are already considered in the preliminary design stage (e.g. Ref. 

1). The same idea may be used to improve the ride quality in an airplane. 

Other aeronautical applications such as active flutter suppression are 

discussed in Ref. 2. 

There has been also a lot of interest in active control of buildings 

(e.g. Ref. 3) subjected to seismic excitation, and in active control of 

automotive suspensions. However, at present it seems that the major 

challenge in the field of active control of structures is the design of 

control systems for very large space structures. Because of the high cost 

of lifting mass to orbit, there is a great incentive to make these 

structures light (and therefore flexible). On the other hand, many of 

these structures, especially antenna structures, have very stringent 

requirements on their shape accuracy. This combination of light weight 

and required shape accuracy is expected to necessitate the extensive use 

of active control systems. The perceived challenge of the problem has led 

to intensive research and many publications devoted to active control of 

large space structures. 

The first part of this paper presents the theory of a popular method 

for optimizing the control system for a given structure. Problems 

associated with structural modelling are also discussed. The second part 

of the paper is concerned with current attempts to integrate the design of 

the structure with the design of the control system. The major issue in 
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this context seems to be the formulation of the combined problems in terms 

of objective function and constraints. 

Linear Quadratic Optimal Control of Structures 

The equations of motion of the structure are usually written in a 

descretized form as 

Mq + Cq + Kq = L (1) 

where M, C and K are the mass, damping and stiffness matrices, 

respectively, L is the load vector, q is the structural response 

vector and a dot denotes differentiation with respect to time. Equation 

(1) can be reduced to a more general first order form 
. 
x = Ax + f (2 ) 

One way of accomplishing this reduction to a first order system is to 

define T 
= l q, qJ and then x 

A = [_:-1 C _:-1J f 

where I denotes the unit matrix. In the consideration of the control 

problem we limit ourselves to linear control so that f is given as 

f Bu + w (4 ) 

where u is the control vector, and w is a vector of noise in the 

control commands assumed to be zero-mean, Gaussian stationary process. 

The control law is assumed to be linear and time-invariant, that is 

u = -Gx (5 ) 

where G is a matrix of constant gains which is to be found by solving an 

optimal control problem. The solution for the matrix G is fairly simple 

if we define the objective function to be minimized as 

J 
T T E(x Qx + U Ru) (6) 

where E is the expected-value operator and Q and R are positive 

definite matrices. J is usually referred to as the quadratic performance 

index and the terms including the matrices Q and R measure the 

magnitude of the response and control effort, respectively. The matrices 

Q and R may be selected to make these measures of response and control 

effort physically meaningful. For example, if the matrix Q is selected 

to be 

Q 
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then with xT = [q,q], the first term in Eq. (6) is the expected value of 

the total energy (kinetic plus elastic) in the system. The gain matrix G 

which minimizes the quadratic performance index is given as (see Ref. 4 

for additional details) 

G = R-1BTS (8) 

where S is the solution of a matrix Ricatti equation 

AT S + SA - SBR -1 B T S + Q 0 (9) 

Several software packages are available for the solution of matrix 

Ricatti equations (e.g. Ref. 5). 

Equation (5) embodies the unrealistic assumption that we can measure 

the entire response vector (called also "state" vector, in control 

jargon). Instead we should expect to measure a smaller vector z given 

as 

z = Mx + v (10) 

where v is measurement noise. From z we need to estimate x, and one 

popular approach to estimating x is called the Kalman filter. If the 

measurement noise is also a stationary, zero-mean Gaussian process then 

the optimal estimate x is found by solving 

x = Ax + Bu + F(z-Mx) ( 11) 

where F is the filter gain matrix and is given by 

F (12 ) 

where V is the covariance matrix (or intenSity) of the noise v and T 

is found from the solution of another Ricatti equation 

AT + TAT - TMTV-1MT + W (13 ) 

and W is the covariance matrix of w. The matrices V and W play an 

analogous role to the matrices Q and R. They are usually selected not 

on the basis of known physical estimates of the noise, but so as to 

generate an observer with desired properties. Similarly, the matrices Q 

and R that design the control gains are often selected to produce 

desirable properties of the controller such as sufficient stability 

margins. 

The major difficulty associated with the use of the above approach to 

structural control is that it results in a high order controller, (same 

order as the order of x), which is difficult to implement in hardware. 

Therefore, control specialists typically seek a reduced-order model of the 

structure, usually one based on a small number of vibration modes. 

Sophisticated schemes have been developed to select the vibration modes 
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which should be used in the reduced model (e.g. Ref. 6). With a reduced 

structural model there is always the danger that the higher-order modes 

will be excited by the controller and will become unstable, a phenomenon 

called spillover (Ref. 7). At present the issue of how to obtain a 

satisfactory low-order model of the structure seems to be the only point 

of interaction between the structural analyst and the control specialist. 

Combined Control-Structure Design 

The need for active control systems is rooted in the requirement for 

light-weight structures and the attendant flexibility. However, control 

systems and their power supplies also have mass, and therefore it makes 

sense to optimize the total mass of the system, designing both the 

structure and control system simultaneously. 

One of the obstacles to simultaneous structural-control design is 

that very few control specialists are also familiar with structural 

design, and very few structural analysts are familiar with control design. 

For this reason, some researchers preferred to attack the simultaneous 

design problem indirectly. For example, some structural analysts (e.g. 

Refs. 8, 9) attempted to enhance the performance of the control system by 

changing the stiffness properties of the structure. The control system 

and the structure were still designed separately, but the structural 

optimization was governed by control-related stiffness requirements. 

Similarly, it is possible (see Ref. 10) to use the design of the control 

system to infer about required structural changes, because some of the 

gain matrices obtained in control design are equivalent to modifications 

in the structural stiffness matrix. 

More truly integrated structure-control design procedures were 

proposed which operate simultaneously on a set of structural and control 

design variables. The mass of the structure can be combined with the 

quadratic performance index used in optimum control to obtain a composite 

objective function (e.g. Refs. 11, 12), or the quadratic performance index 

is optimized for a given structural mass (Ref. 13). Alternatively, the 

structure and control system are optimized with constraints placed on the 

eigenvalues of the closed-loop system (e.g. Refs. 14, 15). 

The present treatment of the combined design problem is based on Ref. 

16. It is based on the assumption that the mass mc of the control system 

and its power supply depends on the control effort cE as 
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where a and B are constants and 

T cE = E(u Ru) 

385 

The objective function to be minimized is the total mass, mT 

(14) 

(15) 

mT + ms + mc (16) 

where ms is the mass of the structure. A constraint is placed on the 

magnitude of the response as 

T r = E(x Qx) ~ 01 (17) 

Minimizing ~ subject to the constraint on r makes physical sense, 

but it does not allow us to use the easy solution (via Ricatti equation) 

of the linear-quadratic optimal control methodology. So instead of 

solving the optimization problem by varying the control and structural 

parameters simultaneously we define a nested problem which requires the 

solution of an optimal control problem for each set of structural 

parameters as follows 

find structural parameters 

and k to minimize mT = ms + mc 

such that r ~ 01 (18) 

where the control system is designed by minimizing 

r + kC E (19) 

The additional parameter k allows us to control the value of the 

structural response r because obviously r is a montonically increasing 

function of k (the higher the cost of control effort the higher the 

optimized response). We need to show that the reformulated nested problem 

has the same optimal solution as the original problem. 

Clearly the optimum of the nested problem (18) cannot be better than 

the or~ginal optimum because it satisfies the constraint (17), so we need 

to show that the nested problem does not yield a larger mass. Given the 

optimum of the original problem we take the optimum structure and design a 

k and a control system for it to minimize r + kC E such that r = 01. The 

value of the cE that we obtain must be lower or equal to the optimal cE 

obtained in the original problem. Otherwise the control system obtained 

in the original optimization produces a better value of r + kcE, which is 

a contradiction. 
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Beam Example 

Reference 16 presented a free-free beam (see Fig. 1) example under 

white-noise disturbance. The beam supports a uniform payload and is 

controlled by two attitude-control units with torque actuators 

symmetrically installed on the structure. The beam was modeled by finite 

elements and its cross-sectional thickness used as structural design 

variables as well as the actuator location. Five elements were used to 

model half of the beam. In the results presented here it is assumed that 

the control mass mc is proportional to the control effort cE (i.e., B = 

1), that the beam stiffness is proportional to the thickness, and that the 

payload is equal to the structural mass. Even though only two actuators 

are used, it was assumed that the entire state vector is sensed so that 

there is no need for a Kalman filter. 
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Fig. 1: Combined structure/control optimization of beam structure 
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Table 1 compares four cases with varying response requirements (0 1 ) 

and control cost (a). As can be seen from the table, the average 

thickness (proportional to ms) is very sensitive to the mass cost of the 

control. When that cost is reduced by a factor of 10 the mass is reduced 

by a factor of 2-3. Also, both control effort and mass are sensitive to 

the required response limit 01. It thus appears to be quite important to 

do the combined optimization. Another demonstration of this importance 

is shown in Fig. 1 which shows the total mass as a function of the 

structural mass for a uniform beam. The figure indicates that even with 

an optimal control system the control effort is sensitive to the 

structural stiffness. In fact if the structure is made too flexible the 

total mass becomes very high. 

Table 1 

Effect of control cost and response limit on combined 
optimum design for controlled beam 

response limi t 01 0.01 0.001 0.01 0.001 

control cost a 1.0 1.0 0.1 0.1 

normalized 1;1 0.262 0.822 0.120 0.342 
beam 1;2 0.620 1. 785 0.184 0.506 
thickness 1;3 0.811 2.23 0.156 0.408 

1;4 0.639 1. 14 0.159 0.430 
1;5 0.11 4 0.713 0.242 1.27 

actuator x 0.786 0.622 0.386 0.391 c 
location 

-
average I; 0.489 1.338 0.172 0.591 
thickness 

total normalized ~ 1.063 2.179 0.268 0.603 

mass 
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ABSTRACT 

Algorithms are presented to design a minimum weight structure and to improve the 

dynamic response of a closed-loop control system. Constraints are imposed either on the 

structural response quantities or on the complex eigenvalue distribution of the closed-loop 

system. Use of the algorithms is illustrated by solving different problems. 

I. INTRODUCTION 

The design requirements on space structures are stringent, because of the environment 

in which they are used and the methods used to launch them. A space structure has to be 

minimum weight and also satisfy all the design requirements. One of the important design 

requirements is to minimize the line-of-sight (LOS) error. 

The optimum design of space structures has recently been investigated by using two 

approaches. In the first approach, an optimum structure is initially designed to satisfy 

constraints on weight, displacements, frequency distribution etc., and then an optimum 

control system is designed to improve the dynamic response of the structure to initial 

disturbances(1). An integrated approach using finite element analysis with weight as the 

objective function and constraints on the damping parameters and the eigenvalue distri

bution of the closed-loop system is proposed in Refs. 2-3. In Ref. 4, a structure/control 

optimization problem has been formulated with weight as the objective function and con

straints on the closed-loop eigenvalue distribution and the minimum Frobenious norm of 

the required control gains. This paper contains a summary of some of the results obtained 

by the author by using both approaches in structure and control optimization. 
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II. BASIC EQUATIONS OF ANALYSIS 

The equations of motion for a Large Space Structure with no external disturbance are 

given by 

[M]{U} + [E]{U} + [K]{U} = [D]{F} (1) 

where [M] is the mass matrix, [E] is the damping matrix, and [K] is the total stiffness 

matrix. These matrices are nxn where n is the number of degrees of freedom of the 

structure. In Eq. 1, [D] is the nxp applied load distribution matrix relating the control 

input vector {F} to the coordinate system. The number of elements in {F} is assumed to 

be p. {U} in Eq. 1 is a vector defining the amplitudes of motion. Using the coordinate 

transformation, 

{U} = [4>]{ 7]} (2) 

where [4>] is the modal matrix whose columns are eigenvectors {Uh· (normalized with 

respect to the mass matrix [M]), Eq. 1 can be transformed into an n uncoupled system of 

differential equations as 

(3) 

where 

In Eq. 4, {C;} and {w} are the vectors of modal damping factors and circular frequencies 

respectively. The second order Eq. 3 can be reduced to a first order equation by using the 

state variable vector {x} given by 

{xhn = !!-
7] 

The state space representation of Eq. 3 using Eq. 5 can be written as 

{x} = [A]{x} + [B]{f} 

(5) 

(6) 

where [A] is a 2n x 2n plant matrix, [B] is 2n x p input matrix and U} is an p x 2n control 

input vector. The plant matrix and the input matrix are of the form 

" " 0 I 

[A] = '\. '\. [B] = (4)~D) (7) 

" " _w2 -2c;w 
'\. '\. 
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Eq. 6 is known as the state input equation and the state output equation is given by 

{y}=[e]{x} (8) 

where {y} is a q X 1 output vector and [e] is a q X 2n output matrix. If the sensors and 

the actuators are colocated, then q=p and [e] = [B]T. In order to design a controller using 

a linear quadratic regulator, a performance index (PI) can be defined as 

(9) 

where [Q] is the state weighting matrix which has to be positive semi-definite, and [R] is 

the control weighting matrix which has to be positive definite. The result of minimizing 

the quadratic performance index and satisfying the state equation gives the state feedback 

control law 

{/} = -[G]{x} (10) 

where [C] is the optimum gain matrix given by 

(11) 

and [P] is a symmetric positive definite matrix called the Riccati matrix. Substituting Eq. 

10 in Eq. 6 gives the governing equations for the optimal closed loop system in the form 

{x} = [Aj{x} (12) 

where 

[Aj = [A] - [B] [G] (13) 

For an initial given condition x(o) the solution to Eq. 12 with no forcing function, is given 

by 

x(t) = e[Ajtx(O) (14) 

The eigenvalues of the closed-loop matrix, [A], are a set of complex conjugate pairs written 

as 

(IS) 

The damping factors €i and the damped frequencies Wi are related to the complex eigen

values through 

(16) 
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III. DESCRIPTION OF THE NOMINAL STRUCTURAL MODEL 

The structural model selected for the investigation is a tetrahedral truss (Fig. 1).(5) 

This structure, ACOSS-FOUR, in spite of its simplicity, models the feed tower in a generic 

class of large antenna applications. The apex of the structure, node 1, represents the 

antenna feed, and its motion in the X-Y plane has to be actively controlled to improve 

the performance of the structure's line-of-sight (LOS). The structure has twelve degrees 

of freedom and four masses of 2 units each are attached at nodes 1 through 4. The coor

dinates of the node points are given in Table 1. The actuators and sensors are collocated 

in six bipods. The dimensions of the structure are given in unspecified consistent units. 

The elastic modulus of the members was assumed to be 1.0, and the density of the struc

tural material was assumed to be 0.001. The square of the LOS is equal to (LOS-X)2 

+ (LOS-y)2 where LOS-X and LOS-Yare the components of the LOS in the X and Y 

direction. The nominal design is denoted by Design A with cross-sectional areas of the 

members equal to those assigned by the Charles Stark Draper Lab. (5) This design was 

used as the initial design for the optimization prolems and was considered a basic design 

for comparison with the optimum designs. Comparison of the different designs was made 

by comparing weight, structural frequencies, closed-loop eigenvalues, damping parameters 

and the dynamic response to an initial disturbance. The weighting matrices [Q] and [R] 

in Eq. 9 were assumed to be identity matrices for all the designs and the elements of the 

vector of modal damping factor {d in Eq. 7 was set to zero. 

Using Design A as the initial design, four optimum designs with constraints as given 

below were obtained. 

Design B: Minimum static displacements associated with the LOS and the weight is the 

same as Design A. 

Design C: Minimum weight with constraints on the structural frequencies. 

Design D: Minimum weight with constraints on the damping parameters of the closed-loop 

system. 

Design E: Minimum weight with constraints on the closed-loop frequency distribution and 

the damping parameters. 

The cross-sectional areas of the members for all the designs are given in Table 2. Table 

3 contains the square of the structural frequencies. The closed-loop eigenvalues and the 

damping parameters for all the designs are shown in Tables 4 and 5, respectively. In 

order to compare the dynamic response, all the designs were subjected to the same initial 

condition. A unit displacement was imposed at node 2 in the X direction at t = o. The 

transient response was simulated by finding the solution to Eq. 16 for the period t = 0 to 

t = 25 seconds at the time interval of t = 0.05 seconds. The magnitude of the LOS and 
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the integrand of the performance index, PI, in Eq. 9 was calculated at each time interval. 

The time histories for all the designs are shown in Fig. 2. 

IV. DESIGN WITH MINIMUM STATIC DISPLACEMENTS ASSOCIATED 
WITH THE LOS ERROR (DESIGN B) 

This design was obtained by using optimality criterion approach to minimize (L08)2 

while keeping the weight of the structure the same as Design A.!l) The nonstructural 

masses attached at nodes 1 through 4 were assumed to be the static loads acting in the 

three coordinate directions. In addition to this, a load of 29.695 units was applied at node 

2 in the X direction to simulate a unit displacement which was used to initiate the dynamic 

response of the structure. 

V. MINIMUM WEIGHT DESIGN WITH CONSTRAINTS ON STRUC

TURAL FREQUENCIES (DESIGN C) 

This design was obtained by using optimality criterion approach with constraints on 

the square of the first two frequencies, wf and w~. It was specified that the values for these 

frequencies should be the same as that for Design A, i.e., w~ = 1.80 and w~ = 2.77. The 

initial weight was 43.7 units and the optimum design weighed 15.22. The optimum design 

was obtained with twenty iterations. 

VI. MINIMUM WEIGHT DESIGN WITH CONSTRAINTS ON THE 
EIGENVALUES AND DAMPING FACTORS OF THE CLOSED-LOOP SYS
TEM (DESIGNS D AND E) 

The optimization problem for the integrated structure/control design can be stated as: 

find {A} 
m 

to minimize the weight W = L piAi1i 
i=l 

(17) 

(18) 

(19) 
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where gj(ei) and gj(Wi) represent equality constraints on the damping factors and on 

the imaginary part of the closed-loop eigenvalues. In Eqs. 18 and 19 €i and Wi are 

desired values of the damping parameters and imaginary parts of the eigenvalues. The 

optimization problem was solved by using the VMCON optimization subroutine which is 

based on Powell's algorithm for nonlinear constraints that uses Lagrangian functions. This 

subroutine needs the sensitivities of the objective function and the constraints with respect 

to the design variables. The sensitivity of the objective function, W, can be explicitly 

written by differentiating Eq. 17 with respect to Ai. The sensitivity of the closed-loop 

eigenvalues and the damping parameters can be obtained by using finite differences (2) or 

using analytical approach(3). The sensitivity of the closed-loop eigenvalues with respect to 

the design variable A, is given by 

(20) 

where {ali and {Ph are the right-hand and left-hand eigenvectors of the closed-loop plant 

matrix [A]. The gradient of [A] with respect to the design variable A, can be written by 

differentiating the right side of Eq. 13J3) 

Design D was obtained with the constraint that the damping parameter 6 of the 

closed-loop system be increased to 0.3 from 0.05464 of the initial design (Design A). The 

weight of the optimized structure was 47.46 which was higher than that of the initial 

design. The final design was obtained after eleven iterations. A finite-difference scheme 

was used to determine the gradients which was very time consuming. 

The optimum Design E was obtained by imposing the following constraints on the 

closed-loop frequencies and the damping parameters: 

1) wI must be equal to 1.341 i.e., the same as that for Design A. 

2) W2 must be equal or greater than 1.5. 

3) The damping parameters €i' associated with the four lowest frequencies of the 

closed-loop system, must be equal to 0.1093 i.e., 100% more than that for Design 

A for the first mode. 

The optimum Design E weighed 24.01 units. For this problem it was necersary to impose 

equality constraints on the damping parameters in steps in order to avoid divergence in the 

iterative procedure. Initially, equality constraints were imposed only on WI and €I. After 

obtaining a design satisfying these constraints, constraints on the other three damping 

parameters were imposed. The first step needed about 29 iterations, and an additional 

60 iterations were required to obtain the minimum weight design. The problem of slow 

convergence may be due to the VMCON subroutine. 
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VII. COMPARISON OF ACOSS-FOUR DESIGNS A THROUGH E 

Some of the observations which can be made by comparing the different optimum 

designs were as follows: The lowest and highest values of wJ associated with the 1st 

mode and the 12th mode were for Design B. w: for Designs C and E was nearly equal to 

that of Design A since it was constrained, while for Designs Band D it decreased. The 

structural frequency bands for Designs C and E were narrower than that for Design A. 

The damping parameter associated with the 1st mode of the closed-loop system was a 

maximum for Design B while a minimum for Design C. For Design C most of the damping 

parameters associated with the closed-loop system were smaller than those for the other 

designs. Comparing the dynamic response of all the designs in Fig. 2, it was seen that the 

amplitudes of the LOS for Designs B, D and E damped out quicker than that for Design 

A. But in the case of Design C the amplitudes of LOS were larger than that for Design A. 

Values of the total performance index, PI, over a period of 25 seconds for Deigns A, B, C, 

D and E were 764.4, 372.1, 125.8, 797.6 and 320.3 respectively. 

VID. MINIMUM WEIGHT DESIGN WITH CONSTRAINTS ON THE 
NORM OF THE GAIN MATRIX 

In this optimization problem, instead of using the linear quadratic regulator to de

termine the gain matrix [G), it was computed such that Eq. 12 satisfies the eigenvalue 

constraints, and the Frobenious norm of the gain matrix SG = [GJT[.H][GJ was minimized, 

where [.HJ is the control gain weighting matrix. The optimization problem can be stated 
as,(4) 

m 

minimize the weight W = L PiAili 
i=l 

subject to: SG = SG 

Wi = wi 

(21) 

(22) 

where SG is the desired value of the gain norm and Oi' wi are the desired values of the 

real and imaginary parts of the eigenvalues of the closed-loop matrix [A). This is a nested 

optimization problem. The solution to the optimization problem needs sensitivities of the 

objective function and the constraint functions with respect to the elements of the gain 

matrix [GJ and the design variables Ai. The sensitivity of the gain norm, SG, and the 
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eigenvalues, >"j, of the closed-loop system with respect to the elements of the gain matrix 

are given by 

(23) 

(24) 

where {a}j and {.a}j are the right-hand and left-hand eigenvectors of the closed-loop 

matrix [A] and {b,} is the rth column vector of [B]. The sensitivity of the gain norm, 

SG, with respect to the design variable, Ai, has to be obtained numerically, since closed

form solutions for control gains in terms of structural design variables are not available 

except for simple problems with single input. A finite difference scheme for the general 

approximation will have to be used. 

In order to present the optimization concept discussed above, a simple two bar truss(4) 

shown in Fig. 3 was considered. A control force F(t) was located at the apex. A nonstruc

tural mass of 2 units was placed at the vertex. The elastic modulus was E = 1 and the 

mass density was Pi = 0.001. Ai (min) was 10 units. The structure and control objective 

functions were 
4 

SG = Lgl (25) 
i=l 

with specified equality constraints on the closed-loop eigenvalues as 

.WI =wi = 1.17; W2 = wi = 4.81 (26) 

and the minimum gain norm SG = SG = 1500. The optimization was done by using the 

mathematical optimization program, IDESIGN. The gradients of the objective function 

and the gain norm were expressed as formulas which was possible for this simple problem. 

The results of the optimization are given in Table 6. For this problem, a single optimal 

design was not obtained. Corresponding to five different initial designs, three optimum 

designs were obtained satisfying all the constraints. The existence of a multiple minimum 

for this case suggests that the problem is under constrained and additional design freedom 

exists. In order to obtain a unique design, it may be necessary to impose additional 

constraints on quantities such as the structural frequencies. 

IX. SUMMARY 

It has been shown that by changing the cross-sectional areas of the members of a 

structure, a minimum weight design and improvement in the dynamic characteristics of a 
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closed-loop system can be achieved by using the tools of optimization. Two approaches 

were presented. In one case, the structure was optimized with constraints on the structural 

response, while in the other case the structural design and control design were integrated. 

In the second case, two approaches were proposed. In the first approach the objective 

function was the weight of the structure, and the constraints were on the eigenvalues 

and damping parameters of the linear quadratic regulator closed-loop system. The sec

ond approach consisted of minimizing the weight of the structure with constraints on the 

distribution of the closed-loop eigenvalues for a specified value of the Fobenious norm of 

the gain matrix. The feasibility of the integrated approaches was illustrated on sample 

problems. 
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Table 1. Node Point Coordinates for ACOSS-FOUR 

~o(le ~ Y Z 

1 0.0 0.0 10.165 
2 -5.0 -2.887 2.00 
3 5.0 -2.887 2.00 
4 0.0 5.7735 2.00 
5 -6.0 -1.1547 0.0 
6 -4.0 -4.6188 0.0 
7 4.0 -4.6188 0.0 
8 6.0 -1.1547 0.0 
9 -2.0 5.7735 0.0 

10 2.0 5.7735 0.0 

z 

10 

Fig. 1. ACOSS-FOUR Finite Element Model 
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Table 2. Cross-Sectional Areas of the Members of ACOSS-FOUR 

r1ement Ro. Design "1. Design B Design C Desi2n D Design t 

1(1-2) 1000. 642.1 124.70 998.22 477 .82 
2(2-3) 1000. 693.0 245.53 998.62 479.06 
3(1-3) 100. 42.89 229.37 354.69 162.39 
4(1-4 ) 100. 244.60 229.40 354.79 181.78 
5(2-4) 1000. 812.40 245.49 998.62 479.48 
6(3-4) 1000. 1142.00 134.72 998.22 484.08 
7(2-5) 100. 891.1 197.05 14.74 131.44 
8(2-6) 100. 10.0 197.07 14.73 62.47 
9(3-7) 100. 10.0 229.95 15.34 75.65 

10(3-8) 100. 978.9 125.49 46.65 125.18 
11(4-9) 100. 10.0 229.93 15.34 41.28 
12(4-10) 100. 902.8 125.55 46.74 45.91 

Weight 43.69 43.69 15.22 47.56 24.01 

Table 3. Natural Frequencies (wj) of ACOSS-FOUR 

Ro(le Design A Oesign B Design C Design [j [jesign E 

1 1.80 .4847 1.80 .7283 1.804 
2 2.77 .9673 2.77 1.074 2.259 
3 8.35 1.130 7.54 1.734 5.713 
4 8.74 2.880 9.90 2.147 5.905 
5 11.54 11.65 13.62 3.754 11.37 
6 17.67 29.72 25.71 6.101 13.44 
7 21.73 44.20 28.71 25.04 18.91 
8 22.61 66.47 38.15 34.76 27.30 
9 72.92 139.40 43.85 68.91 40.70 

10 85.57 171.0 44.05 81.05 46.07 
11 105.77 186.8 48.12 101.0 54.93 
12 166.54 198.4 57.04 171.2 83.25 
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0.1' 

.... 
'.00 
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.... 
.... 
.... 

9 D .• ' 
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0.05 
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.. 
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.... 
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Fig. 2. LOS Transient Response 
of ACOSS-FOUR Design 
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Table 5. The Modal Damping Parameters of the 
Closed-Loop Eigenvalues for ACOSS-FOUR 

Mode Oesign A Design B Design C Design 0 Design E 

1 0.0546 0.3630 0.0394 0.3000 0.1093 
2 0.0653 0.3202 0.0311 0.2660 0.1093 
3 0.0737 0.3263 0.0292 0.2604 0.1093 
4 0.0801 0.1693 0.0525 0.2506 0.1093 
5 0.0839 0.0582 0.0392 0.1551 0.07906 
6 0.0864 0.0298 0.0538 0.1363 0.08921 
7 0.0760 0.0333 0.0638 0.0602 0.07230 
8 0.0723 0.0253 0.0524 0.0471 0.06052 
9 0.0341 0.0086 0.0509 0.0294 0.04724 

10 0.0298 0.0265 0.0384 0.0271 0.04004 
11 0.0207 0.0254 0.0511 0.0196 0.03355 
12 0.0064 0.0243 0.0444 0.0057 0.01080 

2 

T 
20 

1 
~10 -I- 10-'1 

Fig. 3. Two Bar Truss 
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SENSITIVITY ANALYSIS AND OPTIMAL DESIGN WITH ACCOUNT FOR VARYING SHAPE AND 
SUPPORT CONDITIONS 

Zenon Mr6z 
Institute of Fundamental Technological Research 
Polish Academy of Sciences 
00-049 Warsaw, Poland 

ABSTRACT 

The present article deals with an extended class of design problems when be

sides material or dimensional variables, also structure shape, external sup

port conditions, action through initial distortions is considered. In parti

cular, a problem of mixed boundary conditions is discussed when imposed 

strength and stiffness requirements may lead to conflicting design decisions. 

The sensitivity analysis for both linear and non-linear structures provides 

a uniform variational approach to such variety of problems by generating ex

pressions of functional gradients explicitly in terms of state fields of 

primary and adjoint structures. 

1. INTRODUCTION 

The optimal design methods in structural mechanics have developed in sever

al directions and different classes of problems have been considered. Most 

frequently, the optimization procedure is aimed at determining the cross 

sectional dimensions of a structural member, such as beam, plate or more 

generally stiffness parameters related to both material and geometric pro

perties. The dimension or stiffness variables occur only in the stiffness 

or compliance matrices of a structure and do not affect equilibrium, compa

tibility or boundary conditions. A more difficult class of problems is 

specified by considering shape or more generally, configuration variation 

of a structure. Whereas for a disk the shape variation is performed on its 

plane boundaries, for a shell it may be referred to its edges or to median 

NATO ASI Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Meeh~nical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 



www.manaraa.com

408 

surface, and for a trus& the configuration variation occurs due to position 

variation of its joints. In general, equilibrium, compatibility and bounda

ry conditions are affected by such structure variations. A different class 

of problems is generated by considering variations of structure topology, 

such as connectivity in bar structures, number of joints or connections be

tween substructures, etc. This class of problems is not well investigated 

and does not fit into variational formulation of structure modification. 

Variation of support conditions, that is support position or orientation 

provides also variation of structure configuration. However, this class of 

problems has its specific characteristic. The optimality conditions express 

the concept of optimal reaction of supports in terms of local deflections 

and deflection gradients and have a clear mechanical interpretation. A more 

general formulation of this problem involves optimal structure-foundation 

interaction, distribution of line or surface stiffeners and application of 

prestressing fields. A closely related class of problems is associated with 

external loading or displacement distribution. The concept of optimal action 

of loads has again a clear mechanical meaning that can be used in analysing 

the problem of optimal interaction between structural elements. In this pa

per we shall briefly discuss these classes of problems which are so far much 

less investigated. 

In Section 2, we shall discuss the sensitivity analysis for both linear and 

non-linear structures, whereas in Section 3 the problem of optimal support 

reaction on beam structures with boundary conditions expressed by both lat

eral loads and displacements or initial distortions is discussed. In Sec

tion 4, variation of shape of a structure is briefly discussed. 

2. SENSITIVITY ANALYSIS FOR LINEAR AND NON-LINEAR STRUCTURES 

To provide a uniform treatment for a variety of problems of optimal design, 

let us briefly discuss first the sensitivity analysis with respect to de

sign variables. As stated in the introduction, these design variables can 

represent various structure modifications, namely 

i) dimensional or material variables, 

ii) configuration or shape variables, 
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iii) support or loading variables, 

iv) stiffener or hinge variables. 

It should be noted that in structural mechanics the sensitivity analysis is 

important since any redesign process requires assessment of variation of lo

calor global structural response characteristic due to structure modifica

tion. 

2.1. Variation of material variables in linear elasticity 

Let us consider first the variation of dimensional or material variables in 

a linear elastic structure. Assume the stiffness or compliance matrices D 

and E to depend on a set of design functions sk(x), so that Hookes law takes 

the form 

o (1) 

where ~~ = Dijk18kl denotes the matrix product of tensors of different orders 

and the scalar product of tensors or vectors of the same order is denoted by 

dot, thus 0·8 o .. 8 ..• For small variations oSk of design functions, we have 
~J ~J 

aD 
00 ~o~ + OD8 ~o~ + a~ oSk~ 00' + 00" 

k (2) 
aE 

08 Eoo + oEo Eoo + --
aSk oSk£ 08' + 08" 

The equations of equilibrium and compatibility are expressed through virtual 

work equations 

f 00·8 dV = f oT·uodS + f of·u dV 
u 

(3) 

(4) 

where TO and ~o are the specified tractions and displacements on ST and Su 

whereas f denotes the body force vector, depending in general on the design 

functions, £. = !(sk)' for instance in the case of disks or plates of varying 

thickness with account for self-weight. 
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o 0+00 G 

a) b) 

6 G' 

E 

c) 

Fig.1. a) variation of stress and strain due to stiffness modulus 
variation, b) stress and strain in the adjoint structure, 
c) non-linear stress-strain relation, d) stress-strain 
relation in the adjoint structure. 
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Consider a general functional of the form 

G (5) 

where the integrands are continuous and differentiable functions of their 

arguments. Since for any statically admissible stress field £s in equili-

brium with body 

missible fields 

forces fS and surface tractions !s, and kinematically ad
k k 
~,~ the following virtual work equation holds 

o (6) 

this equation can be added to (5) as the constraint condition. Let the 

stress field OS be identified with the actual field £ whereas ~k and £k be 

identified as fields associated with an adjoint structure of the same shape 

and elastic stiffness moduli but with different boundary conditions and 

initial strain or stress fields within the structure. Denoting the state 

f · ld . h· h d . . b a a a b· h d 1e s W1t 1n tea J01nt structure Y £ ,~ ,~ , we 0 ta1n t e augmente 

functional 

G J ~ dV + J h dS - J o·£a dV + J f·ua dV + J T·ua dS (7) 

where for simplicity the Lagrange multiplier was assumed as unity. In what 

follows, we shall show that considering the first variation of (7) and re-
a . 

quiring the stationarity with respect to the fields ~ and ~ , we obtain the 

equilibrium conditions for both primary and adjoint structures together with 

respective boundary conditions. The variation of (7) with respect to sk then 

provides the first order sensitivity of the structure. Consider the varia

tion of (7) 

oG f ( ~ ·00 + ~ ·ou + ~ .0sk)dV + J ( ah ·ou + ah .0T)dS 
ao au aSk au aT -

(8) 

- J a oo·£a)dV + J (o~:,:: 
a 

+ !·ol)dV + J (01:· 
a + 1:. o~a)dS (£. o~ + ~ 

and assume that the constitutive relations for the adjoint structure take 

the form, cf. Fig.1 

a 
o 
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ai where e; lS the initial strain field to be specified latero Assuming that 

and TO 0 on ST' the expression (8) takes the form !:}o = 0 on S 
u 

oG f ( ~~k oSk + ofo~a)dV - { f (£oofa 

- { f [(~a - e;ai)ooa - ~aoo~]dV - f Taoou dST} - { f [(~ai - ~~ )oo~ + 

+ (fa - ~ )oou]dV + f (Tao - i£. )oou dST au - au -
- f (uao + ah )ooT dS } 

CIT - U 
(10) 

Let us note that the expression within the first pair of braces can be re

garded as the equilibrium equation for the primary structure expressed 

through the virtual work equation 

(11 ) 

The expression in the second pair of braces by virtue of (2) and (9) can be 

presented as follows 

a ai a a a a 
f [(~ - ~ )oo~ - f oo,;:]dV - f'!'. 0 0';: dST = {f (~ oo~ - f oO~)dV-

aD 
e;ai) - 0 dV 

aSk o~ sk ( 12) 

Since the equilibrium conditions for the adjoint structure are expressed by 

the virtual work equation 

( 13) 

only the last term of (12) does not vanisho The expression in the third pair 

of braces of (10) vanishes when the following loading and boundary conditions 

are satisfied for the adjoint structure 

ah 
au on 

~ 
au 

ao 
u 

within V 

ah 
aT 

on S 
u 

In view of (11)-(14), the variation G is the expressed as follows 

( 14) 



www.manaraa.com

413 

oG oG ai) E; . 
elD 
- '~losk dV 
dSk 

(15 ) 

that is explicity 1n terms of the variations oSk of the design functions. 

Noting that 

DE I 

the expression (15) can be presented 1n the equivalent form 

oG a 
+ a 

( 16) 

( 17) 

It is seen that augmenting the functional G by the bilinear form (6), we ge

nerate both equilibrium and boundary conditions for both structures and also 

the sensitivity expression with respect to the design functions. 

The presented approach (which will be called the adjoint structure method is 

based on the concept of an adjoint structure and its state fields. Having 

determined solutions for both primary and adjoint structures, the first var

iations or derivatives with respect to design functions or parameters are 

explicitly expressed. The other alternative approach (which will be called 

the direct method 1S possible by direct calculation of variations of stress, 

strain and displacement fields due to variation of design parameters. Con

sider the decomposition (2) where the stress or strain variations 00" or OE;" 

can be regarded as initial fields within the elastic body of constant stiff

ness or compliance matrices y and §. The constitutive relations, equilibrium 

equations, and boundary conditions now are 

00 ~(o~ - o~") 

00 ... 
1J ,J 

o , 00 .. n. 
1J J o on ST' 

or for the field oo~. 
1J 

00 ~. . 
1J ,J 

00' = DOE; 

oo~. n. 
1J J 

-00'.' .. 
1J ,J 

00" 

-oo~. n. on ST ' 
1J J 

ou 

ou o on S 
u 

o on S 
u 

( 18) 

( 19) 
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When the stiffness matrix D depends on n parameters, the direct approach re

quires n+l solutions whereas the adjoint structure approach requires only 

two solutions and is more economical. However, when there are m functionals 

and n stiffness parameters, then the direct approach would require n+l solu

tions and the adjoint structure would need m+1 solutions in order to gener

ate all variations. The choice between the two approaches depends on the 

ratio of m to n and the convenience of generating solutions associated with 

one or other approach. 

2.2. Variation of material variables ~n non-linear structures 

The sensitivity analysis for a linear elastic structure can now be general

ized for a physically non-linear material within small strain theory or to 

geometrically non-linear theory. Consider first a general non-linear stress

-strain relation for the small strain theory following from the elastic po

tential, so that 

where U is the specific strain energy per unit volume. The variation of 

stress is expressed as follows 

00 

(20) 

(21) 

The decomposition (21) is identical to (2) provided the tangent stiffness 

matrix D is specified by the relation 
-t 

D 
-t 

(22) 

The adjoint structure is now described by a linear relationship (9), that ~s 

a 
o (23) 

The sensitivity expressions (15) or (17) are valid in this case. Figs.lc,d 

illustrate the constitutive relations (20) and (23) for both primary and 

adjoint structures. 
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The case of non-linear geometric theory can be treated similarly. Assume a 

fixed Cartesian coordinate system to describe particle location during a fi

nite deformation process. A typical particle at the point x.(i=1,2,3) is 
1 

displaced to the point y. in the deformed configuration. Introducing the 
1 

displacement field u.(x), 
1 

we can 

F .. 
lJ 

specify 

ClYi 
(lx. 

J 

the deformation gradient 

Q •• (24) + u. 
lJ 1,j 

where a .. denotes the Kronecker symbol. The material is assumed to be hyper
lJ 

elastic obeying the constitutive law of the form 

t.. 
lJ 

t .. (F, sk) 
lJ -

(25) 

where t is the first (non-symmetric) Piola-Kirchhoff stress tensor related 

to the symmetric Cauchy stress £ by the formula 

t .. Fk · = det IFlo'k 
lJ J - 1 

(26) 

and U(~,sk) is the specific strain energy per unit volume in the initial 

configuration B • The equilibrium equations and boundary conditions now are 
o 

t ... 
lJ,l 

f. 
1 

t .. n. 
lJ 1 

T~ on u. 
1 1 

and the virtual work equation (3) now takes the form 

J t. .au .. dV 
lJ J,l 0 

o u. 
1 

on S 
u 

(27) 

(28) 

where V denotes the structure volume in the initial configuration with S 
o 

= ST U Su specified in this configuration. Instead of (21), we now have 

Qt .. 
-lJ 

at!. + Qt'.'. 
lJ lJ 

The functional (5) is now expressed in the underformed configuration in 

(29) 

terms of £, ~, sk and boundary tractions or displacements. The adjoint struc

ture is linear with the constitutive relation and the initial displacement 

gradient specified as follows 
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(30) 

h h d f f a f . d d· 1 ao ao w ereas t e bo y orces _ ' sur ace tract~ons an ~sp acements! ,u are 

replaced by u~ . and 
~,J 

ai 
u .. 
~,J 

are 

Now, let us express these relations ln terms of the symmetric Piola Kirchhoff 

stress tensor s .. and the conjugate Green strain tensor e .. 
~J ~J 

We have 

dU(~,sk) 
(31) 

where 

ekl ~(uk I + u l k + u u ) £kl + ! um,k u m,l , , m,k m,l 

dy. 
t.. = sik Fjk = sik 

_J = s .. (o·k+ u. k) 
~J dXk ~J J J, 

(32) 

and the virtual work equation takes the form 

(33) 

Consider now the increments of tkl and skI and the respective equilibrium 

equations 

Ot. .. = [os·k(o·k + u. k)] . + (s·k ou. k) . + f. 0 
~J , ~ 1 J J , ,J ~ J , ,J ~ 

and the incremental constitutive equations 

oe .. 
~J 

(34) 

(35) 

These relations indicate the respective relations for the adjoint problem. 

Let us write 
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a 2 W(s s ) a 2 U(e mn) a mn s s a e .. skI s .. 
aeijaekl 

ek1 
~J s s ~J aS ij aSkl 

(36) 

n a s<;. s sl?-. s .. sik uj,k s .. + 
~J ~J ~J ~J 

so that the equilibrium and virtual work equations take the form 

[s~k(o·k + u. k)] . + (s·k u~ k) . + f~ 
~ J J, ,~ ~ J,,~ J 

o (37) 

and 

f s~.oe~. dV + f s~.ou~ . dV 
~J ~J ~J J ,~ 

(38) 

f os~.oe~. dV + f s.kou. kOu~ . dV 
~J ~J ~ J , J ,~ 

Here the total stress tensor s~. in the adjoint system is decomposed into 
~J 

symmetric and non-symmetric parts s~. and s~. satisfying the constitutive 
~J ~J 

relations (36) and the equilibrium equations (37). The strain e~j is spec-

ified as follows 

a 
e .. 
~J 

!(u~ . + u~ . + U . ua . + ua . u .) 
~,J J,~ ,m~ ,mJ m,~ m,J 

Consider, for example, the functional 

Following as previously, we have 

or 

and since 

oe .. 
~J 

f ( a f . Su a f s ) dV 
au U + ask uSk 

a af 
f (~·o~ + -os )dV 

aSk k 

a2w 
+ ---- os 

s k ds . . dsk 
~J 

~n v~ew of the virtual work equation (38), we obtain 

(39) 

(40 ) 

(41) 

(42) 
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2.3. Variation of the buckling load for a plate 

(43) 

The general discussion of sensitivity analysis for non-linear structures can 

be applied to a case of plate loaded by the in-plane boundary tractions AT~ .. 
~J 

The onset of buckling is specified by the following equality 

J UB(k .. ,h)dA + !A J N~. w . w . dA 
~J ~J , ~ ,J 

o (44 ) 

where UB is the specific flexural energy of the buckling mode associated 

with the lateral deflection wand the curvature k ... The plane forces are 
~J 

N .. = AN~. and the in-plane displacements are u so that the generalized 
~J ~J i' 

strains are specified as follows 

e .. !(u .. + u .. ) + ! w , i w 
,j 

E •• + y .. 
~J ~,J J ,~ ~J ~J 

(45) 

k .. - w , ij ~J 

and the equilibrium equations are 

N .. 0 , M .• - N .. w 
,ij ~J ,j ~J ,ij ~J 

(46) 

The constitutive relations for a physically linear material are formulated 

as follows 

M •• 
~:J 

N •• 
~J 

d~ 
de .. 

~J 

(47) 

N~. + N~. 
~J ~J 

where D~.kl ' and D~.kl are flexural and in-plane stiffness matrices of the 
~J 1J B 

plate generated by the specific strain energies U (~,h) and ~(~,h). The 
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virtual work equation associated with (45)-(46) has the form 

! M .. ok .. dA + ! N .. w . ow . dA 
1J 1J 1J, 1 ,J 

o 

Consider the perturbation of Eq.(44) associated with the plate thickness 

variation h. We have 

B B 
! ~ ok .. dA + ! ~hU oh dA + ~A ! N?(ow . + ow .)dA + okij 1J a 1J ,1 W,j w,i ,J 

+ ~A ! ON? w . w . dA + ~OA ! N~. w . w . dA 0 
1J ,1 ,J 1J ,1 ,J 

(48) 

(49) 

In view of the virtual work equation (48), the first and the third terms of 

(49) cancel. In order to eliminate the variation N .. , let us formulate an 
1J 

adjoint problem from which we determine plane forces N~., strains €~., and 
1J 1J 

displacements u~. Assume that 
1 

there is an initial strain field applied to 

the adjoint plate 

i € .. w ,i 
w 

,j 1J 
(50) 

so that 

~(u~ . u~ .) 
a i r 

+ € .. € .. + € .. 
1,J J,l 1J 1J 1J 

(51 ) 

and 

N~. A a i A 
€~l Dijkl (€kl - €kl) Dijkl 1J 

(52) 

N~. 0 
a 

0 S N~. 0 ST , u. on n. on 
1J ,j 1 U 1J J 

where ST and Su now denote loaded and supported plate boundaries. In view 

of (52), we can write 

! ON? dA ! ON? i dA ! ON?(€~. €:. )dA w 
,i w ,j 

€ .. -
1J 1J 1J 1J 1J 1J 

(53) 

- ! oN? r dA € .. 
1J 1J 
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since aN~. is a self-equilibrated state with vanishing tractions on the 
1J 

loaded boundary ST • We have 

J aN~. 
1J 

since 

w. 
,1 

In view of (54), from (48) it follows that 

B A 
- 2 J~ ah dA + 2A J~ah dA 

at.. ah ah 

J N~. w ,i w ,j dA 
1J 

B 
A 

aD .. kl 
- 2 J ~ ah dA + A J 1J r 

Ekl ah dA E .. ah ah 1J 

J N~. w ,i w. dA 
1J ,J 

where 

2UB Eh 3 
[k 2 + k 2 + 2v k k + 2 (1-v)k 2 ] 

12 (1-v 2 ) xx yy xx yy xy 

Eh 3 
[(w + )2 - 2 (l-v) (w _ w2 )] W w 

12 (1-v 2 ) ,xx ,yy ,xx ,yy ,xy 

and 

2~ Eh r r 
+ V(E E r E Er) + 2 (l-v) E --2 [EXX E + E E + 

1-v xx yy yy y x x y xy E~y] 

(54) 

(55) 

(56) 

(57) 

(58) 

. h 1 f d r a d·· 1S t e mutua energy 0 two states E .. an E .. = E .. - W . W .• In er1v1ng 
1J 1J 1J ,1, J 

the formulae (56)-(58) it was assumed that the stress state in the plate be-

fore buckling is specified by linear geometric relations. A more general 

case when non-linear theory is used before buckling can be treated similarly. 
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3. OPTIMAL DESIGN OF SUPPORTS OF STRUCTURES SUBJECTED TO LOADS AND INITIAL 
DISTORTIONS 

In formulating optimal design problems for structures, it is usually assumed 

that support conditions are specified. However, a more extended class of 

problems where support stiffness, position, orientation or prestress are 

also to be determined, offers more realistic solutions since static or dy

namic response is sensitive to support conditions. Moreover, the optimality 

conditions for support action can easily be introduced into practical design 

and also utilized in active control of structures. 

The research on this class of problems was concerned with the optimal loca

tion and orientation of point supports assuming static behaviour [4-6], next 

stability or vibration control was discussed [5,8]. In these papers the 

structures were assumed to be subjected to external loads with support at

tached to rigid boundaries. The optimal supporting action then corresponds 

to the stiffest structural response. However, the problem becomes different 

when initial distortions or displacements are imposed on the structure, for 

instance, due to foundation settlement, assemblage errors or temperature 

fields. Then, the optimal design should correspond to a more flexible struc

ture which could deform at a low stress level. Conflicting design require

ments will occur when external loads or distortions are imposed simultaneous

lyon a structure. This case will be briefly discussed in this section. 

3.1. Conditions for optimal support reaction 1n the case of applied loads 

Consider a plane beam structure of specified configuration, cross-sectional 

dimensions, loading conditions and some of supports. Let the positions and 

directions of some additional supports be at the designer choice together 

with magnitudes of support reactions. The optimal support reaction now cor

responds to minimization of global static compliance or local deflections 

and stresses. 

Denote the generalized stresses and strains by g and ~ and the specific 

stress and strain energies by 

Q q 
f q·dQ U(q) f Q.dq 
0-- 0--

(59) 
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For a linear elastic material both W(g) and U(g) are quadratic functions and 

9 
au 
as L (60) 

where Land M are the constant compliance and stiffness matrices. For a non

-linear material, the tangent stiffness and compliance matrices are 

(61) 

Consider the stress functional 

G (62) 

which is to be minimized by support reaction. Following previous derivations, 
i introduce an adjoint structure submitted to an initial strain field S speci-

fied by the potential law 

i 
g .£.<t 

ag (63) 

The initial strain field induces the residual stress state ga and the asso
a cia ted strain g , so that 

a g 
i r 

g + g (64 ) 

Let the position, direction and magnitude of support reaction be varied. 

Assume that from the position A the support is translated through a distance 

s along the beam axis, rotated through the angle o~ in the structure plane 

and its magnitude be varied from R to R + oR. Let the stress strain and dis

placement fields in the primary structure before and after variation be g, 
~, ~, and g' = 9 + og, ~'= ~ + o~, ~'= ~ + o~, whereas the states in the 

adjoint structure be ga, ~a, and ua By the principle of virtual work, there 

is 

a a 
f I'.'~ dx - RUR 

a 
f g'~ dx 

f I'..~a dx - (R + oR) cos~(u~ + u~,s os) - (R + oR) sin(o~)u~ 

f g' .~a dx 

(65) 
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s Bs 

a) 

s 

b) 

Ar---~~------~_ 

c) 

s Pc. f, tU
: uu c _____ ----A 

R" .. 
'A Rs 

d) 

Fig.2. Primary and adjoint structure in the case of (a,b) support 
reaction control and (c,d) support displacement control. 

Maximal 
stiffness 
max n<:=> mine 

G=C 

Fig.3. Conflicting design situation in the case of acting loads 
and displacements or distorsions. 
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where the external loading is denoted by £ and u~ , u: are the displacement 

components along the force R and in the perpendicular direction. The deriva

tive 

(66) 

is assumed to be continuous within the adjoint structure. For small varia

tions oR, oS and o~, from (65) it follows that 

a 
! S ·09 dx (67) 

Note that the reaction expends a negative work, so we have put a negative 

sign before the term RU~ in (65). Also note that there is no force Ra applied 

at A to the adjoint structure Figs.2a,b . 

Consider now the variation of the functional (62). In view of (64), we have 

oG ! ~ ·oQ dx Clg -
i ! S .g dx 

a ! S ·og dx (68) 

since 

r ! g ·og dx 
r t ! g .~ og dx 

t r 
! o~!"~ S dx 

a ! 09.·g dx o (69) 

Using (67), we obtain the sensitivity expression associated with support var

iation 

oG (70) 

and since oR, os, and o~ are independent variations, the stationarity condi

tion oG = 0 implies that 

a RUR ,s 
o (71) 

Thus, the optimal support conditions (71) are expressed directly in terms of 

the displacement field of the adjoint structure: for R ~ 0, the two displace

ment components u~ and u: should vanish at the point A of the adjoint struc

ture together with the derivarive uRa . When the displacement functional 
,s 
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and the optimality conditions (71) apply. 

3.2. Action of loads and distortions or displacements 

(72) 

(73) 

Consider now the case when both surface loads, initial distortions, and 

boundary displacements are imposed on the structure. These distortions can 

be distributed within the structure and specified as a field qi(x), distri-

buted on its boundary portion S 
u 

as L 
an initial displacement field ub(x), 

or concentrated at point supports u7 (here j denotes the consecutive sup
J 

port number). The initial distortion field is kinematically inadmissible 

and it induces the elastic strain fields qr(x) and boundary or support dis-

placements ~(x), uj, so that 

q 
L r 

q + q 
o 

u. - u. 
J J 

L r 
u. + u. 

J J 
(74) 

where ub ' u j are the displacements on the structure boundary at interaction 

points between distributed or concentrated supports and the structure, 
o 0 whereas ub ' u j are the displacements of the supporting boundary and of 

points of interaction of supports with foundation. The difference u~ - ~ or 

u~ - u. represents the elastic and initial displacements of distributed and 
J J 

concentrated supports which can be conceived as distributed elastic springs 

on the boundary S and at points j. 
u 

Consider first the case when the supporting boundary is rigid with no initial 
o i r 

displacement, ~ = ub = ub = ~ = 0, and when the rigid point supports 
r i 

u. = u. = 
J J 

that there is an initial distortion field 

0, u. = u~ . Moreover, we assume 
. J J 

qL(x) within the structure. 

posses imposed displacements, 

The elastic stress field Q LS related to qr by the constitutive relation 

(75) 
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r i 
where g = S - g . Since 9 is in equilibrium with the applied load E and the 

support reactions R., the virtual work equations take the form 
J 

o (76) 

and this equation can be regarded as the stationarity condition of the po

tential energy 

II 
u 

r f U(g )dx - f £.~ dx (77) 

Considering a statically admissible stress variation og and the associated 

support reaction oR., we can write 
J 

oR. 
J 

o (78) 

and this equation can be regarded as the stationarity condition of the com

plementary energy 

i 0 f [W(g) + g.g ]dx - R.(Q)·u. 
J ~ J 

(79) 

i When p = 0 and there is only distortion field g (x), for a linear elastic 

material we have 

- II 
Q 

II 
u 

r f U(g )dx (80) 

and IIQ < 0, IIu > O. The following equivalence of various optimal design for

mulations now occurs 

max IIQ + min IIu + min f U dx + min f W dx (81) 

On the other hand, when there are no distortions and a loaded structure is 

rigidly supported, we have 

II 
u 

f [U(q) p·u]dx 
~ ~ 

and for a linear structure there is 

f W(g)dx (82) 
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! f £.~ dx ! f U dx 

thus TIQ > 0 and TIu < O. The following formulations of optimal design are 

equivalent 

min TIQ + max TIu + min f £.~ dx + min f W dx + min f U dx 

(83) 

(84) 

We may regard therefore in this case TIQ as a measure of mean structure com

pliance whereas TI is regarded as a measure of mean structure stiffness as 
u 

both are proportional to work of surface loads on induced displacements. 

Comparing (81) and (84) it is seen that there is a conflicting situation 

when both loads and distortions or initial displacements are imposed simul

taneously on the structure. In fact, when the global elastic energy is to 

be minimized, the structure attains maximal stiffness for the case of ap

plied loads and minimal stiffness (maximal compliance) for the case of im

posed distortions and support displacements. This situation is schematical

ly illustrated in Fig.3. 

Instead of the complementary or potential energies, we can now use the total 

elastic energy stored in the structure as a measure of structure quality and 

the objective function to be minimized. For a linear structure, we have 

(85) 

where g = gP + gd and gP, gd are the stress fields due to separate action of 

loads and distortions plus displacements with vanishing loads. 

Let us derive the optimal support conditions assuming that only the support 

position x = s and the imposed support displacement uR are varied. Consider 

a beam structure subjected to load ~(x), initial distortion field ~i(x) and 

with specified displacements at some fixed supports. Assume the displacement 

uR of the support to be subject to variation together with the support posi

tion x = s. Consider the functional 

G (86) 

ai 
and introduce the adjoint structure subjected to initial distortions ~ and 
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(87) 

and with vanishing displacements at all supports, u~ = O. It ~s assumed that 
J 

at x = s there is also support in the adjoint structure with the respective 

reaction Ra . Following previous derivation of (70), the sensitivity expres
s 

sion is now derived in the form 

oG Ra oUR + (Ra uR + R s s, s s 
a 

uR )os 
,s 

(88) 

and hence the stationarity conditions for the functional G take the form 

o , o (89 ) 

Consider now the case when the functional G coincides with the elastic stress 

energy neg), specified by Eq.(85). When distortions and support displacements 

vanish, then also uR = 0 and minn + maxTIu + minTIQ . Equations (87) then yield 

a 
.e o , ai 

g 
aw 
ag 

q (90) 

that is the initial distortions of the adjoint structure are equal to the to

tal strains of the primary structure and are kinematically admissible, thus 
ar a ai a a g = g - g = 0, u = u, R = O. On the other hand, when only initial 

distortions and support displacements occur within the structure, then 

minn(g) + min TIu + max TIQ ' and 

ai aw r ar ai a 
0, g g g - g g 

ag 

ga g, Ra R 
a 0 u 

s s 

In the case of combined loading, the sensitivity expressions are 

an 
as 

and are specified by the solution of the primary structure. 

(91) 

(92) 
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3.3. Example 

To illustrate the general theory, consider a simple beam structure shown in 

Fig.4, for which the sensitivity derivatives can be expressed in analytical 

forms. Assume the objective functional to be equal to the total elastic 

stress energy, G = n. Assume the beam to be loaded by the lateral pressure 

p, initial curvature qi(x) = kL(x) and with the imposed support displace

ments uR at B. Introduce the following non-dimensional quantities 

P k 
u 

100 ~ 
1 

(93) 

and assume that P and k may vary within the interval (-1, +1). The support 

reaction R and the deflection slope w due to loading and initial dis tor
,x 

tion field are 

RP 1 EI -6 + 411 - 112 
P 24 12 11 

wP 1 
11 (6 - 1211 + 511 2)P 

,s 144 
(94) 

RklI 3 EI k f1 
200 12 -+ 

~ 11 

k£\ 1 
(-11k 

3f1 w 400 + -
,s 11 

The sensitivity derivatives of the functional n with respect to wR and s are 

an = Rkf1 = _3_ EI k f1 
12 

-+ 
~ aUR 200 T) 

(95) 

an RP wP Rkf1 k _1_ (-6 + 411 -11 3 ) (6 - 1211 + 511 2)p 2 -w as ,s ,s 3456 

3 
- 80000 

Ln the expressions (94)-(95) the symbol~ denotes the total non-dimensional 

displacement of the support at B. It is equal to initial displacement, f1=f1 i , 
i s when there is no control displacement and equals f1 = f1 + f1 , when the con-

trol displacement f1s is superposed. The sensitivity derivatives (95) contain 

the effect of load P, support displacement f1 and initial curvature k. Using 
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Fig.4. Beam supported at B and subjected to lateral loading, 
initial distortion field and initial support displacement 6 i • 

11/=V_{ 

-1 

Fig.s. Variation of n depending on initial support displacement. 

6=0.25 

0.5 

0.4 

0.3 

0.2 

0.1 

to 0.8 0.6 0.4 0.2 0 0.2 OJ. 0.6 0.8 1.0 k 
P .. I I I .. 

0 Q2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 P 

Fig.6. Design diagram n, k, P. 
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these derivatives the optimal solutions can be generated for various combi

nations of P, k, and 6. 

i) Beam acted on by the lateral load P. 

The optimal support reaction corresponds to 6 = 0, n = 0.71 that is opt opt 
to rigid support with no initial displacement, acting at the point at zero 

deflection slope. 

ii) Beam subjected to initial constant curvature k i 

port displacement 6 i . 

k const. and to sup-

When 6 6 i is fixed and n is varying, we have 

for 6 i 
~ -1 nopt k 

fl for -1 ~ 
6 i 

~ 0 (96) nopt k 

= 0 for 6 i 
~ 0 nopt k 

The optimal solution is presented ~n Fig.5 on the diagram (n, 6 i /k). When 

both 6 and n are varied, from the sensitivity derivatives (95) it follows 

that 

6 opt for arbitraty n 

iii) Beam subjected to the lateral load P and the initial curvature ki. 

(97) 

When there is no support displacement, 6 = 0, and n is varied, the optimal 

solution is presented in Fig.6 where on the abscissa axis the values of load 

P and of curvature k are presented, such that P + Ikl = 1, 0 ~ P ~ 1, 

-1 ~ k ~ 1. When 6 and k are varied, then the optimal solution corresponds 

to n = 0.71, 6 = -n 2 k = -0.504 k. 
opt opt 

iv) Beam subjected to load P and initial displacement 6 i . 

When 6 6 i is fixed, the optimal values of n are plotted ~n Fig.6 as 
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intersection points of curves corresponding to specified values of ~ with 

the n - axis (p = 1). When both ~ and n are varied, the optimal solution is 

that obtained for i). 

v) Beam is subjected to simultaneous action of P, k, and ~. 

When ~ = ~i is fixed and n varied, the .optimal values of n are presented in 

Fig.6 for different values of P, k, and ~. When ~ and n are subject to varia

tion, the solution of the case iii) applies. 

4. STRUCTURE SHAPE VARIATION 

In this section we shall briefly discuss the case when the shape of external 

boundary is not specified in advance but can vary in order to attain the de

sired properties of a structure. Besides the external boundary, we can also 

investigate the variation of shape of interfaces in a composite structure, 

shape of reinforcing layers or of discontinuity surfaces In displacement 

components. The concept of shape variation can therefore be considered in a 

broader context, not necessarily related with the shape variation of exter

nal boundaries. 

In discussing shape variation, several classes of problems can be distin

guished. A most typical problem is associated with regular boundary varia

tion of a structure for which state fields (stress, strain, displacement) 

are specified within the structure domain, so that normal gradients of these 

fields are known on the boundary subject to variation. This class of prob

lems will be discussed in this chapte~ Second class of problems arises when 

governing equations and state fields are specified on a surface or line (e. 

g. shell, arch, bar), so that only gradients of state fields within tangent 

plane are available. This class of problems is more difficult and needs a 

separate treatment. 

The problems of shape variation can also be classified according to their 

regularity. A regular boundary variation does not involve any singularities 

and gradients of state variables are bounded. A singular boundary variation 

introduces crack-like or notch-like shapes for which local gradients of 
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displacements or stresses are infinite. Sensitivity analysis with singular 

boundary variation is typical in fracture mechanics where crack growth pro

cess can be treated as shape variation. A quasi-singular boundary variation 

is referred to such cases where local gradients of state fields at the 

boundary reach great values as compared to respective values within the 

structure domain (e.g. notch root stresses, interface displacement gradients 

of a composite). Both singular and quasi-singular cases require special 

treatment, both analytical and numerical. 

Consider an elastic body occupying of volume V and undergoing a deforma-

tion process specified by the displacement field ~(~,t) where t is a time

-like parameter. In a finite deformation process the initial configuration 
d 

Co is deformed into Cd' Co + Cd' x = x + u. Consider now the transfor-

mation process resulting In variation of boundary shape of the initial con

figuration. To describe boundary variation, the transformation vector func-

tion t(?;,t) 

=?;+¥" Co 

mation field 

t should be specified on the boundary surface S, so that ~ 

+ Ct' However, it is more convenient to specify the transfor

not only on S but also in the interior and exterior of the 

body as the space field. In this way, for any instantaneous shape of the 

structure, its further modification is specified. In a continuing modifi

cation process, we can consider the transformation rate field ~(!5,t) or 

the infinitesimal variation field o~(~,t) = f dt specified within a domain 

enclosing the instantaneous structure configuration. Obviously, the conti

nuation of the transformation field and its rate from surface into enclos

ing domain is quite arbitrary provided proper continuity conditions are 

satisfied. In fact, first variations of functionals can be expressed as 

surface integrals in terms of surface data only. 

Consider an infinitesimal transformation field olf(~) from the assumed con

figuration, so that a typical point P, initially placed at ~ passes to the 

position ~*, so that 

P + P*: x* x + olf(x) (98) - -
and 6~ is assumed as the differentiable field. The volume and surface ele

ments of a structure and the unit normal vector to the boundary surface are 

then transformed as follows [2] 
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o(dV) 

(99) 

where comma preceding an index denotes partial differentiation. The varia

tions of state fields within a structure are now expressed in a fixed refer

ence system as follows 

ou = oli + u o~ 
,k k 

or. 00 

and the variations of surface tractions and body forces are 

oT. 
l 

0(0 .. n.) 
lJ J 

of of + f k o~k , 

00 .. n. + 0 .. on. 
lJ J lJ J 

00 .. n. + 0.. ko'fkn. + 
lJ J lJ, J 

(100) 

(10 1) 

Consider now the first variations or derivatives of volume and surface inte-

grals. Consider the volume integral 

I 
v f f dV 

and its variation 

or v f of dV + f fo(dV) = f (of + fO~k k)dV , 

(102 ) 

where o~n = o~knk is the normal component of o~. The time derivative of Iv 

lS expressed similarly 

d (I ) f ( Df 
f~k k)dV f [ 

af 
(f'fk ) k] dV dt -+ -+ 

V Dt , at , 
(104 ) 

= f Clf dV + f f':/' dS 
at n 

and is familiar in continuum mechanics. Here Df/Dt denotes the material time 
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derivative and af/at 1S the local derivative with the position of material 

point fixed. 

Consider now the surface integral 

I 
s 

f f dS (105) 

over the regular surface S. In V1ew of (99) its variation can be expressed 

as follows 

01 
s f of dS + f fo(dS) = f of + f(okl - nknl)o~k 1 , 

f [of + f(o~ - 2K o~ )]dS a,a m n 

(106) 

where o~ (a = 1,2) are the tangential components of o~ referred to a curV1-a _ 

linear reference system within the surface and K is the mean surface cur
m 

vature (now comma denoting the covariant derivative). The last expression 

can next be transformed as follows 

01 
s 

f (of - f o~ 2fK o~ )dS + P f o~ dl 
,a a m n ~ 

f (0 f 
n 

2fK of )dS + ~ f o~ dl m n ~ 

where we applied the Green theorem for a continuous and differentiable 

vector field ~ specified on a regular surface S bounded by a piecewise 

smooth closed curve 

f v dS 
a,a 

(107) 

(108) 

where 1 1S the arc length and ~ denotes the unit vector normal to r and tan

gent to S, pointing towards the outside of S. The symbol 0 f denotes the va
n 

riation along the direction normal to S, thus 

o f 
n 

of + f o~n ,n (109) 

and o~ = o~a.~a. = o~.~. is the component of the transformation vector o~ in 
~ 1 1 

the direction of ~. To calculate the variation of surface integral over a 
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A 

0) c 

c' d) 

b) 

• ('II 
I.{)n _ sinCJ. 

--=--m - . Q 
I.{)", Sin t-' 

,'n(1) 
'I'.u COS CJ. 
(Pll) = COS~ 

" 

Fig.7. Boundary shape variation, a) regular boundary, b) piecewise 
regular boundary, c) decomposition of the transformation 
vector at the edge of intersection of regular boundaries, 
d) polygonal boundary. 
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piecewise regular surface, the formula (107) can be directly applied over 

each regular surface with subsequent addition of consecutive variations. In 

particular, the variation of the surface integral over a closed piecewise 

regular surface S takes the form 

01 
s 

J (0 f 
n 

( 11 0) 

where the sum of the line integrals is taken over all edges of the surface 

S, and (+) and (-) signs refer to quantities evaluated on the two Legular 

surface sections intersecting along the edge r. 

Consider the augmented functional (7), and its variation 

oG J o~ dV + J ~o(dV) + J oh dS + J ho(dS) - J o(£.~a)dV 

( 111) 

Omitting details of derivation, expression (111) can be presented ~n a form 

containing only boundary integrals 

oG 

ah 
dU 

Ta)·(~uo 0 ~'f )dS 
U - u k U k + -, u 

( 112) 

where the line integral can be selected along the curve r separating the 

boundary portions 

[h + T·ua ] = (h + 
a 

h + I·~ along r. 

ST and S , Fig.7a. Since o~+ = - o~- = o~ , the integrand 
a + u a - ~ ~ ~ 

T·u) - (h + T·u) represents the discontinuity of 
- -a 

This line integral describe therefore the interaction be-

tween boundaries with discontinuous boundary conditions. 

Consider now a case when the boundary is formed by a set of regular surfaces 

intersecting at edges Lk , Fig.7b. Following (110), the line integrals along 

Lk in (112) will appear in the form 
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( 113) 

which should be added to (112) as the contribution along the edges of inter

section of regular surface sections. 
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ABSTRACT 

The material derivative concept of continuum mechanics and an adjoint 

variable method of design sensitivity analysis are used to relate 
variations in structural shape to measures of structural performance. A 
domain method of shape design sensitivity analysis is used to best utilize 
the basic character of the finite element method that gives accurate 

information not on the boundary but in the domain. Implementation of 
shape design sensitivity analysis using finite element computer codes is 

discussed. Recent numerical results are used to demonstrate accuracy that 
can be obtained using the method. Result of design sensitivity analysis 

is used to carry out design optimization of a built-up structure. 

1. I NTRODUCTI ON 

A substantial literature has been developed in the field of shape 
design sensitivity analysis and optimization of structural components 
[1-3] over the past few years. Contributions to this field have been made 
using two fundamentally different approaches to structural modeling and 
analysis. The first approach uses a discretized structural model, based 
on finite element analysis, and proceeds to carry out shape design 
sensitivity analysis by controlling finite element node movement and 

differentiating the algebraic finite element equations [4-6]. The second 
approach to shape design sensitivity analysis uses an elasticity model of 
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the structure and the material derivative method of continuum mechanics to 

account for changes in shape of the structure [7-13J. Using this 

approach, expressions for design sensitivity in terms of domain shape 

change are derived in the continuous setting and evaluated using any 
available method of structural analysis; e.g., finite element analysis, 

boundary element analysis, photoelasticity, etc. 

Shape design sensitivity analysis for several structural components 

has been treated in Refs. 2, 9, and 10 where sensitivity information is 

explicitly expressed as integrals, using integration by parts and boundary 
and/or interface conditions to obtain identities for transformation of 

domain integrals to boundary integrals. Numerical calculation of design 
sensitivity information in terms of the resulting boundary integrals thus 

requires stresses, strains, and/or normal derivatives of state and adjoint 

variables on the boundary. However, when the finite element method is 
used for analysis of built-up structures, the accuracy of numerical 

results for state and adjoint variables on interface boundaries may not be 

good [14J. 
To overcome this difficulty, a domain method of shape design 

sensitivity analysis is developed in Ref. 15, in which design sensitivity 
information is expressed as domain integrals, instead of boundary 

integrals (boundary method). The domain and the boundary methods are 

analytically equivalent. However, when one uses an approximate numerical 
method such as finite element analysis, the resulting design sensitivity 

approximations may give quite different numerical values. Moreover, the 

domain method offers a remarkable simplification in derivation of shape 

design sensitivity formulas for built-up structures since interface 

conditions are not required to obtain shape design sensitivity formulas. 
In the domain method, numerical evaluation of the sensitivity information 

is more complicated and inefficient than the result of the boundary 

method, since the domain method requires integration over the entire 

domain, whereas the boundary method requires integration over only the 
variable boundary. To alleviate this problem, a boundary layer of finite 

elements that vary during the perturbation of the shape of a structural 

component is introduced in Ref. 16. 

In shape design problems, nodal points of the finite element model 

move as shape changes. In Ref. 17, a method of automatic regridding to 

account for shape change has been developed using a velocity field in the 
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domain that obeys the governing deformation equations of the elastic 
solid. 

Using the domain method of Ref. 15 and results of conventional 
(sizing) design sensitivity analysis theory of Ref. 2, a design component 
method is developed in Ref. 18 for unified and systematic organization of 
design sensitivity analysis of built-up structures, with both conventional 
and shape design variables. That is, conventional and shape design 
sensitivity formulas for each standard component type can be derived. The 
result is standard formulas that can be used for design sensitivity 
analysis of built-up structures, by simply adding contributions from each 
component. The method gives a systematic organization of computations for 
design sensitivity analysis that is similar to the way in which 
computations are organized within a finite element code. 

A numerical method has been developed in Ref. 19 to implement the 
results of the design component method, using the versatility and 
convenience of existing finite element codes. It is shown in Ref. 19 that 
calculations can be carried out outside existing finite element codes, 
using postprocessing data only. Thus, design sensitivity analysis 
software does not have to be imbedded in an existing finite element code. 

The purpose of this paper is to combine these developments to present 
a unified method of shape design sensitivity analysis and numerical 
implementation of the method with existing finite element codes. Even 
though only static response is considered here, the method is also 
applicable for eigenvalue design sensitivity analysis as shown in Ref. 2. 

The design sensitivity analysis method presented here supports 
optimality criteria method for structural optimization and serves as the 
foundation for iterative methods of structural optimization using 
nonlinear programming. At a more practical level, the design sensitivity 
analysis method can be used to develop an interactive computer-aided 
design system [2]. A large scale built-up structure is optimized to 
demonstrate capability of the method. 

2. VARIATIONAL FORM OF GOVERNING EQUATIONS 

While a substantial library of structural components must be 
considered to implement the design sensitivity analysis for broad classes 
of applications, the component library to be considered in this paper is 
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limited to truss, beam, plate, plane elastic solid, and three dimensional 

solid components. Even though this is a somewhat restricted class of 

components, it is general enough that significant applications can be made 

and practicality of the method can be demonstrated. 
In the actual formulation, the truss and beam components, including 

both bending and torsion of the beam, are incorporated into a single 

component. Similarly, plate and plane elastic solid components are 

combined as a single component. To be more specific, the following 
formation of beam/truss, three dimensional elastic solid, and plate/plane 

elastic solid components are employed: 

A. BEAM/TRUSS 
Consider the beam/truss component of Fig. 2.1. The energy bilinear 

form (internal virtual work) [2J of the component is 

£ £ £ 
a n(z,z) = f El 1w1 wI dx + f EI 2w2 ~ dx + f GJe 6 dx 

U,,, 0 xx xx 0 xx xx 0 x x 
£ 

+ f hEv v dx o x x 
[2.IJ 

Figure 2.1 Beam/Truss Component 

1 2 where w , w , e, and v are two orthogonal lateral displacements, angle of 
twist, and axial displacement, respectively, and z = [wI, w2, e, vJ T• 

Throughout this paper, an overbar; e.g., Z, denotes a virtual displace
ment. Subscript x in Eq. 2.1 denotes derivative with respect to x. In 

Eq. 2.1, E, G, II, 12, J, and h are Young's modulus, shear modulus, two 

moments of inertia, torsional moment of inertia, and cross-sectional area 

of the component, respectively. The conventional design variable is u = 
h(x) and the shape design variable is the length of the domain ~ = [O,£J. 

The load linear form (external virtual work) [2J of the component is 
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Jl. 11 Jl. 2-2 JI. JI. 
JI. n(z) : f q w dx + f q w dx + f r6dx + f fvdx 
u, 0 0 0 0 

[2.2] 

where ql, q2, r, and f are two orthogonal lateral loads, twisting moment, 
and axial load, respectively, as shown in Fig. 2.2 [2]. If there are 
point loads, a Dirac delta measure can be used for ql, q2, r, and f in 
Eq. 2.2 [2]. 

Figure 2.2 External Loads For Beam/Truss 

The variational equation of the beam/truss component is [2] 

for all Z E Z [2.3] 

where Z is the space of kinematically admissible displacement. That 
is, Z C [H2(O,JI.)]2 x [H 1(O,JI.)]2 and elements of Z satisfy kinematic 
boundary conditions where Hi (O,JI.) is the Sobolev space of order i [2]. As 
possible boundary conditions, the beam/truss component can be simply 
supported, clamped, cantilevered, or clamped-simply supported. It is 
shown in Ref. 2 that the variational Eq. 2.3 is applicable for all 
boundary conditions mentioned. 

B. THREE DIMENSIONAL ELASTIC SOLID 

Consider the three dimensional elastic solid of Fig. 2.3. For plane 
elastic solid, results of the three dimensional elastic solid may be 
reduced. 

The strain tensor is defined as 

[2.4] 
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~------------------------~.X2 

Figure 2.3 Three Dimensional Elastic Solid 

where z = [zl, z2, z3]T is displacement field and subscript i, i = 1,2,3, 
denotes derivatives with respect to variable xi. The stress-strain 
relation (generalized Hooke1s Law) is 

aij (z) = 
3 
L 

k ,1.= 1 
i ,j , k , JI. = 1,2,3, XE Q [2.5] 

where C is the elastic modulus tensor, satisfying symmetry relations 
CijkR. = CjikJl. and CijkR. = CijJl.k, i,j,k,JI. = 1,2,3. The energy bilinear 

form [2] of the three dimensional elastic solid is 

[2.6] 

Even though shape design variable, which is the shape of the domain Q, is 
the only design variable in this case, subscript u is left for general 
treatment. The load linear form [2] of the three dimensional elastic 
solid is 
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iU n(Z) = IIIn [.~ fizi]dn + 112 [~ Tizi]dr 
, 1=1 r i=1 

[2.7] 

where rO, rl, and r2 are clamped, traction free, and loaded boundaries, 
respectively, f = [fl, f2, f3]T is the body force, and T = [Tl, T2, T3]T 

is the traction force. 
The variational equation of the three dimensional elastic solid is [2J 

[2.8J 

where Z is the space of kinematically admissible displacements; i.e., 

[2.9] 

For plane elasticity problems in which either all components of stress 
in the x3-direction are zero or all components of strain in the x3-
direction are zero, Eq. 2.8 remains valid, with limits of summation 
running from I to 2 and an appropriate modification of the generalized 
Hooke's Law of Eq. 2.5. 

C. PLATE/PLANE LEASTIC SOLID 

Consider the plate/plane elastic solid component of Fig. 2.4. The 
energy bilinear form [2] of the component is 

A 

II D(t)[(w11 + vw22 )wI1 + (w22 + vw11 )w22 
n 

2 
+ 2(I-v)wI2wI2 ]dn + JJ tL ~ oij(v)E:ij(V)]dn 

n 1 ,J = 1 
[2.10J 

where z = [w, vI, v2]T is the displacement field. In Eq. 2.10, D(t) = 
Et3/[12(I-v2)], v, and t are flexural rigidity, Poisson's ratio, and 
thickness of the component, respectively. Also, oij(v) and E:ij(v) are 
stress and strain due to an in-plane displacement field v = [vI, v2]T, 
respectively. For this component, the conventional design variable is u = 

t(x) and the shape design variable is the shape of the domain n. The load 
linear form [2] of the component is 
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r 

w 

Figure 2.4 Plate/Plane Elastic Solid Component 

2 .. 2 .. 
~ n(z) = II qwdn + II [I fly' ]dn + 12 [I T'v']dr 
u, n Il i=l r i=l 

[2.11J 

where q, f = [fl, f2]T and T = [Tl, T2]T are lateral load, body force, and 
traction force, respectively, as shown in Fig. 2.5. As in the beam/truss 
component, if there are point loads, a Dirac delta measure [2] can be 
used. 

[ 1 2 JT T(x)= T (X), T (x) 

Figure 2.5 External Loads For Plate/Plane Elastic Solid 
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The variational equation of the plate/plane elastic solid component is 
[2] 

for all Z E Z [2.12] 

where Z C H2(~) x [H1(~)]2 and elements of Z satisfy kinematic boundary 
conditions. For plane leastic solid. kinematic boundary condition is 

[2.13] 

For plate. the boundary can be clamped. simply supported. or free edge. 
While the calculation may not be as simple as in the case of beam. the 
variational Eq. 2.12 is valid for all boundary conditions considered [2]. 

Note that Eqs. 2.3. 2.8. and 2.12. the variational equations for 
different structural components are all in the same form. 

3. MATERIAL DERIVATIVE FOR SHAPE DESIGN SENSITIVITY ANALYSIS 

The first step in shape design sensitivity analysis is development of 
relationships between a variation in shape of a structural component and 
the resulting variations in functionals that may arise in the shape design 
problems. Si~ce the shape of domain a structural component occupies is 
treated as the design variable. it is convenient to think of ~ as a 
continuous medium and utilize the material derivative idea of continuum 
mechanics. In this section. the definition of material derivative is 
introduced and several material derivative formulas that will be used in 
later sections are derived. 

Consider a domain ~ in one. two. or three dimensions. shown 
schematically in Fig. 3.1. Suppose that only one parameter, defines the 
transformation T. as shown in Fig. 3.1. The 
mapping T : x + x,(x) • x E O. is given by 

x = 
T T(x .')} 

T(o.,) 
[3.1] 
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Figure 3.1 One Parameter Family of Mappings 

The process of deforming ~ to ~ by the mapping of Eq. 3.1 may be 
T 

viewed as a dynamic process of deforming a continuum, with T playing the 
role of time. At the initial time T = 0, the domain is ~. Trajectories of 
points x E ~, beginning at T = 0, can now be followed. The initial point 

moves to x T{x,T). Thinking of T as time, a design velocity can be 
T 

defined as 

dx 
V{x T) == _T = T' dT [3.2 J 

In a neighborhood of T = 0, under reasonable regularity hypotheses 

[2J, 

T{x,T) aT 2 T{x,O) + T aT (x,D) + O{T ) 

Ignoring higher order terms, 

T{x,T) x + TV{X) [3.3J 

where V{x) == V{x,O). In this paper, only the transformation T of Eq. 3.2 
will be considered, the geometry of which is shown in Fig. 3.2. 

Variations of the domain ~ by the design velocity field V{x) are denoted 

as ~ = T{~,T) and the boundary of ~ is denoted as r. Henceforth in the T T T 
paper, the term "design velocity" will be referred to simply as 

"velocity" • 

Let n be a Ck-regular open set; i.e., its boundary r is closed and 

bounded and can be locally represented by a Ck-function. Let V{x) E Rn 

in Eq. 3.2 be a vector defined on a neighborhood U of the closure n of ~ 
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Figure 3.2 Variation of Domain 

and V(x) and its derivatives up to order k > 1 be continuous. With these 
hypotheses, it has been shown [20] that for small T, T(X,T) is a 
homeomorphism (a one-to-one, continuous map with a continuous inverse) 
from U to U = T(U,T) and that T(X,T) and its inverse mapping T-1(x ,T) 

T T 

have Ck-regularity and Q has Ck-regularity. 
T 

Suppose z (x ) is a smooth solution of the elasiticity equations. 
T T 

Then the mapping ZT(X T) = ZT(X + TV(X)) is defined on Q and ZT(X T) depends 
on T in two ways. First, it is the solution of the boundary-value problem 
on Q. Second, it is evaluated at a point x that moves with T. The 

T T 
pointwise material derivative (which is shown to exist in Ref. 2) at 
x E 0 is defined as 

1 im 
T+O 

Z (x + TV(X)) - z(x) 
T 

If ZT has a regular extension to a neighborhood UT of 0T' then 

where 

ZI (x) - 1 im 
T+O 

is the partiai derivative of z. 

[3.4] 

[3.5] 

[3.6] 
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One attractive feature of the partial derivative is that, with 
reasonable smoothness assumptions, it commutes with the derivatives with 

respect to xi [2J; i.e., 

a a' (_z_) , = "x. ( z ), i = 1,2,3 
aX i " , 

[3.7] 

A pair of technical material derivative formulas that are used 
throughout the remainder of the paper are summarized in this section. 
Their proofs are presented in Ref. 2. 

Lemma 3.1: Let ~1 be a domain functional, defined as an integral over 

I I () f (x ) dn 
.. t t t 

[3.8J 
t 

where f is a regular function defined on n. If n has Ck-regularity, 
t t 

then the material derivative of ~1 at n is 

~1 = If n f' (x)dn + If f(x) (VT n) df [3.9J 

or, equivalently, 

~1 = IIn [f'(x) + Vf(x)TV(x) + f(x)div V(x)]dn [3.10J 

It is interest i ng and important to note that only the normal component 
(VTn) of the boundary velocity appearing in Eq. 3.9 is needed to account 

for the effect of domain variation. In fact, it is shown by Theorem 3.5.2 

of Ref. 2 that if a general domain functional ~ has a gradient at nand 
if n has Ck+1-regularity, then only the normal component (VTn) of the 

velocity field on the boundary is needed for derivative calculations. 
In contrast to Eq. 3.9, use of the mathematically equivalent result 

given in Eq. 3.10 requires that the velocity field V(x) be defined 
throughout the domain n. Of course, it must be consistent with 
(VTn) on f. Nevertheless, there are an infinite number of velocity fields 

that satisfy this condition, for each of which the result of Eqs. 3.9 and 
3.10 must be the same. 

Next, consider a functional defined as an integration over f t , 
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Lemma 3.2: Suppose gi in Eq. 3.11 is a regular function defined 
on rio If Q is Ck+1 regular, the material derivative of ~2 is 

[3.11] 

[3.12] 

where H is the curvatue of r in R2 and twice the mean curvature in R3. 

4. ADJOINT VARIABLE FORMULATION OF SHAPE DESIGN SENSITIVITY ANALYSIS 

As seen in Section 3, the static response of a structure depends on 
the shape of the domain. Existence of the material derivative i, which is 
proved in Ref. 2, and material derivative formulas presented in Section 3 
are used in this section to derive an adjoint variable method for design 
sensitivity analysis of several functionals. Since the finite element 
method is used for numerical analysis of the structural systems in this 
paper, only the domain method of shape design sensitivity analysis is 
presented in this section. 

The variational equations of several structural components of Eqs. 
2.3, 2.8, and 2.12 on a deformed domain, is of the form 

= IIn fTz dQ + I 2TTz dr -
"i L L r L L 

L 

[4.1] 

where Z is the space of kinematically admissible displacements on Q and 
L L 

c(·,·) is a bilinear mapping that is defined by the integrand of Eqs. 2.1, 
2.6, and 2.10. 

Taking the material derivative of both sides of Eq. 4.1, using Eqs. 
3.10 and 3.11 and noting that the partial derivatives with respect 
to L and x commute, 

for all ZE Z [4.2] 
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where, using Eq. 3.5, 

[au,~(z,i)]1 II~[c(z,il) + c(zl,i) + Vc(z,z)TV + c(z,z)div V] d~ 

II~[c(z,~ - ViTv) + c(z - vzTV,i) + vc(z,z)TV 

and 

+ c(z,z)div V] dn 

t~,V(i) = lIn [fTi l+ V(fTz)TV + fTzdiv v]dn 

+ I 2 [TTi l+ (V(TTi)Tn + HTTz)(VTn)]dr 
r 

= II~ [fT(i - ViTv) + V(fTi)TV + fTidiv V]dn 

+ I 2 [TT(~ - viTv) + (V(TTi)Tn + HTTz)(VTn)]dr 
r 

[4.3] 

[4.4] 

The fact that the partial derivatives of the coefficients, which depend on 
cross-sectional area and thickness, in the bilinear mapping c(.,.) are 
zero has been used in Eq. 4.3 and fl = TI = 0 has been used in Eq. 4.4. 
For boundary variations, it is supposed that the boundary r = rO u r1 u r2 
is varied, except that the curve ar2 that bounds the loaded surface r2 is 
fixed for three dimensional elastic solid, so the velocity field V at ar2 
is zero. For the case in which ar2 is not fixed, variation of the 
traction term in Eq. 4.1 (given as an integral over r2) gives an 
additional term that was not discussed in lemmas. For this case, the 
interested reader is referred to Ref. 21. For plane elastic solid 
component case, these additional terms will be given in Section 5. 

For z" select l,(X + ,V(x)) = z(x); i.e., choose l as constant on the 
line x, = x + ,V(x). Then, since Hm(~) is preserved by T(x,,) 
(homeomorphism property noted in Section 3), if z is an arbitrary element 
of Hm(~) that satisfies kinematic boundary conditions on r, z is an , 
arbitrary element of Hm(n ) that satisfies kinematic boundary conditions , 
on r," In this case, using Eq. 3.5, 

[4.5] 
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From Eqs. 4.2, 4.3, and 4.4, using Eq. 4.5, 

and 

- II [ -T T -a~,v(z,z) = Q -c(z,Vz V) - c(vz V,z) 

+ vc(z,z)TV + c(z,z)div V]dQ 

t~,V(i) IIQ [iT(VfTV) + fTidiv V]dQ 

+ I 2 [_TT(vzTV) + (V(TTz)Tn + HTTz)(VTn)]dr 
r 

Then, Eq. 4.2 can be rewritten to provide the result 

I I 

a n(i,i) = t v(i) - a v(z,i), u,.. u, u, for all z E Z 

[4.6J 

[4.7] 

[4.8J 

Consider a displacement functional that defines the displacement at .. 
nodal point XE Q 

.. .. .. 
1/11 = z(x) = II o(x-x)z(x)dQ [4.9J 

Q 

.. 
where o(x) is the Dirac delta measure at the origin. Taking the first 
variation of Eq. 4.9, using the material derivative, 

The objective now is to obtain an explicit expression for 1/Ii in terms 
of the velocity field V, which requires eliminating i. An adjoint 
equation is introduced by replacing i E Z in Eq. 4.10 by a virtual 
displacement X E Z and equating terms involving X to the energy bilinear 
form, yielding the adjoint equation for the adjoint variable A, 

for all X E Z 

Denote the solution of Eq. 4.11 as A(1). 
To take advantage of the adjoint equation, evaluate Eq. 4.11 at 

~ = i, since i E Z [2J, to obtain the expression 

[4.11J 
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(1) A A 

au,o(A ,i) = ffo o(x-x)i(x)dO [4.12] 

Similarly, evaluate the identity of Eq. 5.8 at i A(l), since both are in 
Z, to obtain 

a (i A(l)) = 
u,o ' [4.13] 

Recalling that the energy bilinear form a n(·'·) is symmetric in its u, .. 
arguments, the left sides of Eqs. 4.12 and 4.13 are equal, so 

[4.14] 

Using Eqs. 4.14, Eq. 4.10 yields 

[4.15] 

Explicit expressions of the terms in Eq. 4.15, for each structural 
component can be obtained using Eqs. 4.6 and 4.7. These explicit 
expressions will be derived in Section 5. This order of presentation was 
chosen to show basic idea of the adjoint variable method without 
complicate derivation of expressions. 

Note that evaluation of the design sensitivity formula of Eq. 4.15 
requires solution of Eq. 4.1 for z. Similarly, Eq. 4.11 must be solved 
for the adjoint variable A(l). This is an efficient calculation, using 
finite element analysis, if the boundary-value problem for z has already 
been solved, requiring only evaluation of the solution of the same set of 
finite element equations with different right side, called an adjoint 
load. 

Next, consider a locally averaged stress functional over a test 
volume 0p of the three dimensional elastic solid, 

JJ fog (a(z) )dO 

~2 fffo g(a(z)) mp dO = J10 do 
p 

[4.16] 

where a denotes the stress tensor, 0p is an open set, and mp is a 
characteristic function that is constant on 0p' zero outside of 0p' and 
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whose integral is 1. Here, 9 is assumed to be continuously differentiable 
with respect to its arguments. Note that g(a(z)) might involve principal 
stresses, von Mises failure criterion, or some other material failure 
criteria. Taking the first variation of Eq. 4.16, using Eq. 3.10 [10], 

W2 = [fff~ (gl + vgTv + 9 div V)d~fff~ d~ 
p p 

- fff~ 9 d~fff~ div Vd~]/(Jff~ d~)2 
p p P 

= fffo. I 9 .. (z)[aij(i) - aij(vzTV)]m d~ 
i ,j=1 a1J p 

3 3 . . k 
+ fff~ L [ L 9 i .(z)a~J(z)V ]m d~ + fffo. 9 div Vmpdo. 

k=li,j=la J p 

[4.17] 

It can be shown that 

[4.18] 

and 

[4.19] 

Using these results, Eq. 4.17 becomes 

[4.20] 

As in the displacement functional case, an adjoint equation is 
introduced by replacing z e z in the term on the right of Eq. 4.20 by a 

virtual displacement le Z and equate the result to the energy bilinear 
form, 
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3 .. 
a r/A,X) = JJ [ I 9 .. (z)alJ(i)]m dg, for all i E Z [4.21J 

u, g i ,j=l alJ p 

Denote the solution of Eq. 4.21 as A(2). By the same method used for the 

displacement functional, the sensitivity formula is obtained as 

,I, ' = £' ( A ( 2)) _ a' (z A ( 2 ) ) 
~2 u,V 'u,V' 

3 3 ··k kT 
- JJ I I [ I 9 .. (z)C1J £(I7Z V £)]m dg 

g i ,j=l k ,£=1 alJ p 

+ fff 9 div Vm dg - fff gm dg Iff m div Vdg 
g P g P g P 

[4.22J 

where explicit expressions of the first two terms in Eq. 4.22 for the 

three dimensional elastic solid can be obtained using Eq. 2.6, 2.7, 4.6, 
and 4.7. These explicit expressions will be derived in Section 5. Note 

that these terms have the same form as those of Eq. 4.15 for the three 
dimensional elastic solid. The difference is that terms in Eq. 4.15 are 
evaluated at A(l) and terms in Eq. 4.22 are evaluated at A(2). That is, 

once the expressions for terms in Eq. 4.15 are derived, they can be used 

for different functionals. 
Finally consider a locally averaged stress functional over a test 

area g in a plate/plane elastic solid component, 
p 

1jJ3 = JJ [gl(t,w .. ) + g2(a(v))]m dg 
g lJ P 

[4.23J 

where gl(t,Wij) and g2(a(v)) are principal stress, von Mises yield stress, 

or some other stress measures due to lateral displacement wand in-plane 

displacement field v, respectively. Here, gl(t,Wij) is measured at the 

extreme fiber and mp is a characteristic function on that is constant 
on g , zero outside g , and whose integral is 1. Taking the first p p 
variation of Eq. 4.23, using Eq. 3.10, 

2 1. T 
1jJ3' = JJ I 9 [w .. - (vw V) .. ] mpdg 

g i ,j=l wij lJ lJ 
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[4.24] 

Define an adjoint equation by replacing wand v in Eq. 4.24 by virtual 
displacements n and~, respectively, and equate terms involving n and ~ in 
Eq. 4.24 to the energy bilinear form, 

2 1 - ] a ~/).;I) = Jf[ L g T) .. m dn 
u , n i ,j = 1 wi j 1 J P 

2 2 .. 
+ JJ[ ~ g " crlJ(~)]m dn, for all ~E Z [4.25] 

n i ,j=l cr1J p 

where). = [T),~1 ,~2]T is an adjoint variable. Denote the solution of Eq. 
4.25 as ).(3). By the same method used for the displacement functional, 

the sensitivity formula is obtained as 

2 
w' = t' ().(3)) - au',v(z,).(3)) - II [ L gl (vwTV)]m dn 
3 u,V n i,j=l wij p 

[4.26] 

where explicit expressions of the first two terms in Eq. 4.26 for the 
plate/plane elastic solid component can be obtained using Eqs. 2.10, 2.11, 
4.6 and 4.7. These explicit expressions will be derived in Section 5. As 
in the displacement functional case, evaluation of the design sensitivity 
formula of Eq. 4.26 requires solutions z and ).(3) of Eqs. 4.1 and 4.25. 
Design sensitivity information for locally averaged stress functional over 
a test length np in a beam/truss component can be derived using the same 

procedure. 
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5. SHAPE DESIGN SENSITIVITY ANALYSIS OF STRUCTURAL COMPONENTS 

In this section, explicit expressions for terms in Eqs. 4.6 and 4.7 
are derived for each structural components by identifying bilinear 
mapping c(·,·) and loading terms. The result is standard expressions that 
can be used for design sensitivity analysis of different functionals. 
These results can also be used for design sensitivity analysis of built-up 
structures which will be shown in Section 9. 

A. BEAM/TRUSS 

Using energy bilinear and load linear forms of Eqs. 2.1 and 2.2 for 
beam/truss component, Eqs. 4.6 and 4.7 become 

R. 
+ f (-GJ6 e V + GJ 8 e V) dx o x x x x x x 

R. 

+ 6 (-hEvxvxV x + hxEVxvxV) dx [5.1J 

and 

R.~ V (z) , 
R. 1-1 1-1 R. 2-2 2 2 = f (q w V + q w V ) dx + f (q w V + q W Vx) dx o x x 0 x 
R. R. 

+ f (r ev + reV ) dx + f (f vV + fvV x) dx o x x 0 x 
[5.2J 

B. THREE DIMENSIONAL ELASTIC SOLID 

Using energy bilinear and load linear forms of Eqs. 2.6 and 2.7 for 

three dimensional elastic solid, Eqs. 4.6 and 4.7 become 
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a' v(z,i) = - JIIn I [aij(z)eij(vzTV) + aij(z)eij(vzTV)]dg 
u, i,j=1 

+ IJIgv[ I aij(z)eij(z)]TVdg + IJIg[ I aij(z)eij(Z)]div Vdg 
i ,j=1 i ,j=1 

and 
[5.3] 

3 . . T 3 .. 
R.~ v(i) = IIIn ): Zl( Vf1 V)dg + IJIg[): f1Z1] div Vdg 
'1=1 1=1 

+ II 2 {- I Ti(ViiTV) + (v[ I Tiii]Tn + H[ I Tiii])(VTn)}dr 
r i=1 i=1 i=1 

[5.4] 

It can be verified that 

3 .. " T 3.. ·T ·T 
L a1J (z)e1J (vz V) = L a1J(z)(Vz~ V + vz1 V.) 

i,j=1 i,j=1 J J 
[5.5] 

and 

v[ f aij(z)eij(z)]TV =! [aij(z)(Vz~TV) + aij(z)(Vz~TV)] [5.6] 
i ,j = 1 i ,j = 1 J J 

1 2 3 T where Vj = [Vj,Vj,Vj ]. Using the above results, Eqs. 5.3 becomes 

3 . . . T •. . T 
a' v(z,i) = - IJIg L [a1J (z)(Vz1 V.) + a1J (z)(Vz1 V.)]dn 
u, i ,j =1 J J 

[5.7] 

C. PLATE/PLANE ELASTIC SOLID 

As in the beam/truss and three dimensional elastic solid components, 
explicit expressions for terms in Eqs. 4.6 and 4.7 can be obtained using 
energy bilinear and load linear forms of Eqs. 2.10 and 2.11 for 
plate/plane elastic solid component. For plane elastic solid component, 
Eqs. 5.7 and 5.4 remain valid, with limits of summation running from 1 to 
2 and an appropriate modification of the generalized Hooke's Law of Eq. 
2.5. Equations 4.6 and 4.7 become, for plate/plane elastic solid 
component, 
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2 
- oij(V)e:ijCV)divV] + L 

i ,j =1 

2 . . T .. 
+ If L [Vl (V'fl V) + f1-V1 div V]d~ 

~ i=1 

+ f i {_Ti (V'-Vi \) + [V'(Ti-Vi )\ + HTi-Vi ](VTn)}dT 
r i =1 
2 .. . . 

+ L [T l-V1 V I - T l-V1 V I ] 
i=1 T P2 T PI 

[5.8J 

[5.9 J 

In Eq. 5.9, H is the curvature of the loaded boundary r2 and the last two 
terms on the right account for corner effects due to movement of points PI 
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and P2 in Fig. 2.5 [21J. In these two terms, the notation IPi indicates 
that the terms are evaluated at point Pi and VT is the component of 
velocity V tangent to r, which is positive if it is in a counter-clockwise 
direction in Fig. 2.5. 

Results given in Eqs. 5.1, 5.2, 5.4, and 5.7 - 5.9 can be used in Eqs. 
4.15, 4.22, and 4.26 for each structural component and each functional. 
This allows one to develop a modular computer program that will carry out 

numerical integrations of terms in Eqs. 5.1, 5.2, 5.4, and 5.7 - 5.9 using 
the same shape functions that are employed in finite element analysis 
codes. The result will then be a general algorithm and numerical method 
for design sensitivity analysis that can be implemented with existing 
finite element codes which will be discussed in Section 6. 

6. IMPLEMENTATION OF DESIGN SENSITIVITY ANALYSIS WITH 
EXISTING FINITE ELEMENT CODES 

To obtain design sensitivity information, Eqs. 4.1 and 4.11 must be 
solved for displacement functionals and Eqs. 4.1, 4.21 and 4.25 must be 
solved for stress functionals. Once the original and adjoint structures 

are solved, one can integrate Eqs. 4.15, 4.22, and 4.26 numerically to 
obtain the desired sensitivity information. The finite element method can 

be viewed as an application of the Galerkin method to Eqs. 4.1, 4.11, 
4.21, and 4.25 for an approximate solution of the boundary-value 
problem. Note that the energy bilinear forms for Eqs. 4.1, 4.11, 4.21, 
and 4.25 are same. Hence, the adjoint structures of Eqs. 4.11, 4.21, and 

4.25 are the same as that of Eq." 4.1, with different adjoint loads. The 
A 

adjoint load of Eq. 4.11, is a simple unit load at the point x in the 
A 

positive direction of z(x). To calculate the adjoint load using the load 
functional on the right side of Eqs. 4.21 and 4.25, one should use the 

same shape functions that are used in the finite element code. Since mp 
is a characteristic function defined on finite element n , numerical p 
integration of the load functional is done on n only and the adjoint p 
equivalent nodal force acts only on the nodal points of n • p 

For numerical implementation with existing finite element codes, one 
can proceed as in the flow chart of Fig. 6.1. In the beginning, the model 
is defined by identifying the finite element model, original structural 
load, design variables, and constraint functionals. In the next step, an 
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existing finite element code is called to obtain structural response. 
With the structural response obtained, one calculates an adjoint load, 
external to the finite element code, using the shape functions of the 
code. The adjoint load is then input to the finite element code, to 
obtain an adjoint response for each constraint functional. For adjoint 
analysis, one can use the multi loading (restart) option of the finite 
element code, so that only forward and backward substitutions are 
performed to obtain each adjoint response. Using the original and adjoint 
structural responses, design sensitivity information is calculated for 
each constraint functional, by carrying out only numerical integration. 
This procedure allows one to carry out calculations outside finite element 
codes, using postprocessing data only. That is, the design sensitivity 
software does not have to be imbedded into finite element codes. 
Moreover, the method does not require differentiation of stiffness and 
mass matrices and the uncertainty of numerical accuracy associated with 
selection of a finite difference perturbation can be eliminated. 

7. NUMERICAL EXAMPLES 

Substantial numerical experimentation has been carried out using the 
material derivative shape design sensitivity analysis formulation, with 
the boundary method. Good results have been reported [2,23] for a variety 
of single structural components. These studies have shown that great care 
must be taken in projecting stress information to the boundary to achieve 
acceptable design sensitivity accuracy. Higher order elements and 
extrapolation from Gauss points have been shown to be essential in 
achieving acceptable accuracy. Substantially inaccurate results have been 
observed when low order elements are used and elementary boundary 
projection approaches are employed. 

Numerical experimentation with the domain method [15,16,18,22] has 
indicated consistently good results for structural components, without the 
requirement for sophisticated elements, clever boundary projection 
methods, or drastically refined grids. In order to be more quantitative, 
two examples are discussed to permit numerical comparison. 

Consider a plane elastic solid that is composed of two materials of 
substantially different modulus of elasticity (E2/E1 = 7.65) and subjected 
to simple tension, as shown in Fig. 7.1. The finite element configuration, 
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dimensions, material properties of each body, and loading conditions are 
shown in Fig. 7.1. Body i occupies domain \1i, i=1,2, AB is the interface 
boundary y, and rO and r2 are the clamped and loaded boundaries, 

respectively. The design variable b controls the position of the inter

face boundary y, while the overall dimensions of the structure are fixed. 
The expression for design sensitivity of the von Mises yield stress 

functional associated with interface boundary movement with the domain 

method is obtained by simply adding results of Eq. 4.26 for both segments 

of the structure. For the plane stress interface problem, terms in Eq. 
4.26 due to plate bending must be dropped. For the boundary method, 

design sensitivity computations are carried out in Ref. 10 (Eq. 42) that 

is analytically equivalent to the result of the domain method. 

For numerical computation, the finite element method is used to 

approximate the state and adjoint equations of Eqs. 4.1 and 4.25, 

respectively. In order to compute the design sensitivity expressions of 
Eq. 4.26 one must define a design velocity field V that satisfies 

regularity properties defined in Refs. 2 and 9, in terms of variations in 

the design variable b. To have a continuous design velocity field, one 

may define 
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[7.1] 

[7.2] 

The finite element model shown in Fig. 7.1 contains 32 elements, 121 
nodal points, and 224 degrees-of-freedom. The 8-noded isoparametric 
element is employed for design sensitivity analysis. For the boundary 
method, stresses and strains are obtained at Gauss points and extrapolated 
to the boundary to obtain accurate results on the boundary [23]. Define 
wI and w2 as the functional values for the initial design b and modified 
design b + ob, respectively. Let aw = w2 - wI and let Wi be the predicted 
difference from sensitivity analysis. The ratio wljaw times 100 is used 
as a measure of accuracy; i.e., 100% means that the predicted change is 
exactly the same as the actual change. Notice that this accuracy measure 
will not give meaningful information when aw is very small compared 
to wI, because the difference aw may lose precision due to the 
subtraction w2 _ wI. 

Numerical results with a 3% design change; i.e., ob = 0.03b, are shown 
in Table 7.1 for the boundary method and in Table 7.2 for the domain 
method. Due to symmetry, sensitivity results for only the lower half of 
the structure are given. These results indicate that the domain method 
gives excellent results, whereas accuracy of the boundary method is not 
acceptable. For elements 22 and 29, the predicted values are less 
accurate than others. However, the magnitude of actual differences aw for 
those elements are smaller than others, so aw may lose precision. 

A disadvantage of the domain method is that a velocity field must be 
defined in the domain and satisfy regularity properties. There is no 
unique way of defining domain velocity fields for a given normal velocity 
field (VTn) on the boundary. Also, numerical evaluation of the 
sensitivity result of Eq. 4.26 is more complicated than evaluation of Eq. 
42 of Ref. 10, since Eq. 4.26 requires integration over the entire domain, 
whereas Eq. 42 of Ref. 10 requires integration over only the variable 
boundary. This problem can be alleviated by introducing a boundary layer 
[16] of finite elements that vary during the perturbation of the shape of 
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Table 7.1. Boundary Method for Interface Problem 

El. 
1/1 1 1/12 lI1/I 1/1' (1/1' / lI1/Ixl00)% No. 

1 393.01304 393.17922 0.16618 0.20403 122.8 
2 364.37867 364.76664 0.38796 0.67218 173.3 
5 388.07514 388.36215 0.28701 0.56684 197.5 
6 402.26903 402.83406 0.56503 0.42080 74.5 
9 386.43461 386.84976 0.41515 -0.08520 -20.5 

10 407.14612 407.48249 0.33637 0.14159 42.1 
13 388.59634 388.95414 0.35780 -0.53089 -148.4 
14 379.04276 379.25247 0.20971 -1. 90134 -906.6 
17 441.68524 442.25032 0.56507 -13.85905 -2452.6 
18 424.05820 425.22910 1.17089 -13.63066 -1164.1 
21 424.19015 424.70840 0.51825 -0.21408 -41.3 
22 378.85433 378.97497 0.12064 0.76770 636.4 
25 407.71528 408.23368 0.51840 0.49780 96.2 
26 387.87307 387.32342 -0.54962 -0.48837 88.9 
29 400.61014 400.60112 -0.00903 0.01423 -157.7 
30 394.61705 394.00702 -0.61003 -0.57794 94.7 

Table 7.2. Domain Method for Interface Problem 

El • 
1/1 1 1/12 lI1/I 1/1' (1/1' / lI1/Ix100)% No. 

1 393.01304 393.17922 0.16618 0.17954 108.0 
2 364.37867 364.76664 0.38796 0.37840 97.5 
5 388.07514 388.36215 0.28701 0.28671 99.9 
6 402.26903 402.83406 0.56503 0.59634 105.5 
9 386.43461 386.84976 0.41515 0.41515 100.6 

10 407.14612 407.48249 0.33637 0.33637 109.6 
13 388.59634 388.95414 0.35780 0.37548 104.9 
14 379.04276 379.25247 0.20971 0.20159 96.1 
17 441.68524 442.25032 0.56507 0.57069 101.0 
18 424.05820 425.22910 1.17089 1.12871 96.4 
21 424.19015 424.70840 0.51825 0.53919 104.0 
22 378.85433 378.97497 0.12064 0.06396 53.0 
25 407.71528 408.23368 0.51840 0.51710 99.7 
26 387.87307 387.32342 -0.54962 -0.56083 102.0 
29 400.61014 400.60112 -0.00903 -0.00298 33.0 
30 394.61705 394.00702 -0.61003 -0.58529 95.9 

a structural component. This approach is illustrated schematically in 
Fig. 7.2. The domain Q is divided into subdomains Q1 and Q2' with inner 
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outer boundin surface r 

inner boundin surface y 

Figure 7.2 Boundary Layer 

core n1 held fixed and only boundary layer n2 modified. In this way, the 
velocity field need be defined only on n2• The thickness of the boundary 
layer n2 will depend on trade-offs between numerical accuracy and 
numerical efficiency. In practice, n1 can be a substructure of the finite 

element model. 
To demonstrate feasibility of the boundary layer approach, two 

examples are solved by the boundary layer approach. The first example is 
the plane stress interface problem discussed in this section. For a body 
of given geometry there is a large number of possible boundary-layers, 
some of which are better than others, from the viewpoint of accuracy and 
efficiency. It is difficult to estimate the size and location of the best 
boundary-layers in advance. They can be determined by analyzing the 
structure and measuring the strain energy density [24J. 

The boundary-layer is chosen to include elements 13 thru 20 in Fig. 
7.1. The design variable b for this case is distance between node 51 and 
node 65 in Fig. 7.1. Consequently, regions outside the boundary-layer 
remain unchanged. Numerical results with a 3% design change are shown in 
Table 7.3 for the boundary-layer approach. Due to symmetry, the shape 
design sensitivity analysis results of the lower half of the structure are 
shown. Shape design sensitivity analysis results obtained with the 
boundary-layer approach are excellent, as shown in Table 7.3. 
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Table 7.3. Boundary Layer Approach for Interface Problem 
(E2/E1 = 7.65) 

El. 1jI1 1jI2 il1jl 1jI' (1jI' / il1jlx100)% 
No. 

1 393.01304 393.07967 0.06663 0.06770 101.6 
2 364.37867 364.29542 -0.08325 -0.08412 101.0 
5 388.07514 388.20344 0.12830 0.12916 100.7 
6 402.26903 402.19633 0.07270 -0.07126 98.0 
9 386.43461 386.47687 0.04227 0.04103 97.1 

10 407.14612 407.46571 0.31960 0.32954 103.1 
13 388.59634 388.70300 0.10666 0.10834 101.6 
14 379.04276 379.52487 0.48210 0.48590 100.8 
17 441.68524 442.17008 0.48484 0.47615 98.2 
18 424.05820 425.31717 1.25897 1.23636 98.2 
21 424.19015 424.44270 0.25254 0.25680 101.7 
22 378.85433 378.99459 0.14025 0.11902 84.9 
25 407.71528 407.99105 0.27577 0.27248 98.8 
26 387.87304 387.59778 -0.27526 -0.27540 100.0 
29 400.61014 400.62571 0.01557 0.01543 99.1 
30 394.61705 394.45461 -0.16244 -0.16104 99.1 

Next, to test validity of the boundary-layer approach, Young's modulus 
is changed to El = 0.2 MPa and E2 = 100 MPa for Ql and Q2, respectively. 

In other words, the ratio between E2 and El is raised to 500, from 7.65, 

to check a more severe condition. Design sensitivity results are given in 

Table 7.4. Accuracy of design sensitivity is excellent. For elements 9 

and 22, the magnitude of actual change are small, so finite differences 

may not be accurate. Numerical r.esults obtained with the boundary method 
given in Ref. 16, indicates that worse results arise if the ratio E2/El is 

increased. 

Results for the plane stress interface problem clearly indicate that 

the boundary approach may have considerable difficulty in handling 
problems with singular characteristics. Accuracy of the boundary approach 

rapidly deteriorates in the vicinity of a singularity. On the other hand, 
the boundary-layer approach can give good sensitivity results throughout 

the domain. Also, in this interface problem, 56% of cpu time is saved by 

using the boundary-layer approach instead of the domain approach, without 

sacrificing accuracy of design sensitivity. 

Next, the classical fillet shown in Fig. 7.3 is used to study accuracy 

of the boundary layer approach. The design for this problem is the shape 
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Table 7.4. Boundary Layer Approach for Interface Problem 
(E 2/E 1 = 500) 

El. 1jJ1 1jJ2 1I1jJ 1jJ' (1jJ' / 1I1jJx100)% 
No. 

1 392.30557 392.39359 0.08802 0.08926 101.4 
2 365.24352 365.14384 -0.09967 -0.10047 100.8 
5 386.63113 386.77199 0.14086 0.14138 100.4 
6 402.93637 402.89886 -0.03752 -0.03477 92.7 
9 386.58037 386.56330 -0.01706 -0.02016 118.2 

10 403.05338 403.58214 0.52876 0.54150 102.4 
13 392.16507 392.15462 -0.01046 -0.01033 98.8 
14 365.55409 366.17638 0.62229 0.62552 100.5 
17 477.04122 478.18542 1.14420 1.11943 97.8 
18 440.11698 442.56025 2.44327 2.39258 97.9 
21 442.63898 443.09215 0.45317 0.46452 102.5 
22 362.56664 362.67559 0.10895 0.07117 65.3 
25 412.83466 413.32142 0.48676 0.48000 98.6 
26 379.90505 379.41355 -0.49149 -0.49033 99.8 
29 401.08818 401.11877 0.03059 0.03031 99.1 
30 391.19616 390.92213 -0.27403 -0.27158 99.1 

A(9,9} 

B( 16.5,4.5) {20,4.5} 
n 

100 Ib/ in 

( 2O,0) 

Figure 7.3 Fillet 

of the varying boundary r1 between points A and B, without moving these 
two points. B-spline representation is used for the varying boundary r1• 
Due to symmetry, only the upper half of a fillet is analyzed. Dimensions 
of the structure and applied loads are given in Fig. 7.3. For material 
property, Young's modulus and Poisson's ratio are 3.0 x 107 psi and v = 
0.293, respectively. The segment r3 is the center-line of the fillet 
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and f2 is the uniformly loaded edge. Sensitivity of von Mises stress 
averaged over individual finite elements is employed to test accuracy of 
the boundary-layer approach. The expression for design sensitivity is 
obtained from Eq. 4.26 with nonzero velocity field on the boundary layer. 

The boundary-layer (27% of the total area) shown in Fig. 7.4 is chosen 
after analyzing the structure and measuring the strain energy density. In 
Fig. 7.5, a finite element model with optimized boundary profile fl and 

319 elements and 1994 active degrees-of-freedom is shown. The element 
type used is an 8-node isoparametric element. 

Figure 7.4 Boundary-Layer of Fillet 

A 

I I I " 
I I I l\ 

I I I 
I I J J i\ 
I I I J t B 
I I I I r 

1 I 1 j j 
r.,.... 

t-- ,...,t- t ~ r;:,..., 
N S r-~ ~ ~ ~ 

Figure 7.5 Finite Element Mesh of Fillet 

In Table 7.5, shape design sensitivity results for a fillet with 
optimized boundary profile f1 (see Fig. 7.5) are given, obtained with 0.1% 

design perturbation. From Table 7.5, it can be seen that this approach 

can yield excellent shape design sensitivity results. 
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Table 7.5. Boundary Layer Approach for Fi 11 et 

El. lji1 lji2 l>lji lji' (lji' / l>ljix100)% 
No. 

3 306.91341 307.18632 0.27291 0.27802 101.9 
13 326.43889 326.65762 0.21873 0.22298 101.9 
23 386.17664 386.33965 0.16301 0.16693 102.4 
33 471.26543 471.38415 0.11872 0.12219 102.9 
43 570.91518 570.95727 0.04209 0.04294 102.0 
53 669.26309 669.16035 -0.10274 -0.10693 104.1 
63 736.39264 736.12922 -0.26341 -0.27187 103.2 
73 682.49507 682.26122 -0.23385 -0.23826 101.9 
83 761.77304 761.44391 -0.32913 -0.33921 103.1 
93 911.47561 911.14248 -0.33314 -0.33869 101.7 

103 764.32105 764.00138 -0.31967 -0.32424 101.4 
113 884.95173 884.66270 -0.28902 -0.28788 99.6 
123 768.06301 767.74016 -0.32285 -0.32715 101.3 
133 857.37113 857.10506 -0.26607 -0.26249 98.7 
143 999.87828 999.87875 0.00047 0.00045 95.4 
153 1009.58379 1009.52243 -0.06137 -0.05071 82.6 
163 1000.99060 1000.92960 -0.06100 -0.05863 96.1 
173 999.42406 999.33430 -0.08976 -0.08873 98.8 
183 1001.15587 1001.04706 -0.10881 -0.10766 98.9 
193 958.70044 958.26124 -0.43919 -0.44416 101.1 
203 980.40747 980.03216 -0.37531 -0.37607 100.2 
213 993.57091 993.33304 -0.23787 -0.23708 99.7 
223 1000.47920 1000.29798 -0.18122 -0.17969 99.2 
233 762.37599 762.01522 -0.36076 -0.40403 112.0 
243 778.19389 777.74914 -0.44475 -0.45837 103.1 
253 881.29226 880.57387 -0.71838 -0.69488 96.7 
263 1220.22663 1219.47520 -0.75143 -0.72158 96.0 
273 835.72273 835.22544 -0.49729 -0.48555 97.6 
283 922.89834 922.29381 -0.60453 -0.58846 97.3 
293 1033.88104 1033.07352 -0.80752 -0.77133 95.5 
303 1093.40867 1090.74702 -2.66165 -2.67483 100.5 
313 936.38542 936.01573 -0.36969 -0.37920 102.6 

8. AUTOMATIC REGRIDDING FOR SHAPE DESIGN 

For numerical implementation of shape design sensitivity analysis, one 

must parameterize the boundary r of the domain Q. For this purpose, one 

may use Bezier curves or surfaces [25J. The next step is to develop a 

general method of defining and computing a velocity field in the domain, 

in terms of the perturbation of the boundary r. Moreover, the velocity 

field must satisfy certain regularity conditions. It is shown in Refs. 2 

and 9 that C1-regular and C2-regular velocity fields are sufficient for 
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shape design sensitivity analysis of truss and elastic solid problems and 
beam and plate problems, respectively. However, observing Eqs. 5.1, 5.2, 
5.4, and 5.7 - 5.9, one may relax these regularity conditions. That is, 
for truss and elastic solid problems, the highest order derivative of the 
velocity field that appears in Eqs. 5.1, 5.2, 5.4, and 5.7 - 5.9 is one. 
Thus, one may use a CD-regular velocity field with an integrable first 
derivative. Similarly, one may use a C1-regular velocity field with an 
integrable second derivative for beam and plate problems. Therefore, 
regularity of the velocity field must be at least at the level of 
regularity of the displacement field of the structural component 
considered. This suggests use of displacement shape functions to 
systematically define the velocity field in the domain. Moreover, one 
can select a velocity field that obeys the governing equation of the 
structure. That is, the perturbation of the boundary can be considered as 
a displacement at the boundary. With no additional external forces and a 
given displacement at the boundary, one can use the finite element code to 
find the displacement (domain velocity) field that satisfies the required 
regularity conditions. Thus 

[K]{V} = {f} [8.1] 

where [K] is the reduced stiffness matrix, {V} is the velocity vector of 
the nodes of varying domain, and if} is the unknown ficticious boundary 
force that produces a perturbation of the boundary. In segmented form, 
Eq. 8.1 becomes 

[8.2] 

where {Vb} is the given perturbation of nodes on the boundary, {Vd} is the 
node velocity vector in the interior of the domain and {fb} is the 
ficticious boundary force acting on the varying boundary. Equation for 
the unknown interior node velocity vector can be obtained from Eq. 8.2 as 

[8.3] 
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If Bezier curves or surfaces [17] are used for boundary representa

tion, positions of control points are selected as design parameter bi' i 
1,2, ••• ,k. To use Eqs. 4.15, 4.22, and 4.26 for sensitivity computation, 
interior node vel city vector {Vd} should be expressed in terms of 

variations of design parameter obi' i = 1,2, ••• ,k. To obtain this 
expression, boundary perturbation {Vb} should be written in terms of 
variation ob of the design parameter. Once the inverse matrix [Kdd ]-l is 

obtained, Eq. 8.3 can be used to express {Vd} in terms of the variation 
ob of design parameter. However, this requires large computational 
effort. To gain computational efficiency, following method is used: 
first by pertubing a design parameter bi a unit magnitude, boundary 
perturbation {Vb} can be obtained. Then Eq. 8.3 can be solved to 
obtain {Vd}. Using {Vd} and displacement shape functions, Eqs. 4.15, 

4.22, or 4.26 can be evaluated which gives ~~.. This method requires to 
solve Eq. 8.3 k times. However, much as in t~e adjoint analysis, this is 
an efficient calculation, if Eq. 8.3 has already been solved, requiring 
only evaluation of the solution of the same set of finite element 

equations with different right side for each unit perturbation of bi , i 
1,2, ••• ,k. Once design change has been determined using iterative design 
process, regridding of interior grid points can be carried out using {Vd} 

of Eq. 8.3. 
The automatic regridding method presented here can be used with the 

boundary-layer approach very effectively. That is, for the fixed domain 
n1, Vd can be set equal to zero and thus reduce the dimension of [Kdd ] in 

Eq. 8.3. 
To demonstrate feasibility of the method, an engine bearing cap shown 

in Fig. 8.1 is treated. The engine bearing cap is modeled as a three 
dimensional elastic solid. Due to symmetry, only the right half of the 

cap is analyzed. The finite element configuration and loading conditions 
are shown in Fig. 8.1. The material used is steel with Young's modulus 

and Poisson's ratio of E = 1.0 x 107 psi and v = 0.3, respectively. The 
finite element model shown in Fig. 8.1 contains 82 elements, 768 nodal 

points, and 2111 degrees-of-freedom. For analysis, ANSYS finite element 
STIF95 [26], which is a 20-noded isoparametric element, is used. 

The design variables for this problem are the shape of the varying 
surface f 1, distance C5 of clamping bolt center line AB, and distance C6 
of edge from cap centerline (Fig. 8.2). For surface f 1, a Bezier surface 
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CLAMPING BOLT FORCE = 14,775 lb. 

OIL FILM PRESSURE = 5000 psi 

Figure 8.1 Engine Bearing Cap 
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Figure 8.2 Shape Design Parameters of Engine Bearing Cap 

with 4 x 4 control points is used. For simplicity, only x2-coordinates of 
four control points Cl thru C4 are allowed to be varying. That is, 
surface [1 has curvature in the xl-direction only. 

The expression for design sensitivity of von Mises stress averaged 
over individual finite element is obtained from Eq. 4.22. Numerical 
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computation of design sensitivity information has been carried out using 

ANSYS finite element code [26] and the computational procedure of Section 

6. For computation of domain velocity vector, Eq. 8.2 is solved using 

ANSYS finite element code. 
Numerical results with a 1% design change are shown in Table 8.1 for 

randomly selected finite elements. Accuracy of design sensitivity is 

excellent except for elements 5, 22, 36, 56, and 57 where the magnitudes 

of actual change are small. 

Table 8.1. Shape Sensitivity of Engine Bearing Cap 

El • 1/1 1 i 61/1 1/1' (1/I'/61/1x100)% 
No. 

1 9829.4564 9727.3229 -102.1335 -109.7298 107.4 
2 9631. 2028 9565.8641 -65.3387 -70.6936 108.2 
4 10620.3320 10648.0140 27.6820 25.7748 93.1 
5 11444.4800 11448.0190 3.5390 0.4482 12.7 
7 13584.5710 13604.0520 19.4810 17.5377 90.0 
8 13641.4950 13674.1020 32.6070 31.2587 95.9 

10 17933.5910 17964.5170 30.9260 29.8750 96.6 
11 18498.6300 18526.7900 28.1600 27.5316 97.8 
13 21202.2630 21222.8600 20.5970 20.559 100.8 
14 34270.5140 34294.7650 24.2510 23.7614 98.0 
16 8367.4820 8152.6800 -214.8020 -230.0584 107.1 
18 9686.1116 9652.6069 -33.5047 -38.2462 114.2 
20 12670.2480 12634.3500 -35.8980 -38.4216 107.0 
22 16248.4050 16256.2990 7.8940 6.3254 80.1 
24 30901.3690 30862.5960 -38.7730 -36.4113 93.9 
26 7311.4083 6999.4094 -311.9989 -321.7022 103.1 
27 6857.7422 6519.3747 -338.3675 -344.1961 101. 7 
29 7917.4211 7774.3107 -143.1104 -148.4639 103.7 
30 7234.2502 7081.2085 -153.0417 -159.7947 104.4 
32 9528.8157 9395.4689 -133.3468 -137.7809 103.3 
33 8521.5076 8387.1466 -134.3610 -141.4600 105.3 
35 13328.4650 13264.9790 -63.4860 -59.4243 93.6 
36 12091.2310 12159.1600 67.9290 87.2240 128.4 
38 24661.4990 23849.7610 -811.7380 -842.1029 103.7 
39 44231.0680 42109.0220 -2122.0460 -2222.5504 104.7 
41 7349.5330 6999.9927 -349.5403 360.6076 103.2 
42 6920.5279 6531.4016 -389.1263 -404.7290 104.0 
44 5998.6512 5844.9335 -153.7177 -165.1199 107.4 
45 5762.5105 5630.1473 -132.3632 -142.4745 107.6 
47 7016.8980 6905.9260 -110.9720 -115.6099 104.2 
48 6822.9614 6736.9477 -86.0137 -90.5011 105.2 
50 9706.9951 9449.8267 -257.1684 -262.1729 102.0 
51' 9639.7495 9411.8005 -227.9490 -228.3732 100.2 
53 13634.1000 12964.2560 -669.8440 -701.6882 104.8 
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Table 8.1 Continued 

54 19874.8650 18390.3600 -1484.5050 -1586.2730 106.9 
56 6080.3933 6078.1016 -2.2917 -3.6525 159.4 
57 6121.4120 6114.6667 -6.7453 -8.1242 120.4 
59 5832.8322 5697.4132 -135.4190 -139.1451 102.8 
60 6266.5615 6098.1882 -168.3733 -172.9635 102.7 
62 7041.7283 6971.4204 -70.3079 -79.6051 113.2 
63 8230.6127 8059.7990 -170.8137 -188.3943 110.3 
65 4816.1908 4793.3159 -22.8749 -24.1961 105.8 
66 4787.5653 4761.5085 -26.0568 -27.6278 106.0 
68 3537.2024 3578.9546 41. 7522 40.3578 96.7 
69 3692.9881 3725.9600 32.9719 31.0383 94.1 
71 6541.8233 6585.9308 44.1075 45.1422 102.4 
72 6643.3182 6680.1317 36.8135 38.0789 103.4 
74 3872.7605 3898.8240 26.0635 25.4267 97.6 
75 3820.6962 3843.9362 23.2400 22.521U 96.9 
77 3918.9608 4017.5877 98.6269 100.0753 101.5 
78 3932.8001 4024.4881 91.6880 92.9458 101.4 
80 6240.3854 6285.3485 44.9631 46.3209 103.0 
81 6158.4620 6202.3951 43.9331 45.2521 103.0 

9. DESIGN COMPONENT METHOD FOR BUILT-UP STRUCTURES 

In this section, design sensitivity analysis method for built-up 

structures is presented. Both shape and conventional (sizing) design 

variables for components of built-up structures are considered. For 

conventional design sensitivity analysis, distributed parameter structural 

design sensitivity analysis theory of Ref. 2 is used. 
Consider a built-up structure that is made up of m ) 1 structural 

components that are interconnected by kinematic constraints at their 

interfaces. Using the principle of virtual work for built-up structures 
[2], one can obtain the variational formulation of the governing 

equations, 

for all z E Z 

where 

m 
a n(z,z) = I a. . (z,z) 
u,.. i=l u' ,n' 

m 
R. n(z) = I 
u,.. i=l 

R.. • (z) , n' 
U ," 

[9.1] 

[9.2] 

[9.3] 
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and Z is the space of kinematically admissible displacements [2]. which is 
defined as the set of displacement fields that satisfy homogeneous 
boundary conditions and kinematic interface conditions between components. 
In Eqs. 9.2 and 9.3. a. .(z.Z) and R, i /z) are energy bilinear and 

u'.n' u .n 
load linear forms of component i with domain ni. Note from Eqs. 9.2 and 
9.3. the energy bilinear and load linear forms of Eq. 9.1 are simply 
summations of corresponding terms from each component. Thus. as will be 
seen later. the design sensitivity analysis of the built-up structure is a 
simple additive process. 

In this section. design sensitivity information for displacement 
functional is derived for general built-up structures. Once this is done. 
extention to locally averaged stress functional can be carried out easily. 

Define i as the total variation of z. due to both conventional and 
shape design changes [2]. 

i = ~ z (x+tV(x). u+tou) I 
at t pO 

= %:r z(x.u+tou) I + ~t Zt(x+tV(x) .u) I 
t=O t=O 

[9.4] 

The first variation of Eq. 9.1 is [2] 

R,~ n(Z} + R,' v(z). for all z E Z 
uu." u. 

[9.5] 

where i = [w1• w2• 6. v]T for beam/truss component. z = [i 1• z2. z3]T for. 
three dimensional elastic solid. and z = [w, V1• v2]T for plate/plane 
elastic solid component. The notation of Eq. 9.5 is chosen to clearly 
display which variables are held fixed and which vary. 

Consider a displacement functional that defines the displacement z at 
... r 

nodal point x E n 
... ... 

w = II o(x-x)z(x) dn 
nr [9.6] 

... 
where o(x) is the Dirac delta measure at the origin. Taking the first 
variation of Eq. 9.6. one obtains [2] 

w' = II 6(X-;)Z(x) dn 
[9.7] 
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. 
Define a variational adjoint equation by replacing z in the term on the 
right of Eq. 9.7 by a virtual displacement ~ and equate the result to the 

energy bilinear form evaluated at the adjoint variable A; i.e., 

A A 

o{x-x F{x) dn, forall~EZ [9.8] 

Denote the solution of Eq. 9.8 as A. Since i satisfies kinematic boundary 

and interface conditions [2], Eq. 9.8 can be evaluated at T = z and Eq. 
9.5 can be evaluated at Z = A, to obtain 

m 
L [t' .. (A) - a' .. (z,A)] 

i=l ou1,nl ou1,nl 
m 

+ L 
i=l 

[t' .. (A) - a' .. (z,A)] 
1 V1 1 V 1 U , U , 

[9.9] 

where the first term on the right is due to conventional design variation 

and the second term is due to shape design variation. Note that Eq. 9.9 

is valid for general built-up structures that are composed of m ) 1 

structural components. For explicit expressions of the second term on the 

right of Eq. 9.9, results of Eqs. 5.1, 5.2, 5.4, and 5.7 - 5.9 can be 
used. For the first term on the right of Eq. 9.9, the interested reader 

is referred to Refs. 2 and 18. 

As seen in this derivation, one can systematically organize design 

sensitivity expressions for built-up structures, using the design 
component method. Moreover, one can develop a modular computer program 

that will carry out numerical integration of terms in Eqs. 5.1, 5.2, 5.4, 

and 5.7 - 5.9, using the same shape functions that are employed by the 

finite element analysis of the original structure. The result will then 

be a general algorithm and numerical method for design sensitivity 

analysis that can be implemented with existing finite element codes as 

shown in Section 6. 
To demonstrate accuracy of the design component method, a truss-beam

plate built-up structure is treated in this section. Consider the truss

beam-plate built-up structure shown in Fig. 9.1. A distributed vertical 

load f{x) is applied to the plates. The points supported by the trusses 

are at the intersections of two crossing beams nearest to the free edges 

of the structure. No external loads are applied to the truss and beam 

components. The plates and beams are assumed to be welded together. 
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Coordinates of intersection points of beams and plates are supposed to be 
in the mid-planes of the plates and neutral axes of the beams. Beam 
components have rectangular cross-sections. 
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Figure 9.1 Truss-Beam-Plate Built-up Structure 
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The design variables for this built-up structure are thickness tij(x) 
of each plate component, width dij(xl~ .and height blJ(xl~ .of each 
longitudinal beam compoenent, width d1J (X2) and height b1J (x2) of each 
transverse beam component, cross-sectional areas hk (k=1,16) of the four 
4-bar truss components, and positions ai (i=1,4) and Bj (j=1,4) of 
transverse and longitudinal beam components, respectively. The lengths of 
the trusses are fixed, but they may change their ground positions, and the 
outside boundary of the entire structure is fixed; i.e., only the 
locations a i and Bj' i,j=1,4, of beams are shape variables. Dimensions of 
the structure and the numbering and spacing of beams in both directions 
are shown in Fig. 9.1. 

For numerical calculations, conventional and shape design sensitivity 
calculations are carried out seperately. For plate components, 12 degree
of-freedom non-conforming rectangular elements [27] are used. For beam 
components, Hermite cubic shape functions are used. The finite element 
model used for design sensitivity analysis is shown in Fig. 9.2. Only one 
quarter of the entire structure is analyzed, due to symmetry. A total of 
484 elements, with 1281 degrees-of-freedom, are used to model the built-up 
structure, including 400 rectangular plate elements, 80 beam elements and 
4 truss elements. 

For numerical data, Young's modulus and Poisson's ratio are 3.0x107 

psi and 0.3, respectively. The overall dimensions are L1 x L2 = 15 in. x 
15 in. At the nominal design, beam components are located 3 in. apart. 
Other dimensions of the built-up structure at the nominal design are; 
uniform thickness t = 0.1 in. for plate components, uniform height h = 0.5 
in. and width d = 0.15 in. for beam components, and length ~ = 5.364 in. 
and cross-sectional area h = 0.1 in. 2 for truss components. A uniform 
distributed load f = 0.1 lb/in. 2 is applied on the plate components. 

In Table 9.1, design sensitivity accuracy results are given for 
several functionals, with 1% uniform change in all conventional design 
variables except the cross-sectional areas of truss components. Design 
sensitivity results for displacements, bending stresses 011 and 022 at the 
extreme fiber of longitudinal and transverse beam components, and von 
Mises yield stress 

112 0222 + 30122 _ 011 022 )1/2 g(o) = (0 + [9.10] 
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Figure 9.2 Finite Element Model of A Truss-Beam-Plate 
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at the extreme fiber of plate components are given in Table 9.1. Results 
given in Table 9.1 show good agreement between predictions ~I and finite 
differences ~~ except for von Mises yield stresses on plate elements 177, 
358, 380 and 400 which are acceptable but not good. However, note that 
these elements have low von Mises yield stress and ~~ is small, compared 
to others, and may not be accurate. 

For shape design sensitivity calculations, since the built-up 
structure is symmetric with respect to the center C, the locations 
a i and Bj' i ,j=1,2, of transverse and longitudinal beams, measured from 
the center C, are taken as design variables. 
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Table 9.1. Conventional Design Sensitivity 
of Truss-Beam-Plate Built-Up Structure 

(a) Displacement 

Node 1/11 i l11/1 1/1 1 (1/1 1 / l11/1x100)% No. 

53 -2.9755E-04 -2.8723E-04 1.0315E-05 9.5761E-06 92.8 
95 -2.5890E-04 -2.4993E-04 8.9703E-06 8.3204E-06 92.8 

113 -2.2837E-04 -2.2048E-04 7.8934E-06 7.3284E-06 92.8 
137 -4.2898E-04 -4.1320E-04 1.5781E-05 1.6171E-05 102.5 
179 -4.0427E-04 -3.8949E-04 1.4788E-05 1.5042E-05 101.7 
221 -3.7551E-04 -3.6186E-04 1.3649E-05 1.3747E-05 100.7 
268 -1.2025E-04 -1.1601E-04 4.2443E-06 4.1932E-06 98.8 
310 1.4419E-05 1.3799E-05 -6.1962E-07 -6.1013E-07 98.5 
335 1.5392E-04 1.4824E-04 -5.6883E-06 -5.3932E-06 94.8 
352 5.5382E-05 5.3329E-05 -2.0534E-06 -1.9995E-06 97.4 

(b) Bending Stress on Beam Element 

El. 1/11 i l11/1 1/1 1 (1/1 1 / l11/1x100)% 
No. 

1 160.415 155.757 -4.658 -5.250 112.7 
4 128.072 124.347 -3.725 -4.271 114.7 

21 365.447 355.610 -9.837 -9.608 97.7 
25 305.855 297.648 -8.207 -8.191 99.8 
30 -69.361 -67.350 2.011 2.233 111.0 
45 106.547 103.409 -3.138 -3.383 107.8 
49 24.570 23.801 -0.769 -0.963 125.2 
54 -74.026 -72.026 2.000 2.141 107.1 
60 -4.789 -4.624 0.165 0.162 98.0 
80 2.141 2.063 -0.079 -0.080 102.1 

(c) von Mises Stress on Plate Element 

El • 1/11 i l11/1 1/1 1 (1/1' / l11/1xl00)% 
No. 

1 49.128 47.808 -1.320 -1.560 118.2 
5 34.279 33.323 -0.956 -1.059 110.8 
9 62.143 60.507 -1.636 -1.695 103.6 

13 77 .076 75.067 -2.009 -1.982 98.6 
17 92.755 90.404 -2.351 -2.157 91.7 
22 44.262 43.040 -1.222 -1.459 119.4 
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Table 9.1{c) Continued 

26 42.663 41.471 -1.192 -1.247 104.6 
30 63.522 61.831 -1.691 -1. 729 102.2 
34 77 .930 75.877 -2.053 -1. 946 94.8 
38 91.868 89.533 -2.335 -2.105 90.1 
44 33.332 32.332 -1.000 -1.189 118.9 
48 52.498 51.074 -1.424 -1.477 103.8 
52 67.527 65.707 -1.820 -1. 761 96.7 
56 79.045 76.974 -2.071 -1.895 91.0 
65 38.362 37.273 -1.090 -1.150 105.5 
69 46.061 44.733 -1.328 -1.297 97.7 
73 70.749 68.874 -1.875 -1. 784 95.2 
77 67.127 65.280 -1.847 -1.609 87.1 
85 38.300 37.201 -1.099 -1.104 100.5 
89 47.855 46.506 -1.348 -1. 288 95.6 
93 67.866 66.083 -1. 783 -1.759 98.7 
97 62.719 61.070 -1.649 -1.602 97.2 

106 43.048 41.825 -1.223 -1.191 97.4 
112 62.228 60.640 -1.588 -1.477 93.0 
118 59.270 57.835 -1.435 -1.385 96.5 
128 55.122 53.691 -1.431 -1.362 95.1 
134 48.012 46.800 -1.211 -1.119 92.4 
140 56.823 55.539 -1.284 -1.214 94.5 
151 53.218 51.887 -1.331 -1.183 88.9 
155 37.003 36.148 -0.855 -0.735 85.9 
159 37.897 37.097 -0.800 -0.691 86.4 
169 52.077 50.777 -1.300 -1.163 89.5 
173 56.294 54.890 -1.404 -1.292 92.0 
177 23.383 22.944 -0.439 -0.276 62.8 
192 61.326 59.720 -1.605 -1.568 97.7 
198 27.041 26.479 -0.562 -0.451 80.3 
212 67.683 65.843 -1.840 -1.854 100.8 
216 53.350 52.077 -1.273 -1.264 99.3 
235 82.704 80.664 -2.041 -2.127 104.2 
239 100.980 98.872 -2.107 -2.104 99.8 
255 79.509 77 .476 -2.033 -1.968 96.8 
259 101.657 99.539 -2.117 -2.040 96.4 
274 67.361 65.559 -1.802 -1.765 98.0 
278 64.853 63.399 -1.454 -1.403 96.5 
288 37.003 36.148 -0.855 -0.735 85.9 
319 27.894 27.305 -0.590 -0.586 99.4 
337 21.848 21.459 -0.389 -0.419 107.6 
358 14.556 14.427 -0.129 -0.190 146.8 
380 12.189 12.077 -0.113 -0.161 142.8 
400 8.471 8.381 -0.090 -0.119 132.8 

As mentioned in Section 8, for shape design sensitivity calculations, 

one must define a velocity field that has C1-regularity with its second 

derivative integrable. The beam components are allowed to move in 

transverse directions only. Hence, VI is a function of Xl only and V2 is 

a function of x2 only. The velocity field in each plate component is 
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represented by Hermite cubic functions in each direction. That is, V1(xl) 
and V2(x2) are represented by Hermite cubic functions. To see the 
velocity field representation graphically, consider Fig. 9.3, in which the 
shape functions for V1(XI) are plotted. In Fig. 9.3, 6~ and 6a2 denote 
perturbations of locations of transverse beams. From Fig. 9.3, one 
obtains V1(x1) = $1(x1) + $2(x 1). That is, 

2 3aI 
- ~ (x - -2-) 6~ , o "' x "' a1 3 a1 

2 3( a2-a1) 
V1(x1) 

2(x-a1) 
[(x-al ) (6~-6~) + 6a1, 3 2 ] a1 ",x",a2 

(~-al ) 

[9.11] 

and a similar expression for V2(x2). 

o 

Figure 9.3 Shape Functions For The Velocity V1(xl) 

In Table 9.2, design sensitivity accuracy results are given for 
several functionals, with a 0.25% uniform change in shape design 
parameters. Sensitivity results for displacements, bending stress for 
beam components, and von Mises yield stress for plate components, are 
given in Table 9.2. Results given in Table 9.2 show excellent agreement 
between predictions ~I and the finite differences ~~. 
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Table 9.2. Shape Design Sensitivity of 
Truss-Beam-Plate Built-Up Structure 

(a) Displacement 

Node 1jJ1 1jJ2 ~1jJ 1jJ1 (1jJ1 /~1jJxl00)% 
No. 

53 -2.9755E-04 -3.0123E-04 -3.6843E-06 -3.6386E-06 98.8 
95 -2.5890E-04 -2.6186E-04 -2.9640E-06 -2.9212E-06 98.6 

113 -2.2837E-04 -2.3080E-04 -2.4214E-06 -2.3798E-06 98.3 
137 -4.2898E-04 -4.3951E-04 -1.0535E-05 -1.0489E-05 99.6 
179 -4.0427E-04 -4.1394E-04 -9.6675E-06 -9.6264E-06 99.6 
221 -3.7551E-04 -3.8411E-04 -8.5986E-06 -8.5631E-06 99.6 
268 -1.2025E-04 -1.2319E-04 -2.9391E-06 -2.9273E-06 99.6 
310 1.4419E-05 1.521OE-05 7.9096E-07 7.9419E-07 100.4 
335 1.5392E-04 1.5978E-04 5.8589E-06 5.8686E-06 100.2 
352 5.5382E-05 5.7951E-05 2.5690E-06 2.5786E-06 100.4 

(b) Bending Stress on Beam Element 

El. 1jJ1 1jJ2 ~1jJ 1jJ1 (1jJI/~1jJx100)% 
No. 

1 160.415 163.634 3.219 3.095 96.2 
4 128.072 131.041 2.968 2.871 96.7 

21 365.447 370.311 4.864 4.586 94.3 
25 305.855 310.385 4.530 4.399 97.1 
30 -69.361 -66.654 2.708 2.820 104.2 
45 106.547 109.385 2.838 2.794 98.4 
49 24.570 26.757 2.187 2.143 98.0 
54 -74.026 -73.243 0.783 0.663 84.7 
60 -4.789 -4.853 -0.064 -0.065 101.8 
80 2.141 2.113 -0.028 -0.026 91.2 

(c) von Mises Stress on Plate Element 

El • 1jJ1 1jJ2 ~1jJ 1jJ1 (1jJ1 / ~1jJx100)% 
No. 

1 49.128 50.043 0.915 0.915 100.1 
5 31.279 34.881 0.602 0.600 99.6 
9 62.143 63.067 0.925 0.924 99.9 

13 77 .076 77 .949 0.873 0.871 99.8 
17 92.755 93.843 1.088 1.090 100.2 
22 44.262 45.153 0.891 0.891 100.0 



www.manaraa.com

486 

Table 9.2{c) Continued 

26 42.663 43.440 0.778 0.776 99.8 
30 63.522 64.437 0.914 0.913 99.8 
34 77 .930 78.891 0.961 0.960 99.9 
38 91.868 93.039 1.171 1.172 100.1 
44 33.332 34.143 0.811 0.810 99.9 
48 52.498 53.329 0.831 0.830 99.9 
52 67.527 68.410 0.883 0.881 99.7 
56 79.045 80.149 1.104 1.104 100.0 
65 38.362 39.116 0.754 0.749 99.4 
69 46.061 46.804 0.743 0.742 99.9 
73 70.749 71.663 0.914 0.911 99.7 
77 67.127 68.334 1.207 1.209 100.1 
85 38.300 39.039 0.740 0.738 99.8 
89 47.855 48.520 0.665 0.663 99.7 
93 67.866 68.758 0.892 0.889 99.6 
97 62.719 64.012 1.293 1.294 100.1 

106 43.048 43.773 0.726 0.725 99.9 
112 62.228 62.978 0.749 0.745 99.3 
118 59.270 60.553 1.283 1.284 100.1 
128 55.122 55.881 0.759 0.756 99.7 
134 48.012 48.846 0.834 0.830 99.4 
140 56.823 58.228 1.405 1.408 100.2 
151 53.218 53.793 0.575 0.569 99.0 
155 37.003 37.871 0.868 0.863 99.4 
159 37.897 39.123 1.226 1.226 100.0 
169 52.077 52.764 0.687 0.683 99.3 
173 56.294 56.509 0.215 0.208 96.7 
177 23.383 24.298 0.915 0.907 99.1 
192 61.326 61.258 -0.068 -0.075 109.9 
198 27.041 27.324 0.283 0.263 93.0 
212 67.683 67.463 -0.220 -0.226 102.7 
216 53.350 53.241 -0.109 -0.118 107.7 
235 82.704 82.424 -0.280 -0.285 101.6 
239 100.980 101.057 0.077 0.075 97.5 
255 79.509 79.143 -0.366 -0.369 100.9 
259 101.657 101.295 -0.362 -0.364 100.6 
274 67.361 66.997 -0.364 -0.368 101.2 
278 64.853 64.565 -0.288 -0.290 100.7 
288 37.003 37.871 0.868 0.863 99.4 
319 27.894 27.717 -0.177 -0.182 102.5 
337 21.848 21.623 -0.225 -0.230 102.2 
358 14.556 14.247 -0.309 -0.313 101.2 
380 12.189 11.934 -0.255 -0.255 100.1 
400 8.471 8.315 -0.156 -0.154 99.1 

10. AN OPTIMIZATION PROBLEM 

To demonstrate application of the design sensitivity analysis method 

for built-up structures in structural design optimization, the truss-beam-
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plate built-up structure of Section 9 is optimized using a sparse matrix 

symbolic factorization technique for iterative structural optimization 
[28] and Pshenichny's linearization method [29]. 

For numerical design sensitivity analysis and optimization, design 
variables are discretized. That is, each plate element has constant 

thickness and each beam element has constant width and height. Since the 

built-up structure is symmetric with respect to the center C, thickness 

ti' i = 1,210, width di and height bi , i = 1, 40, and the locations ai' 
= 1, 2 of transverse and longitudinal beams, measured from the center C, 
are taken as design parameters. Thus, the total number of design 

parameters is 292. 

The optimal design problem of the built-up structure is to minimize 

weight of the structure, subject to the following constraints: 

Displacement at C; ~1 = z(C) ~ 0.105 in. 

Plate element von Mises stress; ~i ~ 17500 psi, i = 2,211 

Beam element bending stress; -70000 psi ~ ~ ~ 70000 psi, 
Plate thickness; 0.05 in. ~ ti ~ 0.25 in., i = 1,210 

Beam width; 0.075 in. ~ d. ~ 0.30 in., 1, 40 
1 

Beam height; 0.25 in. ~ bi ' ~.OO in., 1, 40 

Beam position; 0 ~ a1 < a2 '-i 
Thus, the total number of inequality constraints is 543. 

212,251 

Same numerical data as in Section 9 is used except weight density is 

0.1 lb/in. 3 and uniformly distributed load f = 17.5 lb/in. 2 is applied to 
the plate components. 

For numerical computation of the shape design sensitivity information, 

derivatives Ix, J x' and hx in Eq. 5.1 for beam component and vt in Eq. 5.8 
for plate component must be computed. Since each plate element has 

constant thickness and each beam element has constant width and height, 

these derivatives are Dirac delta measures and computations of the shape 

design sensitivity information become complicated. 
To avoid this difficulty, the design process is divided into two 

phases. In Phase I, each plate and beam components (not element) have 

constant thickness and constant width and height, respectively. Hence in 

Phase I, the design parameter set includes 6 plate thicknesses, 6 beam 

heights and widths, and 2 beam locations with total of 20 design 

parameters. To assign the same design parameter to elements in a 

component, design variable linking is used in Phase I. Once an optimum 
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point is reached in Phase I, the design process is switched to Phase II 

where shape design parameters are fixed and each plate and beam elements 

are allowed to have different design parameters. Hence the total number 

of design parameter is 290 in Phase II. 
For numerical computation, PRIME-750 and Cray-1S computers are used 

for design Phases I and II, respectively. The initial and final designs 

of Phase I is given in Table 10.1. The initial cost is 0.7875 lb and the 

final cost of Phase I is 0.5894 lb. There are 12 design iterations in 

Table 10.1. Initial and Final Designs of Phase I 

Design Initial Fi na 1 
Parameter Design Design 

t1 0.0874 

Pl ate t2 0.0500 

Component t3 0.1 0.0518 

Thickness t4 0.0501 

t5 0.0815 

t6 0.0910 

b1 0.4234 

Beam b2 0.6902 

Component b3 0.5 0.4990 

Hei ght b4 0.3974 

b5 0.4266 

b6 0.4326 

d1 0.1087 

Beam d2 0.2214 

Component d3 0.15 0.2499 

Width d4 0.0754 
d5 0.0838 

d6 0.1286 

Beam <Xl 1.50 1.4221 

Position <X2 4.50 4.5872 
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Phase I with average CPU time 15986 seconds per iteration on a PRIME-750 
computer. It is observed in design Phase I that inner beam stiffners move 
inward (a1 = 1.4211 in.) and outer beam stiffners move outward (a2 = 
4.5872 in.). Number of active stress and displacement constraints at the 
final design of Phase I is 31. Thus, it is necessary to calculate 
sensitivity information for 31 constraints out of 251. 

There are 9 design iterations in Phase II with average CPU time 25.84 
seconds per iteration on a Cray-1S computer. Cost function history of 
Phases I and II is shown in Fig. 10.1. The final cost of Phase II is 
0.5388 lb. Number of active stress and displacement constraints at the 
final design of Phase II is 54. A profile of upper half of the final 
design is shown in Fig. 10.2 

Figure 10.1 Cost Function History 
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c 

Figure 10.2 A Profile of the Final Design 



www.manaraa.com

491 

REFERENCES 

1. Haftka, R.T. and Kamat, M.P., Elements of Structural Optimization, 
Martinus Nijhoff Publishers, Boston, 1985. 

2. Haug, E.J., Choi, K.K. and Komkov, V., Desi~n Sensitivity Anal~sis of 
Structural Systems, Academic Press, New Yor , N.Y., March, 198 • 

3. Haftka, R.T. and Grandhi, R.V., "Structural Shape Optimization
Survey," Computer Methods in Applied Mechanics and Engineering, to 
appear, 1986. 

4. Botkin, M.E., "Shape Optimization of Plate and Shell Structures," AIAA 
J., Vol. 20, No.2, 1982, pp. 268-273. 

5. ~ancavilla, A., Ramakrishnan, C.V. and Zienkiewicz, O.C., 
"Optimization of Shape to Minimize Stress Concentration," J. of Strain 
Analysis, Vol. 10, No.2, 1975, pp. 63-70. 

6. Braibant, V. and Fleury, C., "Shape Optimal Design Using B-Splines," 
Computer Methods in Applied Mechanics and Engineering, Vol. 44, 1984, 
pp. 247-267. 

7. Dems, K. and Mroz, Z., "Variational Approach by Means of Adjoint 
Systems to Structural Optimization and Sensitivity Analysis - II 
Structural Shape Variation," Int. J. Solids and Structures, Vol. 20, 
No.6, 1984, pp. 527-552. 

8. Cea, J. "Problems of Shape Optimal Design," 0 timization of 
Distributed Parameter Structures, E.J. Haug and J. Cea Eds.), 
Sijthoff & Noordhoff, Alpen ann den Rijn, The Netherlands, 1981, pp. 
1005-1048. 

9. Choi, K.K. and Haug, E.J., "Shape Design Sensitivity Analysis of 
Elastic Structures," J. of Struct. Mechanics, Vol. 11, No.2, 1983, 
pp. 231-269. 

10. Choi, K.K., "Shape Design Sensitivity Analysis of Displacement and 
Stress Constraints," J. of Struct. Mechanics, Vol. 13, No.1, 1985, 
pp. 27-41. 

11. Haug, E.J., Choi, K.K., Hou, J.W. and Yoo, Y.M., "A Variational Method 
for Shape Optimal Design of Elastic Structures," New Directions in 
Optimum Structural Design, E. Atrek, R.H. Gallagher, K.M. Ragsdell and 
b.c. Zienkiewicz (Eds.), John Wiley and Sons, Ltd., 1984, pp. 105-137. 

12. Banichuk, N.V., "Optimization of Elastic Bars in Torsion," Int. J. of 
Solids and Structures, Vol. 12, 1976, pp. 275-286. 

13. Na, M.S., Kikuchi, N. and Taylor, J.E., "Shape Optimization for 
Elastic Torsion Bars," 0 timization Methods in Structural Desi n, H. 
Eschenauer and N. Olhoff Eds. , Bibllographisches Instltut, Zurich, 
Germany, 1983, pp. 216-223. 

14. Babuska, I. and Aziz, A.K., "Survey Lectures on the Mathematical 
Foundations of the Finite Element Method," The Mathematical 
Foundations of the Finite Element Method with Applications to Partial 
Differential Equations, Academic Press, 1972, pp. 1-359. 

15. Choi, K.K. and Seong, H.G., "A Domain Method for Shape Design 
Sensitivity Analysis of Built-Up Structures," Computer Methods in 
Applied Mechanics and Engineering, to appear, 1986. 

16. Seong, H.G. and choi, K.K., "Boundary Layer Approach to Shape Design 
Sensitivity Analysis," J. of Struct. Mechanics, to appear, 1986. 

17. Choi, K.K. and Yao, T.M., "3_D Modeling and Automatic Regridding in 
Shape Design Sensitivity Analysis," NASA Symposium: Sensitivity 
Analysis in Engieering, NASA-Langley Research Center, Virginia, 
September 25-26, 1986. 



www.manaraa.com

492 

18. Choi, K.K. and Seong, H.G., "Design Component Method for Sensitivity 
Analysis of Built-Up Structures," J. of Struct. Mechanics, to appear, 
1986. 

19. Choi, K.K., Santos, J.L.T., and Frederick, M.C., "Implementation of 
Design Sensitivity Analysis with Existing Finite Element Codes," ASME 
Journal of Mechanisms, Transmissions, and Automation in Design, 8~ 
DET-77. 

20. Zolesio, J-P., "The Material Derivative (or Speed) Method for Shape 
Optimization," 0 timization of distributed Parameter Structures, E.J. 
Haug and J. Cea s. SlJt 0 & oor 0 p en ann en lJn, The 
Netherlands, 1981, pp. 1089-1151. 

21. Zo 1 es i 0, J-P., "Gradi ent des coute Governes par des Problems de 
Neumann 
poses des Wuverts Anguleux en Optimization de Domain, CRMA-Report 116, 
University of Montreal, Canada, 1982. 

22. Choi, K.K. and Seong, H.G., "A Numerical Method for Shape Design 
Sensitivity Analysis and Optimization of Built-Up Structures," The 
o timum Sha e: Automated Structural Desi n, (Eds. J.A. Bennett and 
M.E. Botkln , P enum Press, New Yor , 198 • 

23. Yang, R.J. and Choi, K.K., "Accuracy of Finite Element Based Design 
Sensitivity Analysis," J. of Struct. Mechanics, Vol. 13, No.2, 1985, 
pp. 223-239. 

24. Dym, C. and Shames, I.H., Solid Mechanics-A Variational Approach, 
McGraw-Hill, 1973. 

25. Rogers, D.F. and Adams, J.A., Mathematical Elements for Computer 
Graphics, McGraw-Hill, 1976. 

26. DeSalvo, G.J. and Swanson, J.A., ANSYS Engineering Analysis System, 
Users Manual, Swanson Analysis System, Inc., P.O. Box 65, Houston, PA, 
Vols. I and II, 1983. 

27. Przemieniecki, J.S., Theory of Matrix Structural Analysis, McGraw
Hill, 1968. 

28. Lam, H.L., Choi, K.K., and Haug, E.J., "A Sparse Matrix Finite Element 
Technique for Iterative Structure Optimization," Computers and 
Structures, Vol. 16, No. 1-4, 1983, pp. 289-295. 

29. Choi, K.K., Haug, E.J., Hou, J.W., and Sohoni, V.N., "Pshenichny's 
Linearization Method for Mechanical System Optimization," ASME Journal 
of Mechanisms, Transmissions, and Automation in Design, Vol. lOS, No. 
I, 1983, pp. 97-103. 



www.manaraa.com

Adaptive Grid Design for Finite Element Analysis In 

Optimization: Part 1, Review of Finite Element 

Error Analysis* 

Noboru Kikuchi 

The University of Michigan, Ann Arbor, Michigan, 48109, USA 

Abstract 

Finite element gridding is regarded as an optimal design 

problem which yields the optimal grid adaptively by applying 

the optimality criteria method. Finite element approximation 

error analysis is critically reviewed to determine the effect 

of grid distortion which is a key factor of the irregular dis-

tribution of approximation error in flux and stress. Based on 

this study, appropriate error measures are defined for the op

timal grid design problem as well as error indicators which 

estimate the total amount of approximation error. 

*The present work is supported by NASA Lewis Research Centerl 
NAG 3-388 and ONR N001485K0799. The author expresses his 
sincere appreciation for these supports. 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 



www.manaraa.com

494 

1. Introduction 

After thirty years of development, finite element methods 

have solidly established their existence in science and engin

eering. It is now almost impossible to talk about advanced 

engineering based on, e.g., stress, heat, and flow analyses 

without using finite element methods which are general enough 

so that many commercially available, general purpose codes 

can be developed, together with various supporting devices 

such as preprocessors containing automatic grid generation 

methods and post processors plotting computed results graphi

cally. This development certainly extends the range of 

analysis capability for design and manufacturing in engineer

ing as well as applied functional analysis in mathematics, 

which deals with initial boundary value problems governed by 

partial/ordinary differential equations. The science side of 

finite element methods, especially their mathematical theory, 

can be found in, e.g., Ciarlet [I] and Glowinski [2], while 

various engineering applications are discussed in Zienkiewicz 

[3]. See also, Finite Elements Handbook [4] which will soon 

be published. For educational purposes, a series of textbooks 

is published by Oden et. al. [5-7]. 

Our emphasis here is more toward preprocessing to finite 

element analysis. Especially, we shall study sensitivity of 

accuracy of finite element approximations to the direction of 

finite element gridding and to the shape and size of finite 

elements. Qualitatively, it has been established that finite 

element approximation error converges to zero as the grid size 

tends to zero, that is, the total number of finite elements 
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goes to infinite. How can we then quantify the amount of 

error? How is it reduced? Or more precisely, what is the 

optimal gridding for a given number of the total degrees of 

freedom? How can the optimal refinement be achieved that 

involves the minimum amount of error with the least number of 

elements? Is it possible to predict the number of elements 

which yield a specified amount of error, say, 5% error? These 

have been answered mathematically by, e.g., Babuska, Rhein

bolt, Sabo, [8-13] under the name of adaptive finite element 

methods. These have also been implemented by Shephard et. al. 

[14-15] and Diaz et. al. [16-17] as parts of pre- and post

processors to finite element analysis. Other references of 

adaptive methods will be given in Part 2. 

It is noted that the study of adaptive methods was 

motivated while shape optimization problems were solved at The 

University of Michigan. As shown in Fig. 1, the optimal shape 

strongly depends on finite element gridding! There, the same 

analysis and shape optimization algorithms are applied to find 

the optimal shape of an initially triangular, thin plate which 

transmits the tension force to two sliding supports. 

This paper consists of tne following three parts: 

Part 1: Review of Finite Element Error Analysis 

Part 2: Optimal Grid Design Problem 

Part 3: Application to Shape Optimization 

In Part 1, we shall review finite element error analysis using 

one-dimensional problems in order to describe relations of the 

residual and interpolation errors to the finite element ap

proximation error. This study enables us to define an appro-
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(a) 

(b) 

(e) 

F1gure 1. Opt1ma\ Shape by Different Finite Element Grids 
(by Dr. K. Y. Chung) 
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priate error measure to the grid optimization problem defined 

in the second part of this paper, Part 2. 

2. As Usual, One-Dimensional Problems 

Suppose that a boundary value problem is given as 

follows: 

-d(kdT/dx)/dx + cdT/dx + hT = f in (O,L) (1 ) 

T(O) = TO' and T(L) = TL 

where k, c, and h are specified constants of f as a given 

function. Let us solve this using 2-node line elements, the 

length of which are he' e = 1, ••• ,NE, where NE is the total 

number of line elements. In this case, (1) is discretized as 

1 -'] -1 

(k/he) 1 + (c/2) 

-1 -1 

+ (hhe/6) 

1 2 

1 2 1 

1 Cl + f2} 
= (he/6) 

fl + 2f2 

in each finite element ne , e = 1, 2, •.• ,NE, where Tl, T2, 

fl' and f2 are the values of T and f at the I-st and 2-nd 

nodes of each element, respectively. 

(2) 

Residual reo Residual re of finite element approximation 

of the differential equation (1) is defined in each finite 

element ne = (xe' xe+l) as 

( 3) 

where Th is the finite element approximation of T obtained by 

(2) for given gridding and elements. If 2-node linear line 

elements are applied, the second derivative of Th vanishes in 

each element. Then the residual becomes 
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= f - hTh - cdTh/dx + (dk/dx)(dTh/dx) ( 4) 

If the heat conductivity k is constant in each element, i.e., 

dk/dx = 0, (4) can be simplified as 

(5 ) 

Since re is defined at every point x in Qe' let us 

introduce an error measure Ee of the finite element approxi

mation error using the L2-norm of re: 

Ee: = he{f I r eI 2dQe}1/2 
Qe 

(6 ) 

where he is the size of the element Qe . The reason why he is 

multiplied to the L2-norm of re is that Ee has the same 

dimension as the "energy" norm 

I ITI I: = (f{k(dT/dx)2+hT 2}dQ)1/2 
Q 

(7 ) 

Interpolation Error i e . Let TI be the interpolation of T 

using 2-node line elements. If the second derivative of T is 

assumed to be constant in each finite element, Qe' ~ = 1, ••. , 

NE, the differences of d(TI-T)/dx and TI-T are given by 

d(TI-T)/dx = «Xe +Xe+l)/2-x)d2T/dx 2 (8) 

TI - T = (1/2) (x-xe) (Xe +l-x)d 2T/dx 2 (9) 

respectively. Indeed, Taylor's expansion yields 

(10) 

T2 = T + (dT/dx) (xe+l-x) + (1/2)(d2T/dx2)(xe+l-X)2 (11) 

Subtracting (10) from (11) yields 

(T2-Tl)/(xe+l-xe) = dT/dx + «Xe+Xe+l)/2-x)d2T/dx2 

that is, 

On the other hand, addition of (lO)*(xe+l-x) and (ll)*(x-xe) 

yields 
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Tr(xe+1-xe) = T(xe+l-xe) + (1/2)(d2T/dx 2)(x-xe) 

(xe+l-X) (xe+l-xe) 

that is, 

Tr - T = (1/2)(x-xe) (Xe+l-x)d2T/dx2 

Using these interpolation errors and the energy norm, 

another error measure of the finite element approximation can 

be defined by 

= II ie II e! = (J{k(d(Tr-T)/dx)2 + h(Tr-T)2}dOe )l/2 
Oe (12) 

where d(Tr-T)/dx and Tr-T are given by (8) and (9), respec-

tively. 

From the differential equation (1), the second derivative 

of T can be written as 

d2T/dx 2 = (f-hT-cdT/dx+(dk/dx) (dT/dx»/k (13) 

If the right hand side is approximated by the finite element 

approximation Th, the second derivative d2T/dx2 is approx

imated by 

Another approximation of the second derivative of T can be 

obtained by using the continuous piecewise linear gradient 

£h spanned by 2-node line elements computed by the least 

square method 

min(l/2) J (£h-dTh/dx)2dO 
£h 0 

(14) 

(15) 

Since dTh/dx is piecewise constant, d2Th/dx2 is not well

defined in the whole domain O. Thus, we first compute a 

continuous approximation of dTh/dx, and then its derivative 

is taken to approximate the second derivative, that is, 

d2T/dx 2 ~ d£h/dx (16) 
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In each finite element ne , e = 1, ••• ,NE. The least square 

method (15) yields the system of linear equations 

2 1 
NE 
L (he /6) (dTh/dx)e(he/2) 

e=l 
1 2 

where £1 and £2 are the values of £h at the I-st and 2-nd 

node in ne , respectively, and (dTh/dx)e is the value of 

dTh/dx in nee 

(17) 

To show the nature of the least square method (15) to ob-

tain a continuous first derivative, let us consider a domain 

consisting of two line elements whose lengths are he and mhe , 

respectively. If 

p = and q 

are assumed, (15), i.e., (17) implies 

= (2p+3mp-mq)/2(1+m), = (p+mq)/(l+m) 

= (3q-p+2mq)/2(1+m) 

If P = 1 and q = 0 are assumed, these become 

= (2+3m)/2(l+m), = l/(l+m) 

£3 = -1/2(l+m) 
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For various m, £1' £2, and £3 are plotted in Fig. 2. 

p 

I ~2--------~q----------J . . 
I-- ". --.. -1----- .... -----toot 

... I 

~~"":" .. -!!S!*'¥i¥F~ _ .... ............. ,_. .. .... , 

... ::I 

m· 10 

Figure 2. Least Square Method 

It is clear that the least square method can provide reason-

ably good continuous function for various sizes of elements. 

As an example, we shall compute distribution of error 

measures defined by the residual and interpolation error for a 

specific case of the boundary value problem (1). Suppose that 

k = 1, c = 20, h = 1, f = 25, TO = 100, TL = 0, and 

L = 20. 

For twenty elements, let us compute the finite element 

solution and the error measures defined above. It is clear 

that a large amount of error is accumulated at both ends of 

the domain (see Figs. 3, 4, and 5). As shown in Fig. 3, if c 

is large enough, oscillation appears in the finite element 
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solution which is not acceptable at all in terms of its 

physics. Figs. 4 and 5 show the distribution of error 

measures due to the residual and the interpolation error. 

Both behave almost exactly the same, especially the relative 

distribution which is almost identical although their absolute 

values are different. It is clear that very refined grids 

should be allocated in the place where large error measure is 

computed. 

3. How is the Residual re Related to the Approximation Error? 

We shall briefly review the relation between the residual 

re and the finite element approximation error e = T-Th, where 

T is the exact solution to (1) and Th is its finite element 

approximation. For simplicity, the convection term is neglec

ted, that is, c = 0 is assumed in this section. The following 

description is based on Babuska and Rheinboldt [9, 10]. 

and 

Define 

a(T,T) = ! (kT'T'+hTT)dn 
n 

IITII = la(T,T) 

The weak form to the original problem (1) becomes 

a(T,T) = ! fTdn for every T 
n 

(18) 

(19) 

(20) 

such that T = 0 at x = 0 and x = L. Its finite element ap-

proximation is then given by 

(21) 

such that Th = 0 at x = 0 and x = L, and Th is spanned by 2-

node elements. It follows from (20) and (21) that 
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(22) 

such that Th = 0 at x = 0 and x = L. This property is called 

the orthogonality of the finite element approximation error e 

to the finite element approximation space. 

The key idea of Babuska and Rheinboldt is the application 

of the elliptic projection ne of the error e defined by 

a(e-ne,w) = 0 for every w 

such that 

wEH: {vlv(xe) = 0, e = 1, .•• ,NE + I} 

(23) 

(24) 

in order to derive a posteriori estimate. It is noted that the 

difference between an arbitrary function wand its interpol
ation using 2-node line elements, belongs to H . 

Moreover, (23) yields 

a(ne,w) = a(e,w) 

= a(T,w) - a(Th,w) 

NE 
= E ! (f-hTh+(kTh)')wdne 

e=l ne 

for every WEH. This means that 

= (25) 

in each finite element ne , e = 1, •.• ,NE where re is the 

residual defined by (3) using finite element approximation Th, 

i. e. , 

= f - hTh + (kT')' 
h 

If the size of an element ne is given by he' the minimum 

eigenvalue of the differential operator T + (kT')' is given 

by 
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where ~e is the minimum value of k in Qe • Using this, (25) 

yields 

{! (ne)2dQ }1/2 < (k n2/h2+h )-l{! r2dQ }1/2 e _ _e e _e nee 
Qe ·'e 

(26) 

where he is the minimum value of h in Qe . This means that the 

L2-norm of the elliptic projection ne of the error is bounded 

by the L2-norm of the residual in each finite element Qe • The 

upper bound is given by 

= 

rt also follows from (25) that 

where 

Iinelle: = (! (k( (ne) 1)2 + h(ne)2}dQe )1/2 
Qe 

Applying inequality (26) into (28) yields 

I Inel 12 < Ce ! r 2dQ e e Qe e 

that is, 

(27) 

(28) 

(29) 

(30) 

This means that the energy norm of the elliptic projection ne 

of the approximation error e is bounded by the L2-norm of the 

residual in each finite element Qe • The upper bound constant 

is almost proportional to the size of finite element he. 

The last step is to find relation between I Inel I and 

I lei I. To do this we shall recall the orthogonality condition 

(22). Applying (22) implies 

IIel1 2 = a(e,e) = a(e,e-er) 

= a(ne,e-er) + a(e-ne,e-er) (31) 
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for the interpolation eI of e using 2-node line elements. 

Since e-eI belongs to H, the second term of the right hand 

side vanishes because of the definition of elliptic projec-

tion. Thus we have 

I I e II 2 ~ line I I II e-eI II (32) 

For 2-node line elements, the energy norm of the interpolation 

error of the error e is bounded by its energy norm, that is, 

I I e-e I I I ~ I I e I I ( 33 ) 

Therefore, the finite element approximation error I lei I is 

bounded by the energy norm of the elliptic projection of the 

error e, i.e., 

I lei I ~ I l1Te I I (34) 

Substitution of estimate (3) into (34) implies the upper bound 

of the finite element approximation error by the residual re: 

(35) 

4. How is the Interpolation Error ie Related to the Approx

imation Error? 

Relation of the interpolation error ie to the finite ele

ment approximation error is more straightforward than for the 

residual. Indeed, because of the orthogonality of the error, 

we have 

a(e,e) = a(e,T-TI) + a(e,TI-Th) = a(e,T-TI) (36) 

where TI is the interpolation of T. Then 

II e II ~ liT-TIl I = (37) 
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That is, the finite element approximation error is bounded by 

the interpolation error in the energy norm. 

The main difference of the upper bound by the interpola-

tion error from that by the residual is the second derivative 

of T must be approximated using the finite element solution 

Th, while the residual re does not require any approximation 

of the second derivative of T. In fact, Th itself defines the 

residual. This indicates that application of the interpola-

tion error requires one more step that computes the continuous 

first derivative €h from piecewise constant dTh/dx. It is 

noted that if the heat conductivity k is discontinuous at a 

point, the first derivative of T must be discontinuous since 

the heat flux a = kdT/dx is expected to be continuous at that 

point. This implies that computing continuous €h is not a 

good idea. Thus, if k is discontinuous ah is computed by the 

least square method: 

NE 
min!2 E f (ah-k(dTh/dx)e)2dne 

ah e=l ne 
(38) 

Applying ah instead of €h, the second derivative of T is ap

proximated by 

(39) 

in each finite element ne , e = 1, ••. ,NE. If the heat conduc-

tivity k is piecewise constant, that is more precisely, if k 

is constant in each finite element, 

d 2T/dx 2 ~ (l/k)dah/dx 

in ne , e = l, •.• ,NE. This way is more promising in the eng-

ineering point of view, since continuous estimation of the 

heat flux a is important, useful information in practice. 
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5. Extension to Multidimensional Problems 

Extension of the upper bound by the interpolation error 

into multi-dimensional problems is very straightforward, while 

the bound by using the residual based on a posteriori estimate 

is not yet fully developed as in one-dimensional problems. 

In multi-dimensional problems the residual re consists of not 

only the difference of f-L(Th) but also the jumps of the nor-

mal derivative of Th at the corners of each finite element, 

where the differential equation in g is represented by 

L(T) = f in abstract form. Why must the jumps of the normal 

derivative be added into the residual? To explain this, let 

us consider a two-dimensional heat conduction problem 

= f in g T = To on rl and q = qo on r2 (40) 

where the boundary r of the domain g consists of two parts, 

rl and r2, To is specified temperature, qo is specified heat 

flux, and 

q = 
The unit vector n = nxex + nyey is outward normal to the 

boundary r. The variational formulation to this boundary 

value problem is 

a(T,T) = f(T) for every T 

such that T = 0 on rl, where 

(41) 

a(T,T) = f{(aT/aX)(kxaT/ax+kxyaT/ay) + (aT/ay)(kxyaT/ax 

+ kyaT/ay)}dn 

and 

f(T) = /Tfdg + / Tqodr (42) 
n r2 
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For simple notation, let us define the heat flux vector q by 

= = 
= 

For two-dimensional problems, the elliptic projection may be 

defined by 

a(e-ne,w) = 0 for every w (44) 

such that 

w£H: = {VIV(xI) = 0, I = 1, .•• ,N} (45) 

where N is the total number of nodal points in a given finite 

element grid, and e is the approximation error defined by the 

difference of the exact solution T and its finite element ap-

proximation Th. However, this elliptic projection would not 

yield a simple form of the local problem defined in each ele

ment ne as (25). Indeed, the elliptic projection yields 

a(ne,w) = a(T,w) - a(Th'w) 

NE 
= E f (f+aqxh/ax+aqyh/ay)wdn 

e=l ne 

NE 
+ E f (qo-qoh)wdr 
e=l r2e 

NE 
+ E f [Iqhl ]wdr 
e=l re 

(46) 

where qoh is the interpolation of qo using the shape functions 

defined on the boundary elements r2e' e = 1, ••• ,N2 on r2, 

[Iqll is the jump of the heat flux on the internal element 

boundaries r e , e = 1, ••• ,NE, excluding the portion common to 

r. In definition of the elliptic projection, w must be zero 

only on nodal points. It need not vanish along the element 

boundaries. Thus, the second and third terms are not zero in 
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the right hand side of the above equation. This is the dif

ference from the one-dimensional problem. Therefore, the resi

dual re must be defined as a combination of 

f + aqxh/ax + aqyh/ay 

qo - qoh 

and the jumps 

(47) 

(48) 

(49) 

The question is, how are these three to be combined to have a 

posteriori estimate? Applying relations in Sobolev norms and 

inverse theorem I Inel Ie may be bounded by 

2 
I Inel Ie < CIAe{! (f+aqxh/aX+aqyh/ay)2dQe}I/2 

Qe 

+ C2{! he (qo-qoh)2dr }I/2 
~2eaQe 

+ C3{! he [ Iqhl ]2dr}l/2 
~eaQe 

(50) 

where aQe is the boundary Qe' Ae the area of Qe' and he is the 

length of the edges of Qe • Constants Cl, C2 and C3 are depen-

dent on the shape of an element, trace theorem in Sobolev 

spaces, and inverse theorem in finite element approximation 

spaces. At this moment, there does not exist a clear way to 

estimate these three constants. 

On the other hand, the upper bound using the interpola-

tion error is straightforward. Indeed, the orthogonality of 

the finite element approximation to the finite element space 

is still valid, and then 

a(e,e) = a(e,T-TI) + a(e,TI-Th) 

= a(e,T-TI) 

that is, 
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Ilell a(e,e) ~ IIErl1 = (51) 

where Er = T-Tr is the interpolation error. Thus, finding 

Er for each given finite element remains. 

Under the assumption that the second derivatives of Tare 

constant in each finite element, we have the following Tay-

lor's expansion for 3-node triangular elements: 

Tl T + Tx(xl-x) + Ty(Yl-Y) + 1/2Txx (Xl-X)2 

+ Txy(Xl-X) (Yl-Y) + 1/2Tyy (Yl-y)2 

T2 = T + Tx(x2-x) + Ty (Y2-Y) + 1/2Txx(X2-X)2 

+ Txy (X2-X) (Y2-Y) + 1/2Tyy (Y2-y)2 

T + Tx(x3-x) + Ty (Y3-Y) + 1/2Txx(X3-X)2 

+ Txy (x3-x ) (Y3-Y) + 1/2Tyy(Y3-y)2 (52) 

where Tx = aT/ax, Txx = a 2T/aX 2 , Txy = a 2T/axay, etc. 

Defining 

bl = (Y2-Y3)/J, b2 = (Yrn)/J, b3 = (n-Y2)/J 

cl = (Xrx2)/J, c2 = (xl-x3)/J, c3 = (x2-x l)/J 

and 

J = (53) 

we have 

and 

Tlbl + T2b2 + T3b3 = Tx + (1/2)Txx {(Xl-X)2bl + (X2-x )2b2 

+ (X3-x )2b3 } + Txy{(Xl-X) (Yl-y)bl 

+ (x2-x )(Y2-y)b2 + (X3-X)(Y3-y)b3} 

+ (1/2)Tyy{(Yl-y)2bl + (Y2-y)2b2 

(54) 

Tlcl + T2 c 2 + T3 c 3 = Ty + (1/2)Txx{(Xl-X)2Cl + (X2-X)2C2 

+ (X3-x )2c3 } + Txy{(Xl-X) (Yl-Y)Cl 

+ (x2-x )(Y2-Y}C2 + (X3-X}(Y3-Y)C3} 
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+ (1/2)Tyy{(Yl-y)2Cl + (Y2-y)2C2 

+ (yry)2C3} (55) 

Since 

= Tlbl + T2b2 + T3b3, and 

Tlcl + T2 c 2 + T3c 3, (56) 

the first derivatives of the difference of the finite element 

interpolation and the solution T are explicitly represented 

by the second derivatives of the solution T and geometric 

quantities bi and ci, i = 1, 2, 3, of an element. Therefore, 

if Txx, Txy, and Tyy are approximated by the finite element 

solution Th, the interpolation error in each finite element 

Oe is given by 

IIErlle: = (f V(T-Tr) • kV(T-Tr)drle}1/2 
Oe 

(57) 

where VT = (aT/ax)ex + (aT/ay)ey ' ex and e y are the unit 

vectors along the x and y axes, respectively. 

A method to estimate the second derivatives of the solu-

tion T using the finite element solution Th is again the least 

square method (38). Defining the heat flux q = qxhex + qyhey 

by 

kxaTh/ax + kxyaTh/ay and qyh 

+ kyaTh/ay 

a continuous qxh and qyh spanned by the same shape functions 

of the temperature are obtained by the minimizers of 

NE 
min E 1 1 (O'xh-qxh)2dOe 

e=l 2" rle 
(58) 

and 

NE 
(Oyh-qyh)2 dOe min E 1 1 

e=l 2" rle 
(59) 
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respectively. Then, in each element ne we solve the 2 x 2 

matrix equation 

k J -1 xy 

ky (60) 

where EX and Ey are the approximations of aT/ax and aT/ay 

which are piecewise linear polynominals, respectively. Using 

these, the second derivatives of T may be approximated as 

a2T/ax2 ~ aEx/aX, a2T/ay2 ~ aEy/ay, 

a2T/axay ~ aEx/ay or aEy/aX (61) 

As shown above, extension of an upper bound by the in-

terpolation error to multi-dimensional problems is straight-

forward. However, an upper bound by posteriori estimates 

using the residual is not very obvious in multi-dimensional 

problems. We have to speculate certain estimates of errors 

especially, due to the amount of jump of the flux across the 

internal finite element boundaries. Thus, in the following 

development of adaptive finite element methods, we shall apply 

the interpolation error as an error measure since it is a very 

tight upper bound of the finite element approximation error. 

Figures 6, 7, and 8 show the finite element grid for a 

heat flux conduction problem, finite element approximated 

results, and the distribution of error measure, respectively. 

It is clear that a large error measure is computed in the 

place where large heat flux is expected. 
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Adaptive Grid Design for Finite Element Analysis 

in Optimization: Part 2, Grid Optimization 

Noboru Kikuchi 

Department of Mechanical Engineering and Applied Mechanics 
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Abstract 

A finite element grid optimization problem is defined in 

the form of mini-max problem using an error measure which 

indicates the amount of finite element approximation error. A 

necessary condition to the optimization problem is given 

together with an iterative method based on the optimality 

criteria method. Various error measures are introduced for 

stress analysis of linearly elastic structures, and their 

mathematical characterization is described in order to provide 

information on choice of a particular error measure in a 

specific problem given. Three adaptive schemes; r- h-, and 

p-methods are introduced. Effectiveness of application of 

adaptive methods based on the grid optimization problem, is 

described using examples of stress analyses. 

*The present work is supported by NASA Lewis Research Center/ 
NAG 3-388 and ONR N0001485K0799. 
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1. INTRODUCTION 

In the previous part, finite element error analysis has 

been briefly reviewed using one dimensional boundary value 

problems. Finite element approximation error is related to 

either the residual or the interpolation error in a certain 

"energy" norm. Although the residual may not give an upper 

bound of the approximation error in multi-dimensional problems 

as clearly as in the one-dimension case, an upper bound by the 

interpolation error is the same in any dimensions. As shown 

in the previous paper, the residual in multi-dimensions may 

involve the amount of jump of the "flux" or "traction" which 

is not clearly bounded by certain estimates a posteriori 

obtained. On the other hand, the interpolation error, in 

general, requires computation of the second derivatives of the 

temperature/displacement. If lower order finite elements are 

applied in finite element approximation, the finite element 

solution would not be able to provide meaningful second der

ivatives by itself. Thus, the least square method is intro

duced to define a continuous "flux" or "traction" field using 

the finite element approximation which is discontinuous in 

Lagrange interpolation. The second derivatives are then 

computed using the "continuous" "flux" or "traction." It is 

noted that the second derivatives contains information of the 

amount of jump of "flux" and "traction." In this sense, the 

bound by the interpolation error is closely related to the 

upper bound by the residual. Since interpolation error can be 

evaluated independently of dimensionality of a given problem, 
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we shall apply this to define an error measure in the finite 

element grid optimization problem. 

Adaptive finite element methods are classified into three 

groups; r-, h-, and p-methods. The r-method involves relo

cation of nodes in a finite element grid to achieve the 

optimal location of nodes and shape of finite elements. The 

total number of nodes and elements are unchanged in the ad

aptive process. The h-method refines finite elements in which 

a large amount of finite element approximation error is ac

cumulated. The same kind of finite elements is kept during 

the adaptation, while the total number of nodes and elements 

are increased. The p-method applies higher order polynomials 

in the shape functions of finite elements in which approxi

mation error is large. Historically speaking, the r-method 

was first introduced. For example, Oliveira [1] obtained the 

optimal location of nodes in a finite element grid as well as 

Tang and Turcke [2], Melosh and Marcal [3], Turcke and McNeice 

[4], Shephard, Gallagher and Abel [5], Fellipa [6,7], Diaz et 

al. [8, 9, 10], and others. For the h- and p-methods, 

Babuska,Rheinboldt, and Szabo have worked, see references of 

Part 1. It is noted that Sewell [11] introduced the idea of 

h-method using three-node triangular elements in 1975. Al

though the combination of coarse and refined grids was applied 

even in the time of Southwell [12, 13], systematic concept of 

adaptivity based on finite element error analysis is intro

duced by Babuska and Rheinboldt. In finite difference 

methods, adaptive methods were studied together with grid 

generation which fits curved boundaries, by using truncation 
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error which is similar to the interpolation error in finite 

elements methods. Adaptive methods were widely accepted in 

finite difference methods much earlier than in finite element 

methods, see Thompson and Warsi [14], and Ghia and Ghia [15]. 

The concept of adaptivity in finite difference is very close 

to the r-method which "deforms" grids so that refined elements 

(or grids) are assigned to the portion of high gradient of 

"flux" or "traction." Note that the truncation error of the 5 

point difference scheme to the second order differential 

equations is bounded by the representative grid size and the 

second derivatives of the function, that is, the gradient of 

flux or traction. The p-method is, on the other hand, unique. 

Corresponding schemes have not been applied in finite differ

ence methods. It uses the same finite element grid during the 

adaptation while the degree of polynomials of the shape func

tions are automatically increased for finite elements which 

have large amount of approximation error. To do this, hier

archial finite element [16, 17] are applied. 

In Part 2, a finite element grid optimization problem is 

defined using an error measure related to the amount of ap

proximation error in each finite element. Based on the nec

essary condition of the grid design problem, an iterative 

scheme is introduced using the optimality criteria method. We 

then restrict our attention to stress analysis of linearly 

elastic structures, and introduce various other possible error 

measures applicable to adaptive methods. The r- and h-methods 

are mainly discussed in this paper, while the p-method is just 
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briefly mentioned. Examples are solved to demonstrate the 

capability of these adaptive methods. 

2. OPTIMAL FINITE ELEMENT GRID DESIGN PROBLEM 

Suppose that an appropriate error measure Ee is defined in 

each finite element that indicates the amount of approximation 

error. In general, this must be an upper bound of the approx-

imation error in a given norm. Then the total amount of error 

may be bounded by 

TE = {EeEe2}1/2 (1) 

A natural optimization problem is defined by 

Min TE 
adaptive grid design ( 2) 

that is, minimizing the total amount of error in the whole 

domain. It is, however, very difficult to obtain the opti-

mality condition because the minimization problem is subjected 

to finite element solutions which are strongly coupled among 

finite elements. Furthermore, the value TE itself is expected 

to be small if "reasonable" finite element approximations are 

considered. Thus performing minimization of TE may not be so 

effective in the sense that the minimum TE may not be so dif

ferent from TE at the initial stage of adaptation. Although 

there is a singular point at which stress components are in-

finite, node relocation and refinement would not yield large 

difference of TE despite drastic change of the distribution of 

error measures Ee , e = 1, .•. , NE where NE is the total number 

of finite elements in a discrete model. To reflect this 

nature, the optimal grid design problem should be defined by 

the min-max concept: 
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Min Max Ee 
adaptive grid design e=l, ..• ,NE (3 ) 

It is clear that the maximum value of error measures defined 

in elements is very sensitive to nodal location, element 

shape, and element size. Thus, this quantity is appropriate 

to be applied to define an adaptive process. It is also clear 

that one of the necessary condition of the optimality to the 

optimal grid design problem (3) is given as 

= constant for all e, e = 1, ••• , NE 

This means that at the optimal grid error must be equally 

distributed among finite elements in the discrete model. 

(4) 

Thus, adaptive grid design using the r-, h-, and p-methods can 

be defined as follows: 

r-method Nodal points are relocated so that the necessary 

condition (4) is more likely. One of methods of node reloca-

tion is similar to the grid smoothing scheme introduced by 

Winslow [18]: 

x = EexeEeAe-m/EeAe-m, ( 5) 

where x is the coordinates of the nodal point P, xe is the 

coordinate of the centroid of elements which share the node P, 

Ae is the area of such elements, m is a parameter for 

"smoothing," and the summation is taken over such elements. If 

m=l for rectangular elements, constant Ee, e=l, ••• , NE, 

yields no nodal relocation to the point P. In other words, if 

the necessary condition (4) is satisfied, there is no node 

relocation by the relocation scheme (5). It is, however, 

noted that we have not verified that infinite application of 

(5) yields the necessary condition (4) for two-dimensional 
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problems, while for one dimensional problems (5) implies 

convergence to (4) after infinitely many times of application. 

If finite elements are not rectangular, (5) still relocates 

nodes for constant Ee although its movement is minor. This 

nature suggests that (5) may not imply the exact equality of 

error measures over the whole domain in spite of convergent 

location of nodes. It must, however, be noted that (5) is a 

sort of grid smoothing scheme which eliminates irregular 

finite elements and drastic change of size and shape of ele

ments. Although it may still relocate for constant error 

measures, it does not destroy "good" nature of approximation. 

Application of the r-method is recommended for a reasonably 

refined grid, since it is impossible to reduce to zero the total 

amount of approximation error while the maximum value of error 

measures is minimized unless the total number of degrees of 

freedom is increased. As far as practical application is 

concerned, it is not necessary to introduce a very refined 

finite element grid. Just a reasonably refined grid is suf

ficient to obtain accurate enough finite element approxi-

mation if the r-method is applied appropriately. 

h-method Let the "energy" norm of the finite element 

approximation be denoted by I IUhl I, and let QI be the 

ratio of TE with respect to I IUhl I, i.e., 

QI = TE/lluhll (6 ) 

This indicates the relative amount of approximation error such 

that if the degree of the approximation is fine, the value of 

QI should be small. Roughly speaking, if QI is 0.05, then it 

might be said that 5% error is involved in the finite element 
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approximation. But this is not the exact percentage of the 

error. For a given QI, define Eexp by 

Eexp = 

For two-dimensional problems, if error measure Ee of the eth 

finite element is more than or equal to the four times of 

(7 ) 

Eexp ' then a triangular or quadrilateral element is refined 

into four sub-elements. Using the adapted grid, new finite 

element approximation is obtained. Update I IUhl I, Eexp ' and 

Ee , e = 1, ••. , NE, for new NE, and then find finite elements 

whose error measure is more than or equal to the four times of 

Eexp. Refine such elements if they exist, and repeat the 

process until there is no such element. It is clear that if 

this adaptation is applied for sufficiently small QI, all the 

values of Ee , e = 1, •.• , NE, are located in a relatively 

narrow band so that the necessary conditions (4) is approxi-

mately satisfied. If more strict satisfaction of the neces-

sary condition is desired, the r-method may be applied after 

the h-adaptation. Another useful quantity is the amount of 

deviation of Ee from the Eexp: 

DV = {Ee(Ee-Eexp)2}1/2";{EeEe2}1/2 (8 ) 

If DV is large, Ee has a larger variation from the expected 

error measure Eexp. 

p-method This adaptive method follows in a similar manner 

to the h-method. Instead of refinement, a degree is increased 

in polynomials of the shape functions of finite elements whose 

error measure Ee is larger than C/he where C is an appropriate 

constant and he is the representative element length of the 

e-th element. In practice, increasing degrees too much is not 
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wise since development of a finite element analysis code for 

such p-adaptivity becomes too difficult. At most up to cubic 

elements are reasonable for plane elasticity problems. It is 

also noted that for plates and shells p-adaptive finite ele-

ment methods may not be realistic because the degree of poly-

nomials involved is too high. For a triangular element given 

in Fig. 1, linear, quadratic, and cubic shape functions are 

given by 

Figure 1. Linear, Quadratic, and Cubic Triangular Element 

basis functions 

8i Li, i 1, 2 and 3, 8* = 4LIL2, 4 8* 5 = 

S* 
6 = 4L3Ll 

84 = -27/2 Ll(L2-2/3)L2, 85 = -27/2 L2 (Lr2/3) L3 

86 = -27/2 L3(Ll-2/3)Ll, 87 -27/2 Ll(Ll-2/3)L2 

8a = -27/2 L2(L2-2/3)L3' 89 = -27/2 L2(Lr 2/ 3 )L1 

810 = 27L1L2L3 

shape functions 

Ni = N2i + N3i, i = 4, 5, 6, 7, a, and 9 

N· 1 Si - 1/3N3j - 2/3N3j+3 - 2/3N3k - 1/3N3k+3 

4L2L3, 
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1/2N2j - 1/2N2k, i = 1, 2, 3, and 4, j = i + 3, 

k = i + 2, but k = 6 if i = 1, 

Ki (Si - 1/2NlO), i = 4, 5, 6, 7, 8, and 9 

K'!' (S'!' - 4/9NlO), i = 4, 5, and 6 
1 l. 

0, i = 7, 8, and 9 (9 ) 

using switch condition attached at each node such that 

Ki = 1 if i node on = 0 if i node off, i = 1, ... , 10, 

K4 = K7, K5 = K8, K6 = K9 

K*i = 1 if Ki = 0, and K*i = 0 if Ki = 1, i = 4, 5, and 

(10) 

3. ERROR MEASURES FOR STRESS ANALYSIS 

Stress analysis of linearly elastic structures is con

sidered here. Let u be the displacement in equilibrium, and 

let a be the corresponding stress in the contracted nota-

tion. For small deformation, the strain E(V) due to an 

arbitrary displacement v is defined by E(V) = (Vv+VvT)/2 

where V is the gradient operator in the global coordinate 

system, and AT is the transpose of a matrix A. Suppose that 

the constitutive relation of materials is represented by 

a = DE - aAT 

where D is the inverse of the compliance matrix, a is the 

"thermal expansion coefficient," and AT is the temperature 

(11 ) 

difference from the reference. If a body force b is applied 

per unit mass, and if a traction t is applied on a part of the 

boundary rt, the virtual displacement principle is written 

by 

6 
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U£Vg: a(v,u) = fly) for every v£Vo (12) 

Here a(v,u) is the internal virtual work due to an arbitrary 

virtual displacement v at the equilibrium u, fly) is the work 

done by the body force, applied traction, and thermal stress, 

Vg is the admissible set of displacements satisfying a given 

possibly nonhomogeneous essential boundary condition v = g on 

rd = r - rt, and Vo is its homogeneous case. More precisely, 

a(v,u) = JO£(v)·D£(u) dO, fly) = JO(£(v)·mAT + v·bp)dO 

+ Jr v· tdr 
t 

= (13 ) 

where Hl(O) is a Sobolev space in which functions are square 

integrable and their generalized first derivatives are also 

square integrable. 

Suppose that the subscript h means finite element aproxi-

mation, i.e •. , for example, uh is a finite element approxi

mation of the displacement u in equilibrium. The energy norm 

II ull is defined by 

Ilull = Va(u,u) (14) 

The orthogonality of the approximation error e = u - uh to the 

finite element approximation space is represented by 

= (15) 

Defining interpolation error er = u - ur where ur is the inter

polation of u in Vgh, we have 

a(e,e) = a(e,er) + a(e,ur-uh) = a(e,er), (16) 

and then Schwarz inequality of an inner product yields 

II e I I ~ II er I I • (17) 
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This means that the finite element approximation error is 

bounded by the interpolation error as shown in Part 1. Since 

the interpolation error is written by 

Ilerll = {1;ellerlle 2}1/2 and 

Ilerlle = {fneE(er) ·DE(eI) dn}1/2, (18) 

we can identify the energy norm of the interpolation error in 

an element as an error measure in adaptive methods. As shown 

in Part 1, the residual involves the jump of traction across 

the internal element boundaries, and since a posteriori 

estimates are not well established in stress analysis, only 

the interpolation error or its variations are considered here. 

That is, a natural choice is 

Ee = I I er I Ie· (19) 

In order to consider other possible error measures ap-

plicable to adaptive methods, 3-node triangular elements 

are introduced for simplicity. Suppose that or is the piece

wise constant interpolation of o. Then if 0 is assumed to be 

linear in a finite element ne , the interpolation error is 

given by 

o - or = (X-Xe)· Vo (20) 

in ne , where xe is the centroid of ne. An error measure 

may be defined as the L2 norm of the interpolation error of 

the stress, i.e., 

(21) 

In this case 01 must be redefined by 

01 = TEl II 0h I I (22) 

where I 10hi I is the L2 norm of the stress vector computed 

by the finite element approximation uh. The expected value 
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of error measure for a given OI for the h-method may be 

modii ied by 

Eexp = 

Instead of using a, the strain £ is also applicable. Simi

larly, the equivalent stress aE or equivalent strain £E 

(23) 

are also applicable to define error measures. It is, how, 

ever, noted that these error measures are not directly re

lated to error analysis of the finite element approximation, 

whereas the natural choice using the energy norm is a clear 

upper bound of the approximation error. Computation of the 

second derivatives is, as shown in Part 1, based on the least 

square fitting of the stress 0h using the same shape functions 

to the displacement uh , although it might not be the best. 

In part 1, interpolation error is explicitly computed for 

3-node triangular elements. For 4-node quadrilateral ele

ments, similar evaluations are obtained for interpolation 

error, see Koh and Kikuchi [19] and Part 3 of this paper. 

3. ADAPTIVE FINITE ELEMENT METHOD 

In general finite element analysis consists of three pro

cessings: preprocessing, analysis processing and post proces

sing. Adaptation would be inserted in between analysis and 

post processing for the r- and h-methods, and introduces an 

iterative process in the flow of macrocomputation. 

For the p-method, adaptation is occasionally imbedded into 

analysis processing; analysis codes must be modified to manage 

hierarchical interpolation or introduction of node less 

variables while continuity of functions is ensured across 

internal element boundaries. 
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r-method As described in introduction, the r-method 

relocates nodes to satisfy the necessary condition of the 

optimality without increasing the total number of nodes and 

elements. Furthermore, element connectivities are unchanged 

during adaptation, and then continuity of interpolated func

tions is assured without special consideration while the h

and p-methods must introduce some methods to maintain conti

nuity. In this sense the r-method is simplest among possible 

adaptive methods. A drawback is the possibility of element 

crash during node relocation process, while element distortion 

is not a serious disadvantage of the r-method. Indeed, element 

distortion itself does not provide approximation error. If 

large distortion is accompanied by high gradient of stresses, 

it is natural to generate large amounts of approximation 

error. But if distortion occurs in nearly constant stress 

fields, it would not generate significant error. Even in high 

gradient portion, distortion may not be so troublesome if it 

is "optimized." Note that the amount of error is given as 

(grid size)*( 1 + distortion)*(second derivatives). Grid 

optimization must include all three factors. The relocation 

scheme given in (5) is not only reducing deviation of error 

measures in the finite element model but also smoothening 

given grids if error measures are almost constant. 

Figure 2 shows a thin anisotropic linearly elastic plate 

with a circular hole subject to a tension force. The plate 

is a fiber reinforced lamina. Figures 3 and 4 describe the 

initial finite element grid and the circumferential stress 
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along the hole, respectively. Figures 5 and 6 show the op

timal grid and its result. It is clear that the adapted grid 

provides better results. 

Figure 2 Fiber Reinforced Elastic Plate 

The r-method described above would provide adapted grids 

similar to the ones by the 

Fi,ure 3 Initial Finite Element Grid Fi,ure 4 C1 ee It'Ound the Bole 

ReaJ-F .I.II. 
DoUed - Aaalytical 
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Filure ~. Adapted Grid by R-Melbod 

(by S.t. Lee) 

Filure 6 a aa ltOund lbe Bole 

3ft Error c1.17ft at lbe Initial 
grid generation method using elliptic differential equations 

whose coefficient D and source terms P and Q are defined 

adaptively by error measures. More precisely, grid coor

dinates ~ and n defined on a rectangular or circular domain 

are transformed into the physical coordinates x to make a 

finite element grid using the elliptic differential equations 

V·DV~ = P and V·DVn Q (24) 

Especially, if the initial grid for the r-adaptation is topo

logically the same to the grid in the mesh coordinates ~ and 

n, both end up with very similar results. 

h-method There are, roughly speaking, two approaches in 

implementation of the h-method. The first one is to follow 

the process without regridding of a finite 

element model. That is, refinement will be performed based on 

the initial grid. If any grid smoothing schemes are not 

applied, the grid always contains that of the previous stage. 

For this approach, importance is to maintain continuity of 

interpolated functions. This leads to either the introduction 

of linear constraint equations or special refinement for 

transition from refined elements to coarse elements. Most of 
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the commercially available general purpose programs are 
capable to take account of linear constraint equations repre-

sented by some degree of freedom. For example, continuity 

restricts the degree of freedom at the midnode by 

= (2S) 

where node m is located on the line consisting of nodes p and 

q. Another approach is to introduce special descretization to 

transmit a refined element to the remainder as shown in Fig. 

7. New element connectivites must be reassigned in both cases. 

Application of the h-method to either plane or shell-like three 

dimensional domains are realistic, but for fully three dim-

ensional solid domains, it may not be practical because of too 

rapid increasing in the total number of degrees of freedom. 

For example, if 20% of element of the 10xlOxS grid is refined, 

800 elements are added in the original SOO elements. At the 

second adaptation 20% of elements are again refined, 3380 

elements are generated. Then the grid adaptation is almost 

impossible. 

q 

Figure 7 Typical h-Adaptlve Grids 

This refinement reduced the size of elements to h/2, 

h/4, •.. h/2m from the original size h, where m is the m-th 

adaptation. Since refinement is attributed to the amount of 
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error in elements, "discrete" change of grid size is mathema

tically not the matter. However, as shown in Fig. 8 adapted 

grids are not smooth. Nonsmooth grids, in general, give a 

negative impression. The second approach is introduced by 

Figure 8. Application of the h-method 

Thacher et al. [20], Joh [21], and Shuhara and Fukuhara [22], 

and provides smooth adapted grids by combining automatic grid 

generation and adaptive finite element methods. According to 

error measures computed, region 1, 2, .•. , and m are assigned, 

where region k consists of element whose error measure is the 

k th largest. Node density is defined in each region, and 

then automatic triangulation algorithms are applied to develop 

adapted grids. Figure 9 shows a grid obtained by Joh • It 

is noted that the first approach can also provide smooth 

enough grids if some grid smoothening schemes are introduced, 
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see Shephard. Figure 10 is a smoothed grid using the r-method 

by artificially setting all the error measures to constant in 

the adapted grid by the h-method. 

Figure 9 A Finite Element Grid by Joh and Akimoto 

Figure 10. Application of the r-method with m = 2.5 for 
Smoothing 

For time dependent problems, nonsmoothed h-adapted grids often 

provide oscillatory computed results in time, despite very 

smooth results in space if error measures are defined only by 

the "energy" norm in space. Error measures for time dependent 

problems may consist of "energy" both in space and in time. 

Appropriate application of the r-method, in general, provides 
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smooth results both in time and space although it requires 

much more computing time. 

It is also noted that if there are a reasonable number of 

elements, the r-method provides almost the same stress dis-

tribution as the h-method which involves considerably much 

more elements. In other words, although the r-method may not 

yield reduction of the total amount of approximation error, it 

reduces the maximum value of error measures significantly. 

Figure 11 shows comparison of the h-method to the r-method for 

stress analysis of a thin linearly elastic plate involving a 

crack. 

· ..................... . · ................. . · ................... . · .................... . · ..................... . · .................... . · ...................... . · .................... . · .................... . · .................... . · ..................... . · .................... . crack 
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Figure 11. Application of the r- and h-adaptive Methods for 
Linear Fracture Mechanics (by Mr. T. Torigaki) 

In shell structures, triangular elements which may be 

identified with special quadrilateral elements, are, in 

general, too stiff. For example, if QUAD4 elements in MSC/ 

NASTRAN are applied, a shell structure becomes artificially 

very stiff in triangular elements which may be used to trans-

mit refined elements to others. Thus, these elements should 

be applied in the area in which error measures are 

sufficiently small. 

p-method Suppose that there are linear, quadratic, and 

cubic finite elements in the element library for plane stress 

analysis, and that linear constraint equations are taken in 

the linear equation solver. If hierarchical finite elements 
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are not used which are based on the interpolation functions 

given in (9) together with switch indices at on/off nodes, 

then linear constraints equations must be assigned to the 

nodes along element boundaries of different kinds of elements: 

see Fig. 12, 

(quadratic-linear) 

= = 
(cubic-quadratic) 

= 

= 

~ 

(2d2p-l+8d2r-l-d2q-l)/9, d2m 

-d2q)/9 

(-d2p-l+8d2r-l+2d2q-l)/9, d2n 

- 2d2q)/9 

p 

- -.1 ~ -I -- _.4 . 
- 1 - • 

~ 

= 

= 

Figure 12 Typical p-Adapted Finite element Grid 

(26) 

(27) 

The same node number is assigned for the corner nodes of the 

elements from which adjacent elements are of a different kind. 

If the hierarchical element using (9) is in the analysis 

program, the above constraints need not be introduced since 
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transition elements are generated without any difficulty by 

setting up adequately on/off switches of nodes. Figure 13 

shows an application of the p-method to a heat conduction 

problem. 

U 
H 
U 
~ 
~ 

EJ 
m 

.~ 6 S9 

- 5 00 

2 SO 

1 2S 

Figure 13. Application of the p-method of Flow through Porous 
Media (Flow Velocity, Distribution of Error 
Measure, p-adapted elements) (by Mr. T. Kishimoto) 

In both the h- and p-methods, if quadrilateral elements 
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are used, rectangular elements are recommended in the initial 

grid in order to have high quality adaptation. If distorted 

finite elements are assigned near singular portions, refine

ment and sophistication possesses preferred directions. This, 

in general, destroys reproduction of the exact singular be

havior of the solution, and they yields unnecessary local 

error, while the "energy" norm of the approximation error is 

slightly reduced by adaptation. 

The above examples of adaptive methods are solved by 

Messrs. Toshikazu Torigaki, S. H. Lee, and Toshikazu Kishimoto 

using OPTIMESH which is a post processor of finite element 

analysis codes for adaptation developed in The University of 

Michigan. The author is grateful for their effort. 
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Adaptive Grid Design for Finite Element Analysis 

in Optimization: Part 3, Shape Optimization* 

Noboru Kikuchi 

Department of Mechanical Engineering and Applied Mechanics 

University of Michigan, Ann Arbor, MI 48109, U.S. 

Abstract 

Adaptive finite element methods based on the grid opti-

mization are applied to solve optimal shape design problems of 

plane linearly elastic structures. Since most of shape opti-

mization algorithms involve relocation of nodes on the design 

boundary, unnecessary element distortion is often introduced. 

For displacement finite element methods using lower order 

shape functions, accuracy of stresses is not great as for 

displacements. Especially, if finite elements are distorted, 

accuracy of stresses becomes very poor. We shall discuss 

details of element distortion effect using an explicit evalu

ation of the interpolation error for the four node isoparamet

ric element. The r-and h-adaptive finite element methods are 

applied to reduce error due to element distortion during shape 

of optimization processes. 

* The present work was supported by NASA Lewis Research Center 
under the grant NAG-3-388. The author expresses his 
appreciation to this support. This is a summary of the paper 
[18] by Kikuchi, Chung, Torigaki and Taylor. 
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1. Introquction 

Optimal shape design of linearly elastic structures have 

been studied for this decade after extensive development of 

finite element and structural optimization methods. Espe

cially, development of adaptive finite element and automatic 

grid generation methods enables us to solve some of the 

realistic shape design problems. In this paper the importance 

of adaptive finite element methods is discussed for optimal 

shape design problems to reduce finite element approximation 

error due to element distortion and stress "singularity". 

Zienkiewicz and Cambell [1] applied finite element and 

penalty methods to solve shape optimization problems in 1973, 

and it was followed by Ramakrishnan and Francavilla [2], 

Tvergaard [3], Kristensen and Madsen [4], Quean and Trompette 

[5], Oda and Yamazaki [6], and others. Tvergaard applied 

finite difference methods in curvilinear coordinates for the 

shape optimization of a fillet to minimize the maximum elastic 

stress for a given load. Quean and Trompette used straight 

lines and circles to describe the design boundaries instead of 

applying (piecewise) polynomials to represent arbitrary shape 

of the boundaries. 

Analysis and theory of shape optimization have been given 

by e.g. Banichuk [7], Oems [8], Oems and Mroz [9, 10, 11], 

Choi and Haug [12], Na et. ale [13], and others. Oems solved 

the problem of minimizing the cross-sectional area of torsion 

bar constraining the maximum torsional and bending rigidity. 

Oems and Mroz provided the first variations of an arbitrary 

stress/strain/ displacement functionals in terms of the stress 
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and strain fields of primary and adjoint structures while the 

shape of the boundaries are varying. On the other hand, Choi 

and Haug introduced the idea of the material derivative in 

continuum mechanics to derive the design sensitivity. They 

express design change as design deformation velocity in the 

dynamic process of deformation of continuum. By employing the 

material derivative of variational equation and replacing the 

material derivative of the response by the virtual displace

ment they introduce an adjoint equation which leads to design 

sensitivity from the performance functional. Na et. al. 

applied the idea of structural remodeling introduced by Olhoff 

and Taylor [14] to solve shape optimization problems for a 

tension bar. 

Necessity of application of adaptive finite element 

methods to shape optimization problems was recognized when the 

optimal shape of a fillet is obtained to minimize the volume 

of the thin elastic plate under the constraint that the max

imum Mises stress on the boundary is less than or equal to 

a given upper bound. If the shape of the boundary of a fillet 

is defined by the location of nodes, and if they are searched 

using the optimality criteria method by specifying the moving 

direction of nodes on the design boundary, a physically 

unrealistic optimal shape is obtained as shown in Fig. 1. 

No matter how refined grids are applied, oscillation of 

the shape cannot be eliminated, and in fact, it tends to be 

larger as grid refinement is implemented. The reason for this 

could be explained very simply. Indeed, finite elements near 

to the left edge of the design boundary are severely distorted 
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ITERRTION NO. 0 

ITERRTION NO.26 

Figure 1. Shape Optimization using a Refined Finite Element 
Grid 

no matter how refined grids are applied, since the optimal 

shape has the infinite slope at the left edge of the design 

boundary. With this severely distorted grid, stresses approx-

imated by finite element methods must be poorly approximated. 

It is natural to consider that oscillation of the boundary 

shape would not be eliminated unless refined regular shaped 

finite elements are automatically assigned near to the portion 

where drastic change of the boundary shape is expected. How 

can we set up refined regular shaped finite elements in such a 

portion during an iteration process of optimization? 

In this Part 3, we shall discuss difficulties in shape 

optimization and some of the remedies to them as well as a 

number of applications using the r-and h-adaptive finite 

element methods. 
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2. Shape Optimization Problems 

Following Chung [19] let us consider a special case of 

shape optimization problems by minimizing the maximum value of 

a function of local measure. Examples of local measures are 

displaceements or von Mises equivalent stress, maximum shear 

stress etc •. In the formulation of the optimization problem, 

the design domain is, in general, restricted by an isoperi-

metric constraint of resource. A formulation of optimal 

design problem is given by 

or 

Min(Area) 

rd 

subject to IF(~,V~) I - a < 0 on rd 

Min{MaxIF(~,V~) I} 

rd ~e:rd 

subject to J dn - A < 0 
n 

The design variable is the shape of the boundary rd. 

(1 ) 

( 2) 

Here it is assumed that a boundary segment of rd is a 

function either of the rectangular coordinate system (x,y) or 

of the polar coordinate system (r,0), that is, either y = 

f(x) or r = f(0). This choice already excludes design 

possibility shown in Fig.2. It may be appropriate 

, • nol I function 

Figure 2. Excluding Shapes of the Design Boundary 
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to apply a parametric representation x = xes) and y = yes) 

using the coordinates along the boundary rd in order to 

have wider possibility to represent a boundary segment. If 

the parametric representation is too flexible, low order 

spline approximation of a segment may be introduced to 

restrict possible shape design. 

It must be specified whether the design boundary includes 

internal boundaries, more precisely, possibility to develop 

internal "holes" in a given structure. If so, we have to 

introduce some way to represent these internal boundaries. 

But, this task is extremely difficult. 

A reason why the maximum is taken only on the design 

bounddary rd is that if the maximum of the local criteria 

F is obtained at a point P inside of the domain 0, it may not 

be possible to reduce the maximum value only by changing the 

shape of the boundary away from the point P. In other words, 

in despite of the optimization (1) and (2) may yield increase 

of the maximum value of F in a while it is reduced on the 

design boundary rd. Thus (1) and (2) is not a perfect 

optimal design problem. Note that formulation (2) was used in 

the work by Francavilla et al. [2] as the approximate form

ulation of the minimization of stress concentration in domain 

O. 

3. Computational Algorithm 

In the present study we shall apply a finite element 

approximation based on the displacement method for plane 

problems using four-node quadrilateral isoparametric elements, 

in which each component of the displacement vector is approx-
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imated by a bilinear polynomial. In the displacement method, 

only the displaceement vector is the unknown to be solved, and 

then the stress tensor is computed a posteriori using a given 

constitutive equation. 

Like may other free boundary problems, shape design 

problems of linearly elastic structures have been solved using 

geometric adaptive methods. The idea of geometric adaptive 

methods is stated in the form of a two step iteration algo

rithm for the purpose of satisfying the optimality conditions. 

The first step represents the calculation of some quantities 

under the assumption that the design boundaries are fixed, and 

the second step predicts the movement of nodes on the design 

boundary in the ratio of difference between the calculated 

quantity and the given or assumed constant at the nodes of a 

discrete model. 

Optimality conditions of the design problem (1) yield the 

constant mutual energy and the saturation of the design func

tions F as F - S = 0 on the design boundary rd. We shall 

develop a computational algorithm of the geometric adaptive 

method for shape optimization so that design boundaries are 

moved in the direction of satisfying these conditions (that 

is, constant mutual energy and the saturation of the design 

function F) until convergence to the final shape is reached 

within a certain tolerance. 

The expression of the iterative scheme to find new coor

dinates of nodes on the design boundaries is 
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i = 1, ... ,N ( 3) 

in k-th iteration, where N is the total number of nodes on the 

design boundary. Here, ~Xik is the movement of nodes in the 

specified direction and this value can be obtained from the 

movement in the normal direction: 

( 4 ) 

in the k-th iteration. 0i is the angle between the unit 

normal vector ni and unit direction vector ai at the i-th node 

in the specified direction. For simplicity, superscript k is 

omitted in the following. The normal movement xmi at the i-th 

node in the k-th iteration is obtained from 

( 5) 

where ~Ai is the area allotted at the i-th node and Li is 

the length of the i-th element on the boundary. The allotted 

area ~Ai at the i-th node is obtained from the ratio between F 

(or mutual energy) calculated in the previous step of the-k-th 

iteration and the prescribed constant S. Note that the 

value S in Min(Max F) can be assumed as the average of F val-

ue on the nodes along the design boundary. 

( 6) 

Fi is the value F at node i, which is extrapolated from the 

Gaussian points using least square methods, and ~Area is the 

area between the design boundary rdk+l and rdk . The value 

of ~Area must be large enough at the beginning and diminish 

as the iteration goes on in order to have convergence. For 

this purpose we define a percent deviation DTP from the 

optimum using L2 norm. The value for ~Area is given by 
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~Area = (Total Area of Domain) x C x DTP. (7 ) 

From our experience, the value of C is between zero and 1.0, 

although the proper value must be adjusted according to the 

problem and the speed of convergence. That is, the bigger the 

C value is, the faster the converging speed is. However, 

faster convergence is sometimes accompanied with oscillations 

of the design boundaries, and possibly by oscillations of the 

percent deviation as well, as the iterations proceed. On the 

other hand, a small value of C may result in very slow 

convergence without oscillations. 

The above algorithm possesses the property that if Fi -

a ~ 0 is satisfied at a point XErdk, that is at node i, x 

moves in the the direction that the area A of the domain 0 

is reduced. This may guarantee that although we have used 

only the necessary condition, the iteration algorithm yield 

the minimum automatically. 

One disadvantage of this geometric adaptive methods is 

the possibility that the finite element grid set up can be 

distorted during adaptation process. Too much distortion of 

finite elements certainly yields unnecessary approximation 

error which may disturb results of the final shape of design 

boundaries. 

More precisely, if four-node quadrilateral elements are 

applied for isotropic linearly elastic structures, the com

ponents of the strain tensor are approximated by 

= 

in the normalized coordinate system (~,n). Approximation 

could he poor if element distribution is inconsistent to the 
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equi-strain lines. To quantify error of finite element approx

imation, let us obtain the interpolation error of a function w 

approximated by four-node isoparametric elements. Suppose 

that the second derivatives of all the components of the true 

displacement ware constant in each finite element although 

their values need not be the same in different elements. 

Define 

A = a2w/ax2 , B = a2w/axay, C = a2w/ay2 

xT = {Xl,X2,X3,X4}' yT = {Yl,Y2'Y3,Y4}, 

xT = {Xl,X2,X3,X4}' yT = {Yl'Y2'Y3'Y4} 

LsT = (l/4){-l,l,l,-l}, LtT = (l/4){-l,-l,l,l} 

hT = (l/4){l,-l,l,-l}, Jll = (Lsox) + (hox).", 

J12 = (Lsoy) + (hoy).", J21 = (Lex) + (hox)E;, 

J22 = (Ley) + (hoy)E;, J = JllJ22 - J12J 21' 

where (xa'Ya) are the nodal coordinates of the four corner 

nodes of an element in the physical coordinate system, and 

(Xa,Ya ) are four nodes inside of the element, say, the four 

nodes corresponding to the 2-2 Gaussian integration pointso 

It is noted that if an element is a parallelogram the terms 

hox and hoy become identically zero. Under the assumption 

stated in above, the first derivatives of the difference of 

the function wand its interpolation wh can be written as 

(9) 

a(Wh-w)/aw = (l/J) [-J22(Jll2A+2JllJl2B+Jl22C)E; + 

J12(J2l2A+2J21J22B+J222C)." + {(l-.,,2)Lt O 

y(Lt-E;h)+ (l-E;2)Ls ·y(-Ls +."h)}o{h ox(AX+BY)+ 

hoy(BX+CY)} +{E;(l-.,,2)(Lt-E;h)+.,,(l-E;2)(-Ls + 

."h)}o (hox hoy(AX+BY)+ hoy hoy(BX+CY)}] 
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3(Wh-W)3y = (1/J)[-J2l(Jl12A+2JllJ12B+J122C)~ + 

Jll(J2l2A+ 2J21J22B+J222C)n + {(1-n 2)Lt O 

x(-Lt-~h) + (1-~2)LSOx(LS+nh)}o{hox(AX+BY) 

+ho y(BX+CY)} + {~(1-n2)(-Lt-~h)+ 

n(1-~2)(LS+nh)}o{hOx hox(AX+BY)+hox ho 

y(BX+CY)}] (10) 

If an element is a parallelogram, then the interpolation error 

becomes very simple since hox = 0 and hoy = 0, that is, the 

last half part are identically zero in each partial deriv

derivative. On the other hand, if an element is considerably 

distorted from a parallelogram, then the terms in the second 

and third lines in the interpolation error become large in the 

region where large strain is expected, since (AX+BY) and other 

similar terms are basically strain components in an element. 

This suggests that regular refined finite elements must be 

assigned in the neighborhood of singular points. Here reg

ularity means that an element is close to a rectangle or 

parallelogram. Otherwise, error contribution would become 

large because of the terms in the second and third lines. 

This means grids generated by conformal mappings are appro

priate. Similarly, grids by the elliptic differential 

eguations method with the orthogonality condition and by the 

algebraic integer method, are suitable in the sense that 

contribution from the grid distortion and high strain (i.e., 

stress) can be restricted to be small. 

4. Examples of Shape Optimization 

The first example is a shape design problem of a highway 
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road pole that was solved by Oda and Yamazaki [161 where a 

hole was created at the place of minimum thickness to obtain a 

fully stressed shape although the fully stressed design has 

not been achieved in their results. Considering only a half 

portion of the highway road pole, let us introduce two design 

boundaries at the center symmetric line and the right hand 

side outside boundary. If the bottom line is allowed to move 

horizontally, the optimal shape is obtained as shown in Fig.3 

starting from the initial grid specified in 

1000 kN/IO 

Figure 3. Road Pole Shape Optimization (Initial Grid, Optimal 
Shape) by Dr. K. Y. Chung 

the same figure without applying a remeshing scheme during the 

geometric adaptive iteration for design change. Nodes on the 

design boundary are moved along the grid direction in the 

initial finite element grid. Thus, after certain number of 

iteration considerably large design change yields significant 
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distortion of the grid. The final shape obtained is naturally 

unacceptable. Now let us continue the shape design process by 

applying the least square method to define a smooth design 

boundary in order to set up a finite element grid for restart 

of shape design. Further, suppose that we do not want to give 

up the grid in the final design in Fig.3. In other words, we 

do not give up the element connectivities defined at the 

initial grid. But the location of nodes will be modified by 

applying the r-adaptive method using the error measures 

computed at the final design stage. The grid shown in Fig.4 

is 

ITERATION NU2 ITERATION Nl.3S 

Figure 4. r-adapted Grid and the Optimal Shape 

obtained that is assumed to be the second initial grid for 

shape optimization after "remeshing." If the geometric 

adaptive method is applied, the optimal shape is obtained as 

shown in the figure. If the bottom line is fixed, singular 

shape design is obtained at the end points of the bottom line. 

We cannot expect a hole inside of the road pole. 
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One of the most frequently used examples in shape 

optimization is the fillet problem because of its practical 

importance and its difficulty to be solved computationally. As 

shown in Fig.l, if remeshing is not performed during shape 

design, no matter how refined finite element grids are 

applied, the optimal shape computed is unacceptable. Thus, 

following the idea for the road pole problem, we shall remesh 

by applying the least square method to the design boundary to 

have a smooth boundary. For the initial grid in Fig.5, let us 

reconstruct finite element grids by applying the r-and h

adaptive methods as shown in Figs.6 and 7. If the geometric 

adaptive method is again applied to the second initial grids 

in Figs.6 and 7, the optimal shape of the fillet can be ob

tained without unreasonable physically nonsensical oscill

ation. In this case, the value of the maximum Mises stress in 

the whole domain is not the same to that on the design bound

ary, since the right side of the design boundary is also 

restricted. Thus, the maximum value of the Mises stress 

appears outside of the design boundary. If the right side of 

the design boundary is released from the design restriction, 

the maximum of the Mises stress is on the design boundary. In 

this case, the optimal shape is obtained as shown in Fig.S. 

Figure 9 is a comparison to the photoelastic result by Schnack 

[17]. It is clear that the optimal shape results in the same 

stress fringes as in photoelasticity case. 
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SENSITIVITY ANALYSIS IN THERMOELASTICITY PROBLEMS 

IC.. Dems 
~6dz Technical University, 90924 ~6dz, Poland. 

1. Introduction 

In many problems of structural mechanics there is a need to as
sess the effeot of variation of one or several design functions 
or parameters Isuch as material properties, cross-sectional di
mensions, shape or support conditionsl on the thermal and me
chanical state fields within a structure. The methods of such 
sensitivity analysis have been explored in various fields of 
science and engineering. Numerous publications reveal the gro
wing interest in the optimum design of structures subject to 
both mechanical and temperature constraints. When mathematical 
optimization techniques are used to design structures subjected 
to temperature, stress andlor displacement constraints, deriva
tives of these constraints with respect to design variables 
are usually required. The present paper extends the previous 
works [1 - 2] and is concerned with such class of problems for 
which the first and second Variations of any functional that de
pends on displacements, strains, stresses and temperature can 
be explicitly expressed in terms of variations of design variab
les. We assume for our subsequent analysis that either the me
chanical and thermal properties of material depend on a set of 
design parameters 1k within fixed domain of a body, or the shape 
of a body is allowed to vary and it is described by a set of 
design variables fk, whereas the mechanical and thermal proper
ties of a material are constant. Thus, we shall consider the 
problem of evaluating the sensitivities of an arbitrary funo
tional G of the form: 

G = J rCf,!,!!,9,'fk) dV 

VCCfk) 

+ f h(!,!!,e,q) dS 

S('I'k) 

NATO AS! Series, Vol. F27 
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depending on stress~, at rain !, displacement ~ as well as tem
perature 8 within structure domain V, and surface traction !, 
displacement and temperature and heat flux q on its surfaoe S, 
and on a set of design parameters 'k describing tha material 
propertiea or the shape of structure. The sensitivities of func
tional (1) can be obtained by using the adjoint or direct appro
aches:, which can be equally applicable to analytical or numeri
cal solution techniques applied to the problem oonsidered. 
In the foregoing Sections wa shall briefly disouss the applica
tion of these both approaches to sensitivity analysis for any 
functional expressed in the general form (1). 

2 •. Sensitivity analysis with respect to material parameters of 
atructure 

Let us oonaidar first the case of a fixed domain of structure 
for which the stress and displacement conditions are speoified 
on the port~ona ST and Su of' its boundary, and the temperature 
and heat flux conditions are prescribed on the portions S9 and 
Sq' so that S=STvSu=S9VSq. Moreover, the struoture is subjeoted 
to the imposed fields of body force! and heat souroe Q within 
its, domain •. We confine our analysis to small displacement and 
strain theory, and the non-linear stress-strain relation is as
samed in a very general form: 

(2) 

where Ifk. is, a set of design pard-meters. Furthermore, the thermal 
conduet,ivity ~=~C,~ oan alae depend on design parameters 'k
The first variation of functional (1) can be expressed as fol
lows: 

(3) 
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To derive the sensitivity of G with respect to design parameters 
Yk' we have now to replace the terms involving variations of ma
chanical and thermal state fields with the terms depending on 
variations of design parameters. To do this we oan apply the ad
joint or direct approaoh. 

2.1 Adjoint approach for sensitivity analysis 

To eliminate in Eq.(3) the terms involving the variations of sta
te fields, let us introduce two adjoint struotures of the same 
shape as primary one, namely the mechanical adjoint structure and 
thermal adjoint structure. The mechanical adjoint structure is 
subjected to imposed fields of initial strain, stress and body 
force defined by: 

(4) 

and satisfies the following set of boundary conditions: 

, uao = (5) 

The linear stress-strain relation of this adjoint struoture is 
assumed in the form: 

(6) 

For the purposes of our subsequent analysis, let us denote the 
stress, atrain and displaoement fields within this struoture by 
~a, i a and ~a, respectively. 
The thermal adjoint struoture is; subjeot to the following set 
of boundary conditions: 

Bao = h, on S q (7) 

with presoribed rate of heat generation within its domain, de
fined by: 
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within V (8) 

The temperature field resulting from boundary conditions (7) and 
satisfying the conduction equation is denoted by ea. 
In view of (4-5) and (7-8), Eq. (3) can be rewritten in the form: 

bG= J[~a~,[+ ~ai·~i+fa.S~+QaJ"8+(€.a_{ai)-~6' + 
(9) 

+ ~''fk1>~k] dv-J~ao.~!dSu + J!ao.~~dST+ !eaO;qdS _JqaOtedSq 

Using now Eq.(6) and conduction equation and noting that in view 
of (2) we have: 

Sb= S'r·~e+s,~e+S'IIc.lDk - -~ - -e -11f T 
(10) 

equation (9), after some transformations, yields the following 
expression for the first variation of G: 

Assuming now that the body forces and heat source within primary 
structure depend on design parameters, that is: 

(12 ) 

we finally obtain the first variation of G in the form: 

~ G = *~fk = {I[!!~ !of; (ia _ ~,!.). !1'fk -rg;>.,,}J, i + 

+ 6"Q'fk + ~'1k] dV} ~fk 
(13) 

Thus, a G is explicitly expressed in terms of derivatives of the 
integrand of (1) and the strain and temperature fields within 
primary and both adjoint structures. It is then seen, that first 
variation of G and all its derivatives with respect to design 



www.manaraa.com

567 

parameters may be evaluated by using only two solutions of ela
sticity problems and two solutions of heat transfer problems, 
independently of the number of design parameters. 

2.2 Direct approach for sensitivity analysis 

When the direct approach is used for calculating the first vari
ation of G, we assume that the variations of mechanical and the
rmal state fields occurying in Eq.(3) can be expressed in the 
form: 

'b§:=!.,,,!fk=CQ.k$fk ' ~f= !''Ik~tfk= fk$fk ' 

~~ = ~'fk~Vk = ~kbfk 

~ f) = ()''fk~<fk = ek~fk 

= (k~"k q + qk)~rk 

, )!= ['Yk!!~'f'k= !k!Jfk' (14) 

i q = q'tf:"k = -().. 9, i)' <f k ni~Cfk = 

Using 04) in (3), the first variation of G takes the form: 

bG = ~S1k = If [.".~ 2k + o/'l' tk + f'J!.·J!.k + +'9 ek + r'l'k] dV + 

+ J h,! ,!kdSu + fh,~.~kdST + f h'e (}kdSq + f h'q(k~ ''tk q + (15) 

+ qk)dSe }~rk 
The sensitivities~, £k, ~k, !k, ek and qk of state fields can 
be obtained as the solutions of some auxiliary mechanical and 
thermal problems. Equations describing these problems are obtai
ned by differentation, with respect to each design parameter Yk' 
the governing sets of mechanical and thermal state equations to
gether with proper sets of boundary conditions. The k-th thermal 
auxiliary problem is then described by the following set of equ
ations: 

~ ilk + Qk = 0 
/\.f;!, ii Qk = Q, r8 - ll, f Q wi thin V 

Tk '" k 
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on S (16) 

whereas the k-th mechanical auxiliary problem is described by 
the equations: 

div ~k + fk = 0 k within V , f = f'/f - - k 
(17 ) 

Tko = 0 on ST , uko = 0 on Su 

The stress-strain relation for the k-th mechanical auxiliary 
problem is. obtained by differentiating Eq.(2) with respect to 
'Pk , and then has the form: 

c;k = S . £. k _ Gki - -'~ - - , (18) 

The solutions of equations (16 - 18) have to be repeated for eva
luating the sensitivity derivatives of state fields with respect 
to all ~k. It is thus seen, that when there are n design parame
ters, the direct approach requires n+1 solutions of heat trans
fer problems and n+1 solutions of elasticity problems. 
Comparing the adjoint and direct approaches, it is seen that the 
adjoint method, requiring only four solutions, is more economi
cal than the direct method requiring 2 n+1 solutions. HoweveJl', 
when there are m functionals and n design parameters, then the 
direct method would still require 2 n+1 solutions in order t,o 
generate the first variations of m functionals G, whereas the 
adjoint approach would need 2(m+1) solutions. Thus, the choice 
between the two methods can depend on ratio m to n as well as 
the relative difficulty of obtaining adjoint solutions versus 
sensitivity solutions. 
It should be added that using simultaneously the direct and ad
joint solutions we can easily calculate the second variation of 
any functional G. Such approach requires for m functionals and 
n design parameters only 2(n+m+1) solutions and is always more 
efficient than the adjoint approach that would need 2(n+1) (m+1) 
solutions, and than the direct approach requiring (n+1) (n+2) so-
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lutions ll unless n«( m. 

3. Sensitivity analysis with respect to shape parameters 

Assume now that the shape of the body discussed in Seotion 2 is 
allowed to vary, whereas its material properties are specified 
in advance. Consider then the transformation process of body do
main with the imposed transformation field f(~), such that any 
point P initially placed at ~ is transformed to the position ~, 
according to the rule: 

P ..... pH: (19) 

where the components ~k /k=1,2,3/ of vector f~)can be regar
ded as the design variables describing the shape of the body. 
Similarly as previously, we shall derive the first variation of. 
any functional G of the form (1) associated with the variation 
of structural shape. This variation can be obtained by using the 
adjoint or direot approaches. 

3.1 Adjoint approach for shape sensitivity analysis 

Since the variations of any state field can be now expressed as 
the sum of Variation within unperturbated domain and the terms 
associated with the domain transformation, the first variation 
of any functional G can be expressed as follows: 

fG = J("',[:~! + ~'f~I +t'1!.·$~ +~'(}~ 9f1v + [(h, f~! + h'iJi + 

+ h'i9 +h,;q)dS+J{"'~1itfk+h(S'kl-nknY~"k'l + 
(20) 

+ h'Ti[G!j(nln j - ~jl)~~"k'l + ~j'knjSrk]+ h'1!.·!!.'k~'fk + 

+ h,,,e'k~fk + h'q[A9, 1k"i'fk + Ae, i(ni~ -~ u)nJ'r'k'll } cIS 

where ~(;) denotes the variation of proper state field within 
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unperturbated domain of structure. 
To eliminate in Eq.(20) the terms involving the variation 
of state fields, we shall use the solutions of the adjoint me
chanical and thermal problems defined by Eqs. (4 - 8). Thus, af

ter some transformations, the first variation of G with respect 
to variation of shape of structure takes the form: 

bG= f[~-~·!:.a+ !.y'a_Ae'.L9~i + Q9a + (h+ !.~a_ qea)'n + 

- 2(h+!.~a_ q~)H]b'fndS+ J[(h-+!:!!a_q-9a)~tf_+ 
)f (21 ) 

-(h+ + !t~a - q +ea) ~<fv+ ]dr + f (h,! + !!a){F!o - !~k~'fk)dST + 

+ J(h,~- !aJ.(.r~o -~~kc5'fk)dSu + J(h'q -9 a) (tfqo - q~k~'fk)dSq + 

+ J(h'e + qaWeO -~~k~<fk)dS9 
where H denotes the mean curvature of external surface S, and 
~~n is the normal component of boundary variation on S. Assu
ming that S is a piecewise regular surface and~denotes the in
ters€ction curve between two adjacent parts of S, ~ c.fy is the 
component of boundary variation laying in a plane tangential to 
S and normal to intersection curve r. Note furthermore, that 
the variations ~!o, b~o, cSqo and seo on ST' Su' Sq and S@ are 
known due to assumed form of boundary conditions on these boun
dary portions. 
It follows from (21) that the first variation of G can be obta
ined aa the result of solutions of heat transfer and elasticity 
problems for primary and adjoint structures, and then may be 
evaluated by using four solutions, independently on the number 
o;f shape parameterso 
When the shape of structure depends on a set of shape parame
ters bp' then the transformation vector field ~ is a given 
function of space and is expressed by : 

(22) 

and the Variation of this field appearing in Eq.(21) should be 
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(23) 

where v~ denotes the k-th oomponent of transformation velocity 
field assooiated with shape parameter bp' treated as time - like 
parameter. 

3.2 Direct approaoh for shape sensitivity analysis 

Using the direct method to calculate the variation of G, we ex
press the variation of state fields wi thin unperturbated domain 
of structure in the form: 

(24) 

where C·) denotes the stress, strain, displacement or temperatu
re field, respectively. The sensitivities C·)p of state fields 
can be obtained, similarly as in Section 2.2, as the solutions 
of some auxiliary thermal and mechanical problems. The gover
ning equations of these problems are obtained by differentia
tion, with respect to design parameter bp' the state equations 
of primary problem. Thus, the variation of G can be calculated 
directly from Eq.(20), in which Variations of state fields are 
replaced with (24) and variation of transformation field $lfk 
is replaced with (23). It is then seen, that ~ G is obtained as 
result of n+1 solutions of heat transfer problems and n+1 so
lutions of elasticity problems. 
Using simultaneously the direct and adjoint solutions it is al
so possible to calculate the second variation of any functional 
with respect to shape variation of structure. 

4. Sensitivity of local quantities 

The presented analysis was applicable for any functional of in
tegral form. But it can be also extended to any local constraint 
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of the form: 

(25) 

Introducing the Dirac delta function ~C! - !o)' the local const
raint (25) can be replaced by its integral form: 

G = J g(.f,~, !:!,9)~(! - ?fa) dV (26) 

for which the analysis presented in Section 2 and 3 can be easily 
applied. 

5., Concluding remarks 

The present paper provides systematic adjoint and direct approa
ches to sensitivity analysis for thermoelasticity problems when 
the material properties or shape of structure is allowed to Va
ry. We discussed here the steady-state case only, but the exten
sion of the presented analysis to the time dependent problems is 
very simple and follows the similar steps. 
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1. Introduction 

This paper is concerned with a new variational approach to structural 

design sensi ti vi ty analysis, including the consideration of shape varia

tion. Specifically, the mutual Hu-Washizu functional is introduced for ob

taining explicit sensitivity expressions for response functionals; and the 

Eulerian-Lagrangian kinematic description is applied to the description of 

design geometry variations. 

Sensitivity analysis is a key step in the process of structural op-

timization, in reliability analysis and in identification problems. Here 

we take sensi ti vi ty analysis to mean the determination of the rate of 

change with respect to variations of the design parameters of a differen

tiable, scalar functional involving general nonlinear functions of design 

and response field variables. Whether the functional represents cost or 

the value of a constraint, the problem of sensitivity analysis is the same; 

and the techniques presented below are intended to address all such cases. 

This development is restricted to linear elasticity, but extensions to 

large-deformation nonlinear problems are possible. 

Two function spaces must be considered in design sensitivity analysis. 

The design function space includes field variables such as geometric co

ordinates X, material coefficients, section properties, and designer-speci-
I fied loads such as body force b, surface tractions t, initial stress T or 

strain e1 and prescribed boundary displacements. The design function space 

can be fully described by a set of M scalar functions 0: a (X): a. = 1,M. 
a. 

Each design function is either prescribed by the design problem statement 

or can be independently specified by the designer. The response function 

space includes the elasticity solution field variables: displacement u, 

strain e, elastic stress TE and reaction surface tractions. The components 

of these tensor quantities can be represented by a set of N scalar response 

functions U: U (X); a. = 1,N. a. 

NATO AS! Series, Vol. F27 
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It is important to note that the function space U is determined impli

citly by the function space 8 and the governing equations and boundary 

conditions of linear elasticity. The response functions must satisfy the 

governing equations of strain-displacement compati bility, the material 

stress-strain relation and equilibrium over the volume V of the structure. 

(2) 

T.. . + bi = 0 (3) 
lJ ,J 

C is the fourth-order elasti ci ty tensor. The stresses and surface trac

tions must satisfy Cauchy's relation at the boundary A of the structure; 

Tij nj - ti = 0 (4) 

where n is the unit normal vector to the surface A. Prescribed 

displacement and surface traction boundary conditions must be satisfied on 

the surface regions Au and At respectively. 

on A 
u 

(5) 

(6) 

Once the design function space 8 is specified, equations (1)-(6) uniquely 

determine the solution in the response function space U. 

Suppose we are seeking the sensi ti vi ty of a scalar functional r to 

design variations 60, where r is written as 

r r (O,U) 

J f (e, TE, u, ° )dV + f g(u, 8 )dA + f h(t, 8 )dA 

V At Au 

in which f, 

part of the 

tion of the 

g and h are scalar, nonlinear functions and TE is the elastic 
E 

stress tensor with components Tij = Cijk~ek1' Direct applica-

calculus of variations leads to 
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or or (U, 6U, S, 66) 

f af 158 dV + f ag 158 dA + f ah 158 dA + cR; 1,M as Cl = 
Cl ae Cl a8 Cl 

(8) 
V Cl At Cl A Cl 

u 
where 

cR = f [ af ceij 
af E af 

CUi]dV + -E CTij + -ae, , au, 
v lJ aT ij 1 

+ f ~, cUi dA + f (9 ) 

A 1 A 
t u 

In practice, the most difficult and costly step in the evaluation of cf is 
E determining the response function variations appearing in cR (ceij , CT ij , 

cUi and ct i ) as implicitly defined by the design variations CS and equa

tions (1)- (6). 

A more attractive approach is to seek an explicit functional variation 

cf* such that 

cf*(U,S,cS) (10) 

when equations (1)-(6) are implicitly satisfied. If the explicit form cf* 

is available; then the design sensi ti vi ties can be evaluated directly, 

without the need to determine the response function variations cU. 
This approach has been exploited successfully by several researchers 

in related variational methods employing adjoint funct.ion spaces [Taylor 

and Bendsoe, 1984J, [Haug, Choi and Komkov, 1986J and [Dems and MrOz, 

1985]. The most general result was obtained by Dems and MrOz, who identi

fied the correct physical interpretation of the adjoint field variables. 

In the following section it is shown that a result identical to that of 

Dems and MrOz can be obtained directly from a mutual form of the Hu-Washizu 

principle. 

The desi gn sensiti vity analysis problem becomes more complex when 

variation of structural form is considered. Shape design sensitivity anal

ysis corresponds to a calculus of variations problem defined on a varying 

domain. Haug and Choi and Dems and MrOz employed material deri vati ve 

approaches to address this problem. In section 3 the Eulerian-Lagrangian 

kinematic description is used to descri be continuous variations in 
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structure geometry. This leads to a simple extension of the mutual Hu

Washizu energy method for explicit shape design sensitivity analysis. 

2. The Mutual Hu-Washizu Principle in Sensitivity Analysis 

Mutual energy functionals were first introduced as a tool in sensiti

vity analysis by Shield and Prager [1970]. The mutual complementary energy 

[Huang, 1971] provides explicit sensitivities for the full set of force 

response variables, while the mutual potential energy [Hegemeir and Tang, 

1973] yields explicit sensitivities for the full set of kinematic response 

variables. This section introduces the mixed-form mutual Hu-Washizu prin

ciple to obtain explicit sensi ti vi ty expressions for the combined set of 

force and kinematic response variables. 

The Hu-Washizu energy functional [Washizu, 1975] for a linearly elas

tic structure with initial stress and strain is given by 

J 1 I I 
Cijk~ ek~]dV II '" [2 eij Cijk~ ek~ + e1j lij - eij 

V 

- J 
V 

[lij (eij -
1 
2 (ui,j + uj , i» ]dV 

( 11) 

where e, 1, u and t are independent tensor fields. Satisfaction of equa

tions (1) - (6) leads directly to the stationary condition 6II a 0 for arbi

trary, admissible variations 6e, 61, 6u and 6t. 

Now consider a structure subjected to two independent sets of loads: 

the real loads acting on the structure and an imaginary adjoint load set. 

The mutual Hu-Washizu energy lIM is the difference between the Hu-Washizu 

energy of the superposed load sets and the sum of the energies of the real 

and adjoint load sets acting alone. 

II (Adjoint) + lIM. 

lIM .. J - -I I 
[eijCljk~ek~ + eij 1 ij + eij 1 ij -

V 

- billi - b u - l ij (eij 
1 - -- 2 (ui,j+Uj,i» i i 

II(Real + Adjoint) '" II(Real) + 

-I I 
eijCijk~ek~ - eijCijk~ ek~ 

- t ij (eij 
1 - 2 (ui,j+Uj,i»]dV 
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(12 ) 

Superposed bars indicate field variables associated with the adjoint load 

set. 

When both the real and adjoint field solutions satisfy equations (1)

(6), two important results are obtained. First, the mutual Hu-Washizu 

energy is stationary (orrM=o) for arbitrary, admissible variations of both 

the real response variables (oe, OT, oU and ot) and the adjoint response 

variables (oe, oT, ou and ot). Second, rrM can be written in a simplified 
form rrMl. 

rrM1 J 
-I -I E - b. ui]dV - J -p J -P ( 1 3) [t ij e .. - e .. t ij ti ui dA + ui tidA IJ IJ 1 

V At A u 

Note that these results only require weak satisfaction of equations ( 1)-

(6). If equations (1)-(6) are implicitly satisfied for both the current 

design and all designs in the neighborhood of the current design, then orrM 

= oIIM1. 

Next, prescribe the adjoint load set as 

-1 af -1 
t ij '" ae ij ; eij 

-af -P 
au.; ti 

1 

Take the variation of (13), combine with (9), replace oIIM1 with oIIM and use 

the stationary conditions on rrM to obtain 

( 1 4) 

Combination of (14) with (8) produces the explicit design sensitivity ex

pr;ssion for or. The tensor components oC ijk2.' oti j , oei j , obi' Hi and 

ou. are the elements of the set of design function variations 68. Fur-
l 

thermore, (14) is identi cal to the results of Dems and Mr~z, except that 
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variations of body force, surface traction and prescribed displacements are 

included. 

To evaluate 6r the analyst must obtain a solution to the real load 

set, form the adjoint load set, solve the adjoint system, and evaluate the 

scalar integral expressions in (14). This requires only one assembly and 

reduction of the system stiffness matrix. Most often, 6r will not depend 

on the full sets of design and response field variables; and many of the 

terms in (8) and (14) will vanish. 

3. Design Shape Variation with the Eulerian-Lagrangian Kinematic 
Description 

The preceding section developed a method for explicit design sensiti

vi ty analysis, including general response functionals. This section ex

tends the method to include shape as a design variable. In other words, 

the variation of the coordinates 6X is included within the set of design 

function variations 60. The Eulerian-Lagrangian kinematic description 

(ELD) [Haber, 1984J [Haber and Koh, 1985J provides a convenient method to 

descri be shape variations 6X in terms of a mapping from an independent 

reference geometry. Here the ELD is developed as an alternative to mater

ial derivative methods for shape sensitivity analysis. 

The ELD kinematic model is illustrated in Figure 1. A fixed Cartesian 

coordinate system is used to describe the material and current configura

tions, denoted by volumes V and v. Superscripts 1 and 2 denote two distinct 

designs. An invariant, independent spatial reference configuration vr is 

selected. A position vector r in a separate reference coordinate system is 

associated with each location in the reference configuration. For each 

design a unique mapping X:X(r) is established that maps each location r in 

vr onto a material particle with coordinate X in V. This mapping changes 

wi th the shape design, so that the material volume associated with vr 

changes. Changes in the material particle associated with a fixed coordi

nate r are the Eulerian part of the model; the displacement of a particle u 

is the Lagrangian part. The reference coordinates r are the only indepen

dent spatial variables; and the displacement, strain and stress fields and 

the mapping to the material configuration are expressed as functions of r. 

u .. u(r) 

e ,. e(r) 

(15 ) 

(16 ) 
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Figure 1. The Eulerian-Lagrangian description for shape variations. 

lsoporametric Element Geometry 

Parent Element 

Figure 2. Isoparametric finite element version of the ELD. 
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(17 ) 

(18 ) 

Similar representations are used for the other design and response varia

bles. The Jacobian of the mapping from vr to V and its inverse are defined 

as follows. 

(19) 

(20) 

In this and following sections a period between subscripts indicates dif

ferentiation with respect to the reference coordinates r. Differential 

volumes and areas are expressed in the reference configuration as 

(21) 

(22) 

in which J is the determinant of J ij and K is an area metric on the sur

face. It is assumed that both metrics are positive at all locations. 

While finite changes in the volume V are permitted, we assume that the 

deformation from V to v is adequately described by the engineering strain 

tensor. 

The strain tensor components, written in the reference configuration 

are 

(23) 

The variation of the strain tensor splits naturally into two parts: 

(24) 

where [Haber] 

(25) 
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The first term in (24) is the strain variation due to changes oUi .(r) with 
.J 

the geometry fixed; and the second term is the variation due to geometry 

changes oX(r) with ui.j(r) fixed. Explicit evaluation of the first term is 

possible (as explained below) using the mutual Hu-Washizu energy method of 

section 2; and the second term can be evaluated directly for given design 

variations 08. 

Equations (7) and (8) are rewritten using the ELD. 

r 

r 
+ J (~ 

r 06 a (l 
t 

r r 
06 K + g odda (l 

(26) 

(27) 

where f r , gr, and hr are the functions f, g and h rewritten in the refer-
r r r ence configuration; at and a are the regions of the surface of v that map 

• u oJ 0 
onto At and Au' respectively; and oJ = oS(l 06(1 and OK S o~a 06(1 only in-

vol ve the geometry variations oX, which are now non-zero elements wi thin 

the complete set of design variations 08. Equations (21)-(23) are used to 

rewrite the mutual Hu-Washizu functional and its simplified form with the 

adjoint loads defined as in section 2 (but with f r , gr, and hr replacing f, 

g and h). 

(28) 

J -P r J -P r - tiuiKda + uitiKda 
r r 

at au 

(29) 

oITM1 when equations (1)-(6) are satisfied in 
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both the current design and all neighboring designs. The variation of rrM1 

now includes variations of the metrics J and K, so oR is written as 

(30) 

Next, replace orrM1 with the variation of (28); and utilize the stationary 
M conditions on rr and symmetry of the stress tensor to obtain 

oR J - I I I-I 
r {eij[oCijk9.(ek9. - ek9.) + oT ij - Cijk9.°ek9.] - e ij oC ijk9. e k9. 

v 

+ (TijUi •k + TijUi.k)oJkj - obiUi}JdVr 

+ f 
r 

il. u 

f P- P- r 
(ot.U.K + t1.U1.oK)da 

r 1 1 

at 

Equations (27) and (31) provide explicit sensitivity expressions for of; 

and can be used with any pair of real and adjoint weak solutions of equa

tions (1)-(6), including mixed solutions. When displacement-based stiff

ness solutions are used, (1) and (6) are satisfied identically; so that 

(31) simplifies. 
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J P- P- r J P- -P r - r(otiuiK + tiuioK)da + r(ouitiK + tiuioK)da 
at au 

Equations (27) and (32) are essentially the same as the domain version 

sensi ti vi ty expressions obtained wi th the material deri vati ve method by 

Haug, Choi and Komkov; but allow for initial stress and strain effects. 

These expressions should only be used with stiffness solutions or exact 

solutions of the real and adjoint systems. When a mixed solution is used, 

equations (1) and (6) are approximated; and equations (27) and (31) must be 

used for the explicit sensitivity expression. 

4. Finite Element Sensitivity Expressions 

This section specializes the sensitivity analysis method for use with 

finite element models. The finite element version of the ELD, depicted in 

Figure 2, is a natural extension of conventional isoparametric element 

formulations. The mapping between the reference and the material configu-

rations is established locally wi thin each element. The parent element 

geometry is selected as the reference domain; and the element natural 

coordinates serve as the reference coordinates. Node coordinates in the 

material configuration and the isoparametric shape functions define the 

geometry mapping. 

Geometry variations are represented by variations of the node coordi

nates, with the shape functions held fixed in the reference system. These 

geometry variations change the material volume associated with each element 

and change the material particle associated with each node. Motion of 

nodes normal to a structure surface.describe true shape changes, with mate

rial either added or deleted at the surface. Node motion tangent to a sur

face and node motion on the interior of a structure do not imply shape 

change, but still can affect the approximate solution because they al ter 

the finite element discretization. Care must be taken to avoid situations 

where changes in response due to alterations of the discretization mask the 

response changes that are associated with true shape variation. 

Design field variables can be interpolated wi thin each element using 

the isoparametric shape functions. For a generic design field variable e 
and the specific deSign variables appearing in (31) and (32) we have 
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t P. = h t P. r X h X 
1 a la on at; i = a ia (33) 

in which ha is the shape function associated with node a; a design variable 

with a subscript a indicates the value of that variable at node a; and a 

ranges from one to the number of nodes in an element. Variations of the 

design variables are written as 08 = ha08a ; oX i = haoXia ; etc. The re

sponse field variables are interpolated in the usual way; e.g. ui hauia 
and QUi = haouia ; where uia is the unknown displacement at node a. It is 

often desirable to constrain the design space, either to reduce the number 

of independent design parameters or to reflect real design constraints. In 

these cases the nodal design variables can be expressed as functions of a 

reduced set of master design parameters. 

Substitution of (33) into (8), (14), (27), (31) and (32) and the use 

of finite element approximate solutions for the real and adjoint systems 

leads to discrete sensitivity expressions for r with respect to the inde

pendent design parameters. It must be emphasized that these sensitivities 

represent the "exact" sensi ti vi ties of the approximate f i ni te el emen t 

model--not the sensitivities of the actual continuum problem. Finite dif

ference methods only approximate the sensitivity of the finite el emen t 

mOdel. 

5. Numerical Example 

Figure 3 shows a fillet problem taken from [Haug, Choi and Komkov, 
0E - 0A 1986 J. The function r is the normal i zed excess stress ( ) averaged 

°A 
over each of a series of test regions; where 0E is the Von Mises effective 

stress and 0A is an allowable stress. The profile of the fillet is varied 

by adding a multiple of the vector B = [0 5.55 5.10 4.65 4.20 3.75 

3.30 2.85 2.40 1.95 OJ to the vertical coordinates of the nodes between 

A and B as shown in the figure. Sensitivities for selected regions using 

both 3-node (CST) and 6-node (LST) triangular elements are shown in Table 

1. Finite difference approximations to the sensitivities using an incre

ment of B x 10-7 are given for comparison. 
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Figure 3. Fillet design shape sensitivity analysis problem. 
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Table 1. Sensitivites for Fillet Problem 

Region/ Average Excess Sensitivity 
El. TYEe Stress Functional Finite Difference Explicit 

CST -0.792149 1.39058 x 10-5 1.39058 x 10-5 
1 LST -0.796613 -8.22999 x 10-5 -8.23000 x 10-5 

CST -0.700975 -5.65964 x 10-4 -5.65964 x 10-4 
3 LST -0.701107 -5.93831 x 10-4 -5.93831 x 10-4 

CST -0.591659 -6.17673 x 10-4 -6.17673 x 10-4 
5 LST -0.592886 -6.17699 x 10-4 -6.17699 x 10-4 

CST 0.156276 -4.27072 x 10-4 -4.27072 x 10-4 

10 LST 0.126887 -5.23812 x 10-4 -5.23811 x 10-4 

In all cases, excellent agreement is obtained between the finite dif

ference and explicit sensitivities. Great care was required in the selec

tion of the finite difference step size to obtain good approximations. At 

the center of the fillet (test region 5) there is reasonably good agreement 

between the CST and LST solutions. However, toward the corners of the fil

let (test regions 1 and 10) there are significant differences between the 

CST and LST predictions for the average excess stress functional itself and 

for its sensitivity. Still, the finite difference and explicit sensitivi

ties are in close agreement. This demonstrates the fact that the computed 

val ues in each case are the sensi ti vi ties of a specific finite element 

model, which might or might not represent accurately the desired continuum 

problem. Discrepancies of this sort can be expected to be most severe near 

reentrant corners (region 10). 

6. Conclusions and Acknowledgements 

The combination of the mutual Hu-Washizu principle and the Eulerian

Lagrangian kinematic description yields a robust approach for sensitivity 

analYSis of linearly elastic structures. Extensions for large-deflection 

problems and for second-order sensi ti vi ty calculations are possible. The 

explicit sensitivity expressions derived in this paper are quite general-

in most practical applications many of the terms will vanish. The sensi

tivity expressions are more reliable and far less expensive to evaluate 

than finite difference estimates of the response sensitivity. In finite 

element applications the required computations are: 1) stiffness analysiS 

of the structure; 2) assembly of the adjoint load vector; 3) solution of 
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the adjoint problem by backsubstitution using the reduced matrix 

1; and 4) integration of the explicit sensitivity expressions. 

steps 2-4 are inexpensive relative to the original analysis. 

from step 

Note that 

Response sensitivities for finite element models can also be obtained 

by direct differentiation of the system stiffness matrix. The results will 

be identical to those obtained with the corresponding explicit sensitivity 

expressions presented above. Still, the explicit expressions require less 

computer storage and execution time, and are easier to formulate for com

plex elements. It is also possible to combine analytic solutions for the 

adjoint system with discrete solutions for the real system as in [Haber and 

Koh, 1985J. Because the sensitivities of a given finite element model 

might not accurately represent the sensi ti vi ty of the intended continuum 

model, adaptive finite element modeling is a desirable addition to the 

sensitivity analysis method. 

The author wishes to acknowledge the aid of David Phelan, Yen Ling 

Chung and Creto Vidal in developing and implementing the techniques de

scribed in this paper. 

7. References 

Dems, K. and MrOz, Z., 1985, "Variational Approach to First- and 
Second-Order Sensitivity Analysis," Int. J. Num. Methods Engng., Vol 21, 
pp. 637-661. 

Haber, R.B., 1984, "A Mixed Eulerian-Lagrangian Displacement Model for 
Large-Deformation Analysis in Solid Mechanics," Int. J. Num. Methods 
Engng., Vol. 43, pp. 277-292. 

Haber, R.B. and Koh, H.M., 1985, "Explicit Expressions for Energy 
Release Rates Using Virtual Crack Extensions," Int. J. Num. Methods Engng., 
Vol. 21, pp. 301-315. 

Haug, E.J., Choi, K.K. and Komkov, V., 1986, Design Sensitivity Analy
sis of Structural Systems, Academic Press, Inc., Orlando, Florida. 

Hegemeir, G.A. and Tang, H.T., 1973, "A Variational Principle, the 
Finite Element Method, and Optimal Structural Design for Given Deflection," 
in Optimization in Structural Design, IUTAM Symp., Warsaw, pp. 464-483. 

Huang, N.-C., 1971, "On Principle of Stationary Mutual Complementary 
Energy and Its Application to Optimal Structural Design," ZAMP, Vol. 22, 
pp. 608-620. --

Shield, R.T. and Prager, W., 1970, "Optimal Structural Design for 
Given Deflection," ZAMP, Vol 21, pp. 513-523. 

Taylor, J.E. a~Bendsoe, M.P., 1984, "An Interpretation for Min-Max 
Structural Design Problems Including a Method for Relaxing Constraints," 
Int. J. Solids Structs., Vol. 20, pp. 301-314. 

Washizu, K., 1975, Variational Methods in Elasticity and Plasticity, 
2nd ed., Pergamon Press, Oxford. 



www.manaraa.com

DESIGN SENSITIVITY ANALYSIS AND 
OPTIMIZATION OF NONLINEAR STRUCTURES 

J.S. Arora and C.C. Wu 
OPTIMAL DESIGN LABORATORY 

College of Engineering 
The University of Iowa 

Iowa City, Iowa 52242 USA 

1. INTRODUCTION 

Methods of des i gn sens it i vi ty ana lys is wi th li near response under 

static and dynamic loads have been developed and documented over the last 

fifteen years [1-5]. However, they are just beginning to be developed 

with nonlinear response [6-8]. Purpose of this paper is to describe a 

method of design sensitivity analysis of static nonl inear response using 

incremental finite element procedures. To accomplish this objective, 

nonlinear analysis of the structure must be performed which is usually 

quite tedious. The most effective procedure is to use load incrementation 

coupled with an iteration. With such a procedure, geometric as well as 

material nonlinearities (different material models) can be consistently 

and uniformly treated. However, the structure can collapse before the 

full load level is reached. In that case, design must be improved to have 

a stable structure. Thus procedures for calculation of collapse load and 

its sensitivity to design changes must be included in structural 

optimization problem with nonlinear response. 

2. DESIGN SENSITIVITY ANALYSIS: GENERAL FORMULATION 

The problem is to optimize a nonlinear structure with constraints on 

stresses, displacements, strains and the buckling load. These constraints 

can be described by the functional inequality, ljI(b,t U) , 0, where be:Rk is 

a design variable vector, and tUe:Rn is the displacement vector with the 

left superscript indicating the load level. The constraint functionals 

usually depend explicitly on band tu as well as implicitly on b (because 

tu depends impl icitly on b). Various constraints can be expressed as: 

stress, 10il - 0a' 0; displacement, ItUil - t uio ' 0; strain, 

Ie:il - e: ia ' 0; and buckling load, I_pcr, 0; where 0i is an 

effective stress at point i and 0a is its limiting value, tU i is the 

NATO ASI Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
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t displacement at the ith point and UiO is its limiting value, ei is 
effective strain and eia is its limiting value, and pcr is the buckling 
load factor. Detailed numerical procedures for calculating these 
quantities are discussed in Refs. 9-11. 

The problem of des i gn sens it i vi ty anal ys is is to calculate gradient 
t * * of ~ at given design b and calculated displacement U as (the arguments 

* t * b, U will be omitted for brevity): 

(1) 

The partial derivatives a~/ab and a~/atu are relatively easy to calculate 
since exp 1 i cit dependence of ~ on band t U is usua 11 y known. It will be 
also seen later that a~/atu is easy to calculate numerically when 
incremental finite element analysis is used. Calculation of the 
matrix dtU/db is the major computational burden needing more closer 
scrutiny. Two numerical procedures [2-6J have been used for linear 
st ructu res: di rect d ifferentat i on and adj oi nt vari ab 1 e methods. These 
methods can also be used for design sensitivity analysis of nonlinear 
structures. The criteria for choosing one over the other are the same as 
for the linear case [2,6J, and it is assumed that the efficient procedure 
is used in numerical implementations. 

In order to calculate dtU/db, the equilibrium equation for the 
structural system should be considered: 

(2) 

where tR is the externally applied equivalent nodal load vector which may 
be an explicit function of design variables, (it is assumed independent of 
displacements, although displacement dependent loads can be treated [9J), 
and tF is the internal nodal force vector obtained from the calculated 
stress distribution. For linear problems, explicit form of the function 
tQ in terms of band tu is known. For nonlinear problems, however, the 
explicit form is usually not known. It is not needed in the incremental 
procedures. 

Taking total derivative of Eq. (2) with respect to design, we obtain 

(3) 
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It can be shown that _atQ/atu is the tangential stiffness matrix t K• The 

term atR/atU is actually the load correction matrix (when the load depends 

on displacements), and is a nonsymmetric contribution to the tangential 

stiffness matrix. If we assume that the external load is deformation 

independent and the associate flow rule is applicable for the material of 

the structure, then the tangential stiffness matrix is symmetric. 

Therefore, derivative of the displacement vector can be computed if we can 

calculate atQ/ab in Eq. (3). Calculation of atR/ab in Eq. (3) is quite 

st ra i ght forward, since exp 1 i cit dependence of tR on des i gn is known. 

Pa rt i a 1 deri vat i ves of i nterna 1 forces tF with respect to the des i gn 

variables need to be calculated. 

3. DESIGN SENSITIVITY ANALYSIS: NUMERICAL PROCEDURES 

Nonlinear Analysis. A difference between linear and nonlinear 

analyses is that the virtual work principle must be written in a deformed 

configuration for the latter case which is not known. In the incremental 

procedure, it is assumed that the equilibrium configuration at the load 

level t is known and it is desired at the level t+llt. To accomplish this, 

an incremental form of the principle of virtual displacements is obtained 

by introducing incremental decompositions for stresses, strains and 

displacements. Then the usual finite element approximation relating 

incremental displacement field to incremental nodal displacements is 

introduced. Thus, a matrix equation for incremental displacements is 

obtained. Since linear approximations are also used in the incremental 

virtual work principle, the equilibrium at t+llt will not be exactly 

satisfied. Therefore, an iteration within the load increment is necessary 

to satisfy the equilibrium at t+llt. 

Two slightly different numerical approaches for nonlinear analysis 

have been pursued in the recent literature. The first one relates all the 

static and kinematic variables to the initial configuration, and is 

generally called the Total Lagrangian (TL) formulation. The second 

formulation called the Updated Lagrangian (UL) refers all the variables to 

an updated configuration. If consistent derivations are used, then both 

formulations give same final response. The TL formulation uses 2nd Piola

Ki rchhoff st ress and Green-Lagrange st ra in tensors and the UL formu 1 at ion 

uses Cauchy stress and infintesimal strain tensors. One advantage of the 
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TL formulation is that the 2nd Piola-Kirchhoff stress tensor is invariant 
under a rigid body rotation where as Cauchy stress tensor is not. If 

large strains are present in an inelastic analysis, the UL formulation has 
to use a spin-invariant stress measure, such as the Jaumman stress rate. 
It is possible to transform one stress measure to the other one. 

The design sensitivity analysis can be performed using TL or UL 
formulation [6,11]. However, only UL formulation will be summarized 
here. The TL formulation follows exactly similar steps. In the 
following, the equations are given for a finite element, and usual 
assembly procedures are used to obtain the equilibrium equation for the 
entire finite element model. 

The equation with U as the unknown incremental displacement is given 
as 

(4) 

(5) 

~KL is the linear strain incremental stiffness matrix, ~D is the 
tangential material property matrix measured at load level t, ~KNL is the 
initial stress, geometric stiffness, or the nonlinear strain incremental 
stiffness matrix, V is the volume, ;BL and ;BNL are the linear and 
nonlinear strain-displacement matrices at the load level t, the left 
superscript indicates the configuration in which the quantity is 
calculated, and left subscript indicates the reference configuration. 
t+ll~R is the equivalent nodal force. The second term on the R.H.S. of Eq. 

(4) is the i nterna 1 force vector gi ven in terms of the Cauchy stress 
vector tT as 

(6) 

Buckling Load Calculation. For some problems where the pre-collapse 
displacements are negligible, the critical load can be estimated by 
solving a linearized buckling eigenvalue problem as det('K) = 0, where 

'K = ~KL +;KNL is the tangential stiffness matrix at load level,. It is 
calculated as 'K = t-~tK+A(tK_t-~tK), where A is a scalar quantity 

[9,10]. Accordingly, an approximation to the buckling load Rb is given 
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as Rb = t-l1t R+A{t R_t-l1t R). These equations can be applied at any load 

1 eve 1 t. However, it is assumed that the tangent i a 1 st iffness mat ri ces 

change proportionally with additional load increments from load level 

tR. Thi s assumpt ion is severe 1 ead i ng to over est i mat i on of the buck 1 i ng 

load. This gives difficulties in numerical design optimization. The best 

procedure for design optimization is to use load incrementation to 

precisely calculate the critical load. The eigenvector y is calculated 

from t Ky = 0 using inverse iteration procedure. This approach is used in 

the present work to impose a collapse load constraint for the structure. 

Gradient Calculations. To complete the calculation of gradients in 

Eqs. (1) and (3), we need to calculate Cllji/ab, Cllji/dU, and atQ/ab. The main 

quant i ties needed to accomp 1 ish these cal cu 1 at i on are the i nterna 1 force 

partial derivatives w.r.t. state and design variables. The partial 

derivative w.r.t. the state variable is quite easy to calculate using the 

incremental equation: 

(7) 

where otF is the increment in the internal force tF corresponding to an 

increment otu in the vector tu, tK is the tangential stiffness matrix, 

b is a given design which is fixed during the analysis phase. Therefore, 

atF/atU = t K• There can be a couple of procedures to calculate partial 

derivatives w.r.t. the design variables. 

the total internal force as 

tF = Jtou ~ t ~ t t t 'K{b, U)d 'u = Ks{b, U) U 

One way is to first calculate 

(8) 

where tKs is the secant stiffness matrix. The secant stiffness matrix 

relates total displacements to total forces. A relationship between 

tangential matrix tK and the secant matrix t Ks ' can be obtained by taking 

the first order variation of Eq. (8) w.r.t. tu and identifying 

where the given design b is held fixed. Al so, from Eq. (8) atF/ab is 

gi ven as 
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(10) 

Thus, calculation of the total internal force in Eq. (8) or its design 

derivative in Eq. (10) needs integration over the entire displacement 

history. 

The design derivative of internal forces is also obtained by taking 

partial derivative of Eq. (6) with respect to the design variables as 

(ll ) 

where ~x is determinant of the element deformation gradient which is given 

as op;tp and p is the mass density [9J. It is convenient to perform 

calculations in Eq. (ll) with the isoparametric element formulation. In 

such a formulation, the integrand is expressed in terms of the element 

intrinsic coordinates r, s, and t such that °dV for various elements is 

given as °dAJdr (beam), °AJdr (truss and cable), °dzJdrds (p1 ate), hJdrds 

(membrane and shear panel), and Jdrdsdt (brick) where J is the determinant 

of Jacobian of transformation equations, A is the cross-sectional area and 

h is the thickness measured along the z axis. All the preceeding 

expressions can be concisely written as °dV = Jdr. Thus, Eq. (11) can be 

expanded as 

(12) 

For design with fixed domain ~x does not explicitly depend on design 

variables. For trusses, membranes and shear panels, the strain

displacement matrix ~BL and stress tT do not explicitly depend on cross

sectional properties and, therefore, design variables. For bending type 

elements (e.g., beam and plate), the strain-displacement matrix and the 

stress depend exp1 icit1y on the element cross-sectional geometry which 

must be accounted for in derivative calculations. For the brick element 

the parent cube drdsdt is not a function of design variables. For other 

elements, the term d r depends on the cross-sect i ona 1 geometry. Note that 

calculations in Eqs. (10) and (12) are essentially the same; in Eq. (10) 
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integration over the volume is carried out first to calculate stiffness 

matrices, where as in Eq. (12) integration over the displacement history 

is carried out first to calculate the total stress. 

Stress and Strain Derivatives. The stress or strain constraint 

functions are generally expressed as explicit functions of stress or 

strain components. let a and e be the stress and strain vectors 

ty and ~£, respectively. The design sensitivities of the stress and 

strain constraints are then given as 

(13) 

where IjiG and Iji£ denote the stress and strain constraint functions, 

respectively, and the stress is assumed related to the element strain 

only. In Eq. (13), calculations for the three quantities 

ae/ab, ae/atU and <lo/ae depend on the finite element formulation used. 

The design derivative of element strains cannot be obtained directly 

from the incremental form of strain-displacement relations. Accordingly, 

the basic equation of Green-lagrange strain or Almansi strain should be 

used for the derivation. The Almansi strain vector by a secant 

relationship is given as [9J 

(14) 

t t where components of the strain-displacement matrices tBlO and tBU are 

obtained by proper differentiation of the finite element idealization of 

the displacement field. Then, partial derivative of Almansi strain vector 

w.r.t. design variables is easily obtained from Eq. (14). The derivatives 

of st ra ins wi th respect to the d i sp 1 acements ee/ () tu can be obta i ned from 

the incremental strain-displacement relations. Since the strain 

derivative is computed at the final response tU*, the displacement 

increment U* is zero; thus the nonlinear incremental strains vanish. Then 

strain derivative w.r.t. state variables is given as a~£/atu = ~Bl' 
where ~Bl is the linear incremental tangential strain-displacement 

matrix. The total stress derivative do/de can be obtained from the 

incremental stress-strain relations as dtY/dte = iD = [iCijktJ, where ~D 
is the incremental constitutive matrix. 
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Sensitivity of Buckling Constraint. The sensitivity of buckling 

constraint (~b = I_ pcr , 0) is _dpcr/db at given b and calculated 

Ucr • The critical displacement Ucr corresponds to the critical load level 

Rb = pcrR. Several ways to calculate sensitivity vector for the critical 

load are described in Ref. 11. Only the formulation that is simple and 

numerically most effective is described here. We define the unbalanced 

load t{ as 

and the equilibrium equation at critical load level as Rb- tFb= 0, where 

tFb is computed from the assemblage of element internal force vectors 

given in Eq. (6). Therefore, since Rb = tFb, the residual force tQr in 

Eq. (15) is expressed as 

(16) 

Taking total design derivative of Eq. (15) at the critical displacement 

UC r and current design b*, one obtains 

IT atQr dUcr _ dpcr cr dR 
ab + cr db - - R db + (l-p ) db 

au 
(17) 

Assuming that the external load R is not dependent on the deformation, the 

partial derivative of unbalanced load in Eq. (16) with respect to state 

variables is given as atQr/atucr = - atFb/aUcr. It can be shown that 

atFb /aUcr is the tangential stiffness matrix tK computed at the critical 

displacement UC r • Thus it is a singular matrix. Now, premultiplying both 

sides of Eq. (17) by the transpose of an eigenvector y, using the 

condition that y is calculated from t Ky = 0, and simplifying one obtains 

cr tJl 
~ = T [_a _f- _ cr dR]/( TR) 

db Y ab p db Y (18) 

This is a simple expression for design sensitivity coefficients of the 

critical load factor. Note that the derivatives of the element internal 

forces at~ lab and dR/db are al so needed in the sensitivity analysi s of 

other constraints; see Eq. (3). Therefore, calculation of gradient of the 
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critical load factor pcr in Eq. (18) is quite straight forward and does 

not need much additional computational effort. 

4. EXAMPLE PROBLEMS 

Using the design sensitivity expressions a computer program is 

developed and several numerical examples are solved [11]. Geometric as 

well as material nonlinearities are treated. Constraints on stresses, 

displacements, strains and the buckling load are imposed simultaneously. 

Several problems have been solved with the buckling load constraint only 

to compare results with those available in the literature [12]. Only 

three example problems are discussed here. All results are obtained by 

routinely using the program IDESIGN3 [13] which uses a sequential 

quadratic programming algorithm with potential constraint strategy [14]. 

Two Bar Truss. This simple example has been used in the literature 

to treat buckling load problem [12]. The geometry, dimension and loading 

for the structure are shown in Fig. 1. The cross-sectional area of each 

member is treated as a design variable. The problem is to minimize volume 

of the structure such that it does not snap through. Only geometric 

nonlinearity is considered. The elastic modulus for the material is 

10,000 ksi. For calculation of sensitivity coefficients cross-sectional 

areas are taken as 0.5 in2• The following solution is obtained: pcr 

0.62582943, Ifr = (-1.05644845, -0.03121569) in. and y = (1.0, 

0.02165292). The critical load factor is obtained by using a very simple 

bisection approach and the eigenvector is computed by inverse power method 

[11]. The design sensitivity vector using Eq. (18) is obtained as 

(-1.002, -0.2498). Using the analytical expressions given in Ref. 12, it 

is obtained as (-1.003, -0.2507). The two vectors are quite close. 

The optimal design for the problem is obtained by starting from 

(0.952381, 0.190476)in2 with 0.1 and 10.0in2 as the lower and upper 

limits. The program IDESIGN3 [13] finds the optimum in five iterations as 

(0.7993, 0.7995)in2 with volume as 199.8 in3• This is essentially the 

solution given in Ref. 12; (0.7997502, 0.7997502)in2 with volume as 200 

in3• Thus the design sensitivity formula given in the paper is reasonable 

and works well. Several other examples with buckling load constraint are 

given in Ref. 11. 
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Optimal resul ts for the above two cases, and the 1 i near cases are 

given in Table 1. For the case of stiffness hardening (Case 1) the 
optimum volume is 509.866 in3• For the case of stiffness softening (Case 

2), the optimum volume is 981.419 in3• For the linear case, the optimum 
volumes are 714.385 in3 for Case 1 and 837.640 in3 for Case 2. The 

results show that the optimum volume of the structure with stiffness 
hardening (inclusion of geometric nonlinearities) is less than the optimum 

volume with the 1 inear case, whereas with stiffness softening it is 
higher than the one for the linear case. Therefore, it is not always true 

that lighter designs can be obtained by considering nonlinearity, as 
stated in Ref. 5. Also, with larger tolerance for displacement 

constraints, the optimum designs with nonlinear behavior are more 
realistic. It is important to note that optimum designs considering 

1 i near response wi 11 fai 1 catastrophi ca lly when the structure tends to 

soften. 

Nine Bar Plane Truss. The statically determinate truss shown in Fig. 
3 is to be optimized with the constraints on displacement at each node and 

the strain in each element. The design variable numbers (five) and member 

Table 1. Optimum Results for Six Bar Truss (Areas in in2) 

Element Linear Nonlinear Geometric * Case 1 Case 2 Case 1 Case 2 Case 2 

1 2.1922 2.7086 1.6232 3.1188 3.14396 
2 1.2144 1.3162 1.0892 1.5422 1.53072 
3 1.1781 1.2769 0.077224 1.5327 1.521454 
4 1.0000 1.0000 0.500000 0.70566 0.70566 
5 1.0200 1.4276 0.57271 1.6511 1.66439 
6 1.2144 1.3162 0.85646 1.6934 1.6823316 

Vo 1 , in3 714.385 837.640 509.866 981.4192 981.8200 
NAC 1 1 1 1 1 
MCV 0.45E-04 0.0 2.4774E-09 0.0 0.0 
NIT 22 16 17 24 21 

Notes: Case 2* is obta i ned us i ng the prog ram AD I NA whi ch is a general 
nonlinear analysis computer program; optimum solution is also 
obtained using this analyzer [7J. NAC = number of active 
constraints, MCV = maximum constraint violation at optimum, and 
NIT = number of iterations to satisfy a strict convergence 
criterion of 0.0001. 
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Figure I. Two Bar Truss (Unsymmetric) 

Six Bar Truss. The six-member cantilever truss shown in Fig. 2 is 

taken as a numerical example to compare optimal designs for linear and 

geomet ri ca 11 y non 1 i near response. It is des i gned with two cases: Case 1 

- with tension force in the horizontal direction, and Case 2 - with the 

compression force at node 5. In addition a downward force at node 5 is 

al so appl ied in both the cases. The cross-sectional area of each member 

is chosen as a design variable and volume of the truss is to be 

minimized. Starting design, and lower and upper bounds for all the 

variables are 2.0, 0.5 and 10.0 in2, respectively. For both the cases, 

the allowable displacement limits in Xl and x2 directions at all nodes are 

20 and 40 inches respectively. The elastic modulus is 30,000 ksi for all 

members. For Case I, the tens il e force induced in each member tend s to 

increase the tangent i a 1 st iffness. Thus, the structure hardens as the 

deflection increases. Whereas in Case 2 the compression force induced in 

each member tends to decrease the tangential stiffness. Thus, the 

structure softens as the deflection increases. 

X2 

~~® ,._--... ,X, 
leD 100" l@ 100 .. ---J 

Figure 2. Six Bar Truss 
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Figure 3. Nine Bar Plane Truss 

numbers are shown in the figure. The constraint information is as 

follows: strain limits for members 1-3; 0.005; members 4, 8, 9; 0.01, 

members 5-7; 0.0075; displacement limits as 5 and 10 inches in the xl and 

Y2 directions, respectively, at all nodes. The structure is analyzed by 

cons i deri ng geometri c as well as materi a 1 non 1 i nearit i es. The materi ali s 

considered to be elastic-plastic with elastic modulus, E = 200,000 ksi, 

tangent modulus, ET = 50,000 ksi and initial yielding stress, 0y = 100 

ksi. To investigate the role of the nonlinear buckling constraint in the 

optimal design process two cases are considered. In Case 1 the starting 

design of smaller cross sectional areas of 0.2 in2 for each member is 

used. In this case the structure collapses before reaching the final load 

level at the first iteration. On the other hand, in Case 2 starting 

design of larger cross sectional areas of 1.0 in2 for each member is 

chosen. The upper and lower bounds on the design variables are 0.05 and 

10 in 2, respectively. 

The optimum results for both the cases are the same: Design 

Variables = (0.18623, 3.3501, 2.656, 0.095745, 0.2256), Vol = 240.3086 

in3 , MCV = 4.95E-7 (Case 1) and 2.63E-7 (Case 2), NIT = 26 (Case 1) and 22 

(Case 2). The deta il ed des i gn hi story shows that the st ructure collapses 

at the 1st, 3rd and 4th iterations for Case 1. For Case 2 the starting 

design consists of larger member sizes and the structure does not collapse 

during the entire iterative process. The strain constraint for members 4 

and 8 is active at the optimum. 
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5. DISCUSSION AND CONCLUSIONS 

Design sensitivity analysis of nonlinear structures using 
incremental/iterative solution procedure is derived. In such a procedure, 
geometric as well as material nonlinearities are treated quite 
consistently and routinely. Whereas nonlinear analysis of structures 
requires solution of nonlinear equations using load incrementation and 
iterations with in it, the design sensitivity analysis requires only the 
solution of linear equations. In addition, most of the quantities needed 
in sensitivity analysis are already calculated in the incremental analysis 
phase. Specifically, derivatives of internal forces, stresses and strains 
with respect to the state vari ab 1 es are obtained numeri ca 11 y wi thout any 
additional calculations. Thus design sensitivity analysis of nonlinear 
structures requi res on 1 y a fract i on of the computat i ona 1 effort needed to 
calculate their response. In fact, recent experience with optimal design 
of nonlinear structures using ADINA [7] shows that 90 percent of the total 
computational effort is spent in the analysis phase only. Thus, with a 
little additional computational effort, nonlinear structures can be 
optimized. 

The preceeding discussion al so poi nts out a need to make the enti re 
analysis/optimization process more efficient for nonlinear structures. In 
this regard it is desirable to use sensitivity information to predict the 
displacements for the next optimization iteration. Such an approach which 
can be highly efficient has been evaluated on small scale problems [11]. 
It shows considerable promise for large scale applications. 

A very simple and effective procedure for design sensitivity analysis 
of the buckling load has been discovered and evaluated. It needs 
deri vat i ves of i nterna 1 forces whi ch are also needed for other 
constraints. 

Conclusions based on the present investigation are: 
1. Design sensitivity analysis of nonlinear response including the 

buckling load is quite efficient using the incremental structural 
analysis procedure. 

2. Optimization of nonlinear structures cannot be performed without 
the buckling load constraint. 
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3. Optimal design of structures with the assumption of linearity can 

be dangerous if the structure is likely to soften. The optimized 

structure can fail catestrophically. If the structure is likely 

to harden, then 1 i ghter optimal des i gns can be obta i ned wi th the 

inclusion of geometric nonlinearities. 
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ABSTRACT 

The shape optimal design of shafts and two-dimensional elastic structural components is 
formulated using boundary elements. The design objective is to maximize torsional rigidity 
of the shaft or to minimize compliance of the structure, subject to an area constrain. Also a 
model based on minimum area and stress constraints is developed, where the real and adjoint 
structures are identical, but with different loading conditions. All degrees of freedom of the 
models are at the boundary and there is no need for calculating displacements and stresses 
in the domain. Formulations based on constant, linear and quadratic boundary elements are 
developed. A method for calculating accurately the stresses at the boundary is presented, 
which improves considerably the design sensitivity information. It is developed a technique 
for an automatic mesh refinement of boundary element models. The corresponding nonlinear 
programming problems are solved by Pshenichny's linearization method. The models are applied 
to shape optimal design of several shafts and elastic structural components. The advantages 
and disadvantages of the boundary element method over the finite element technique for shape 
optimal design of structures are discussed with reference to applications. A literature survey of 
the development of the boundary element method for shape optimal design is presented. 
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INTRODUCTION 

The finite element method has been extensively used in structural optimization during the 
last decade, including successful application to shape optimal design of shafts and elastic struc
tural components. In contrast, the boundary element method has only recently been applied 
for shape optimal design of structures. 

Application of the finite element method for shape optimal design of structural components 
has been successfully demonstrated, but with some disadvantages. It is often required to redefine 
new finite element meshes as the geometry of the structure changes. An inaccurate evaluation 
of stresses at the boundary can be responsible for the calculations of very inaccurated design 
sensitivity analysis, thus leading to a large number of optimization iterations or even unrealistic 
designs. 

These difficulties with the finite element formulation can be partially overcome by using the 
boundary element method to discretize the structure. Results of the boundary element analysis 
of elasticity problems are more accurate than the corresponding solutions of the finite element 
models and it is expected to yield improved design sensitivity information. Consequently, a 
smaller number of iterations are needed to find the optimum shape. 

In the last years about thirty papers have been published in the development of the boundary 
element method for shape optimal design of engineering systems. A literature survey and a 
review of the state of art is presented. 

The boundary element method is less versatible for structural analysis than the finite element 
technique. Its applicability to shape optimal design of structures is at present limited to elasticity 
problems, subject to static constraints. However, with continuing development of the boundary 
element method, the range of shape optimal design problems that can be efficiently solved is 
expected to increase in the near future. 

In this chapter the shape optimal design of shafts and two dimensional elastic structural 
components is formulated using boundary elements. The optimal design objective is to maximize 
torsional rigidity of the shaft or to minimize compliance of the structural component, subject 
to a fixed amount of material. Also, a model based on minimum area and stress constraints 
is developed, where the real and adjoint structures are identical, but with diferent loading 
conditions. All the degrees of freedom of the boundary element models are at the boundary of 
structural systems and there is no need of in~ernal cells. Displacements and stresses are only 
calculated at the boundary. The boundary element models are based on constant, linear and 
quadratic elements. 

A method of calculating accurately the stresses at the boundary is presented, which improves 
considerably the design sensitivity information. It is developed a technique for an automatic 
refinement of the boundary discretization based on global equilibrium and on the continuity of 
the tangencial boundary stresses for unloaded smooth surfaces. 

The shape optimization nonlinear programming problem is solved by Pshenichny's lineariza
tion method. The models are applied to the shape optimal design of several shafts and elastic 
structural components. The advantages and disadvantages of the boundary element technique 
for shape optimal design are discussed with references to applications. 

LITERATURE SURVEY 

Extensive literature has been published on numerical methods for optimization of structures 
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whose shapes are defined by cross section and thickness variables. Only limited literature has 
appeared in the area of shape optimal design. Recently Pironneau [1] and H aug, Choi, and 
Komkov [2] have published books dedicated to this subject. 

The finite element method has been applied extensively to shape optimal design of structures 
since 1973 [3], while it is only in the last years that the boundary element method has been 
used in this field. 

Mota Soares, Rodrigues, Oliveira Faria and Haug [4-8] developed models for shape optimal 
design of solid and hollow shafts, based on constant, linear and quadratic boundary elements 
and nonlinear programming techniques. The design objective is to choose a shaft with a given 
area, which has a maximal torsional stiffness. These models are much more efficient and robust 
than the corresponding finite element discretizations, since the sensitivity information is more 
accurate and there is no need of calculatinmg the state variable in the domain. 

A similar model for the shape optimal design of shafts. based on the boundary element 
method, has also been developed by Burczynski and Adamczyk [9]. Optimality conditions are 
generated and the Newton - Raphson method is used to solve a set of nonlinear algebric equa
tions. The examples show that the number of analysis required is smaller than a corresponding 
finite element discretization. 

Models for the shape optimal design of bidimensional elastici ty problems based on the bound
ary element method and linear programming technique has been developed by Zochwski and 
Mizukami [10]. The design objective is to minimize the area, subject to displacement and geo
metrical constraints. The adjoint structure generated is not identical to the real structure. The 
boundary element model is compared with equivalent finite element models, and it concluded 
that the boundary element technique is more accurated but less efficient in computational time 
than the finite element method. 

Mota Soares, Rodrigues and Choi [11-12] have developed models for the shape optimal design 
of bidimensional elastic structural components based on linear and quadratic boundary elements 
and nonlinear programming techniques. The design objective is to minimize compliance, subject 
to a constant area. The adjoint and real structures are identical and subjected to the same 
loading conditions. Applications show that the boundary element model is more accurate and 
efficient than the corresponding finite element model. For general shapes, the technique used to 
calculated the stresses at the boundary was not very accurate. This problem has been overcome 
by Leal [13]. Also in Ref. 13 an automatic technique for mesh refinement has been developed. 
This adaptive scheme improves the discretization and the accuracy of the boundary stresses. 
This technique is based on the continuity of the boundary stresses for smooth unloaded surfaces. 

Also Mota Soares and Choi [14] have recently reviewed the progress of boundary element 
methods in shape optimal design of structures A model for bidimensional elasticity is developed 
based on minimum area and Von Mises stress constraint at the boundary. All the necessary 
information is only calculated at the boundary. This chapter is an update extension of this 
paper. 

Shape optimal design models for two and three dimensional elasticity problems, based on the 
boundary element method, has recently been developed by Burczynski and Adamczyk [15-18]. 
The design objective is to maximize stiffness, subjected to constant volume. The optimality 
conditions are derived for an optimal boundary. An interative process is used, based on finite 
differences and Newton-Raphson method to solve a set of nonlinear algebraic equations, enabling 
the determination of the unknown optimal shape. These authors [19] have recently extended 
the boundary element method formulation to the shape optimal design of elastic components 
subjected to dynamic constraints. 

Eizadian and Trompette [20-21] have also developed a model for shape optimal design of 
two dimensional structures, based on the boundary element method and nonlinear programming 
techniques. The design objective is to minimize the tangencial stress subjected to geometrical 
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constraints. The geometry is defined by linear and circular elements. Substructures are used to 
represent the fixed and moving boundaries. The multiplier method is used to solve the nonlinear 
programming problem. Several applications are presented, including the shape design of a 
connecting rod and a rotor. Numerical instabilities are reported 

Kane [22-23] is a recent Ph.D. Thesis has developed the sensitivity analysis of a discrete 
boundary element model for bidimensional elasticity problems. Isoparametric quadratic ele
ments and substructural analysis are used. Several shape optimal design problems are solved 
and it is demosntrated the effectiveness of the method used. It is shown that the boundary 
element model is competitive, if not superior, to the finite element formulation for shape opti
mization of elastic structural components. 

The boundary element method has also been applied to the shape optimal design of heat 
transfer problems. Futagami [24-26] presented a model for steady state and transient optimal 
heat conduction control based on linear and dynamic programming. A coupled boundary el
ement and finite element model is also developed. The applications show that the boundary 
elements is a powerful technique for these type of problems. 

Barone and Caulk [27] optimized the position, size and surface temperature of circular holes 
inside a two dimensional heat conductor to produce a minimum variation in surface temperature 
over a portion of the outer boundary. In this problem, which arises in thermal design of moulds 
and dies, the internal geometry of the heat conductor depends on the design variables. Since the 
objective function depend only on the boundary temperatures, there is no need of determining 
temperature in the interior. Also, it is not required to regenerate a boundary mesh every time 
the boundary is changed. The model is applied to the termal design of compression moulds. 

Boundary elements have been used by Meric [28-30] for the optimal heating of solids. The 
design objective is to achieve a desired temperature profile along a segment of a solid boundary 
with a minimum amount of boundary heat flux. Adjoint equations and the necessary optimality 
conditions are derived. The conjugate gradient method is used to solve the mathematical 
programming problem. Numerical results show the efficiency and the accuracy of the boundary 
element model. 

Meric [31] has also developed in this book, the shape design sensitivity analysis of thermoe
lastic solids using material derivative and adjoint variable method. Coupled thermal and elastic 
fields are taken into account. The boundary element method has been proposed for spacial 
discretization of relevant equations. Domain integral terms will exist in the integral equation 
associated with the adjoint temperature equation due to thermoelastic coupling effects. The 
author argues that the boundary element method has advantages over the domain type meth
ods, especially with its inherent higher accuracy in the evaluation of boundary stresses, which 
is crucial for shape design sensitivity analysis. Meric [32] has recently extended this work to 
shape design sensitivity analysis for nonlinear anisotropic heat conducting solid body. 

Kwak and Choi [33-34] have developed a general method for shape design sensitivity analysis 
of ellipitic boundary value problems using a direct boundary integral equation formulation. The 
material derivative concept and adjoint variable method are employed to obtain an explicit 
expression for the variations of the performance functional in terms of the boundary variation. 
The adjoint problem, although defined in the indirect boundary integral equation form, can also 
be solved using the same direct boundary integral equation of primal problem. The formulation 
is obtained for potencial, plate and elasticity problems. The accuracy of the sensitivity formula 
is studied with reference to a seepage problem. Good accuracy is obtained and the numerical 
results are compared with those of finite differences. 

The boundary element method has also being applied to the shape optimization of airfoils 
and wings by Pironneau [1]. The author argues that the boundary element method is advan
tageous over the finite element or finite difference techniques, when the solution of the partial 
difference equations is needed only at the boundary, and consequently its range of applicabilit} 
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is limited. 

BOUNDARY ELEMENT METHOD IN THE TORSION OF SHAFTS 

The boundary element method for the torsion of shafts is based on Green's formula, which 
allows the formulation of the certain boundary value problems as integral equations. involving 
the solution of the state variable and its normal derivative only on the boundary Consider a 
shaft defined in Figure 1. 

r = Piecewise smooth boundary 
n = Domain 

n = 0 u r 
Q f r 
q f 0 
P f 0 

n = Outwards normal to r 
r(P,Q) = Distance between P and Q 
x,y = Coordinate systems 

Figure 1 . Definitions. 

x 

Let z be the stress function of the torsion problem. This stress function must satisfy the 
Poisson state equation: 

~:~ + ~;~ = V 2 z =-2 in n 
z= 0 on r 

This equation can be transformed by considering a new variable 

1 2 1 2 
U = Z + -x +-y 

2 2 

into a Laplace state equation: 
V2U =O in 0 

u=!x2 +!y2 on r 
Using Green's identity, 

In(VV2U-uV2V)dO= £(v:: -U::)dr 
where u and v are solutions of the Laplace equation (3), and assuming that 

v = lnr 

equation (4) becomes 

In uV2 ln rdO = In In rV2udO -£ In r :: dr + £ U :n In rdf. 

For any sufficiently smooth function u(x,y) defined in 0, equation (6) becomes 

c(P)u(P) = f V2 U(q)In r(P, q)dO+ f u(q)~lnr(p,q)dr- f1nr(p,q)au(q)dr 10 1r an 1r an 

(.1) 

(.2) 

(.3) 

(.4) 

(.5) 

(.6) 

( 7) 



www.manaraa.com

where 

Since 
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C(P) = Ir :n Inr(P,Q)dr 

a dO 
an Inr(P,Q) = dr(P,Q) 

O(P, Q) = tan- 1 y(Q) - y(P) 
x(Q) - x(P) 

'P) 211" for P inside 0 
Ct = 0 for P outside n 

and if r has an unique tangent at P, then 

C(P) = 11" In r 

For the Laplace equation, V'2 u (p) = 0, and consequently equation (7) becomes 

r a r au 
c(P)u(P) - ir u(Q) an In r(P, Q)dr = - ir In r(P, Q) an (Q)dr 

( .8) 

(.9) 

( .10) 

(.11) 

( .12) 

(.13) 

This equation can be approximated numerically by dividing the boundary into N segments r; 
and on each segment u and au/an are assumed to be constant. Writing equation (13) at the 
middle point of each segment, N equations can be obtained of the form 

N h a Na h CUi - I: U; . an In rdr = - I: a~ . In r dr 
;=1 r 1 ;=1 r 1 

i=1,2, ... ,N 

where Ui and aud an are nodal values. This equation can be written as 

H u = G p 

where 

{ U1} {aut/an} 

u= UN P= aUN/an 

and Hand G are full unsymmetric matrices. 
Imposing the boundary conditions, equation (15) becomes 

G p = f 

where 
f =H u 

(.14) 

( .15) 

(.16) 

(.17) 

(.18) 

The solution of equation (17) gives the values of au/an at the boundary nodes. It should 
be noticed that for the solution of the Laplace equation it is only necessary to discretize the 
boundary. 

Although the boundary element equations are based on full and unsymmetric matrices, the 
number of degrees of freedom are small when compared with finite element models. 

For the constant element, the integrals of equation (14) can be evaluated in closed form, 
transforming it to a system (e,,,) centered at the point P and with e parallel to the segment in 
which the integration is performed, Figure 2. 
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r j = Boundary of segment 
€, '1 = Coordinate system 
a = Perpendicular distance 
from P to the segment 
in which the integration 
is performed 
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'L 
x p 

Figure 2. Transformation of the coordinate system 

The integrals of equation (14) are of the type: 

h .In(e + a2)d€ 
J 

(.19) 

For a linear boundary element, it is assumed a linear variation of u and au/an in each segment: 

u =N1Ul +N2U2 

aU-N ~+N ~ an- 1 an 2 an 

(.20) 

where Ni are the unidimensional linear shape functions, and u, and au'; an are the nodal values 
of u and au/an at the extremes of the element. Thus, equation (13) becomes 

N a NIr a 
ciU'-L r u-a Inrdr=-L Inraudr i=I,2, ... N 

j=l irj n j=l rj n 
(.21) 

and 

!b!.J..} & an 
(.22) 

i = 1,2,. '" N 

where Ci is the constant c for node i. 
The integrals of this equation can be evaluated using numerical and analytical integration. 

Equation (22) can be written in the same form as equation (15). 
When the boundary is not smooth, equation (12) is not valid and the diagonal values of 

matrix H are calculated analytically or from rigid body considerations [35]: 

HI o (.23) 

The boundary element method can also be applied to the solution of the Poisson equation 
(1). Following Fairweather, Rizzo, Shippy and Wu [35] the domain integral of equation (7) can 
be transformed to a boundary integral. Thus, the boundary element model for the solution of 
the Poisson equation does not need internal cells and all the calculations are at the boundary. 
The boundary integral equation for the torsion of shafts, in terms of the stress function, is: 

i a i az 1 i a c(P)z(P) - z-ln rdr = - In r-a dr - - -a (r2(ln r - l»dr 
r an r n 2 r n 

(.24) 

This equation can be used for the development of boundary elements. 
Full details of the boundary element method are presented in the books of Banerjee and 

Butterfield [35] and Brebbia, Telles and Wrobel [37]. 
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BOUNDARY ELEMENT METHOD IN TWO-DIMENSIONAL ELASTICITY 

The boundary element method for elasticity is based on Somigliana's identity [35j. This 
boundary integral equation is, with reference to the nomenclature of Figure 3, given by 

Gij(P)Ui(P) + r Uj(Q)Tij(p,Q)dr = r tj(Q)Uij(p,Q)dr + r bj(q)U.j(p,q)dn (.25) lr lr 10 
where Uij and Tij are the fundamental Kelvin solutions for displacements and tractions, due to 
a unit concentrated force in an elastic infinite space: Gij is the coefficient that depends on the 
geometry of the boundary at point P. 

When body forces are not presented, equation (25) is only dependent on the boundary 
displacements and tractions. In this case, there is no need for internal cells in the domain. 
The boundary can be divided into N segments, or elements, with surfaces rk, k = 1, ... , N. 
Within each element, geometry, displacement, and traction fields can be assumed to be linear 
or quadratic, as shown in Figure 4. 

r = Piecewise smooth boundary 
n = Domain 

Q f r 
P f r 
q f n 

n = Outwards normal to r at Q 
s = Tangencial direction 
Xi = Coordinates of System 
Ui = Displacements in Xi direction 
ti = Tractions on the r surface 
bi = Body forces 

Figure 3. Nomenclature. 

L. 
kJP4 tPZ -P3 

PI nodal 
tractions 

Geometric and field nodes 
Nt = HI - e) Nt = He - e) 
N2 = HI + e) N2 = 1 e 

N3 = He + e) 

~ = 1 

(a) Linear element (b) Quadratic element 

Figure 4. Linear and quadratic boundary elements for two-dimensional elasticity 
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Any variable within an element is assumed to be given by 

I 

e(E) = L Nm(E)em 
m=l 

(.26) 

where Nm ( E) are the shape functions in local nondimensional coordinates (-1 ::; E ::; 1). For 
the linear (I = 2) or quadratic element (I = 3) and em are the nodal values of the variable. 

For problems without body forces, equation (25) becomes 

Cij(Pn)Ui(Pn) + t r Nm(E)Tij(Pn,Q)J(E)dEuj = t r Nm(EJUij(Pn,Q)J(e)dEtj (.27) 
k=lJrk k=l Jrk 

where u!j is the value of Uj at local node m, tj is the value of tj at local node m, and J is the 
Jacobian for the transformation of coordinates. 

Nothing that Pn refers to a particular node, for all nodes equation (27) can be expressed in 
matrix form as 

Cu+Hu Gt 

H u = G t 

(.28) 

(.29) 

where u and t are the boundary nodal displacements and tractions. The elements of matrices 
Hand G can be obtained from the integrals 

Hr'r = [11 Nm(E)Tij(Pn,Q(E))J(E)dE 

Cit = {I Nm(E)Uij(Pn, Q(E))J(E)dE 

The strong singular integral of equation (30) and the corresponding coefficients Gij 
evaluated by rigid body considerations [35). 

The weak singular integrals of equation (31) lead to integrals of the type 

/
1 1 

_lIn ;f(E)dE 

which can be transformed to 

/1 1 /1 1 + E 10 1 1 In - f(E)dE = In(-)f(E)dE + 2 In - f(~)d~ 
-1 r -1 2r 0 ~ 

where 

(.30) 

(.31 ) 

can be 

(.32) 

(.33) 

(.34) 

The first integral on the right side of equation (33) is evaluated using standard Gaussian quadra
ture with four integration points, while this second integral is calculated numerically by formulas 
given by Banerjee and Butterfield [35). 

OPTIMIZATION OF THE GEOMETRY OF SOLID SHAFTS 

The design objective is to choose the shape of a solid shaft, with a given cross-sectional area 
and subjected to constraints on the design variables, which has maximal torsional stiffness. Full 
details of the theory is presented by Haug, Choi and Komkov [2). 

With reference to Figure 5, let z be the stress function of the torsion problem. 
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r = Boundary 
o = Domain 
x,y = Coordinate system 
n = Normal to the boundary 
bi = Design variables 
N = Number of design variables 
() = 27r/N 
A = Given area of shaft 
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y 

r 

Figure 5. Design variables of solid shaft. 

The torsional rigidity is given by the negative of 

1/Jo = - 10 2zdO 

which using Green's identity can be transformed to: 

(.35) 

(.36) 

For all simply connected domains, the problem is expressed as finding 0 to minimize 1/Jo subject 
to the constraint 

1/Jl = In dO - A = 0 (.37) 

and to prescribed constraints on the design variables. 
It has been shown by Haug, Choi and Komkov [2], by using total derivatives and variational 

calculus, that the variations of the objective and constraint functionals in terms of the design 
variations are given by 

81/Jo = - r (az )2vn dr = _ r (au - xnz - yny)2vn dr 
ir an ir an (.38) 

81/Jl = Ir vndr (.39) 

where nz and ny are the direction cosines of the boundary and Vn is the" normal perturbation" 
of the boundary. 

With reference to Figure 6 and assuming that the boundary is divided into constant or 
linear boundary elements, the first order approximation of the sectorial area change due to a 
perturbation in the design variables is given by 

(.40) 

bi = Design variable 
r; = Boundary of element 
8b; = Variation of design variable 

Figure 6. Perturbation of the boundary of an element. 



www.manaraa.com

615 

It should be observed that the equations (36-39) are boundary integrals of the state variable 
and domain integrals of the geometry of the shaft. These are the necessary equations for the 
solution of the nonlinear programming problem by the Pshenichny's linearization method [381. 
Also, for the solutions of the Laplace and Poisson torsion equations by the boundary element 
method, it is only necessary to evaluate the state variable at the boundary. Thus for the shape 
optimal design of solid shafts all the calculation of the state variable are at the boundary. 

OPTIMIZATION OF THE GEOMETRY OF HOLLOW SHAFTS 

The design objective is to maximize the rigidity of an hollow shaft with a known hole and a 
given cross-sectional area and subjected to geometrical constraints. 

With reference to Figure 7, the state equation in terms of the stress function is: 

V'2Z= -2 In 0 
z = 0 on r 
z =Zo on ro 

r az df = 200 
if" an 

( .41) 

where Zo is a constant to be determined. This Poisson equation can be transformed into a 
Laplace equation using equation (2). 

f= Outer boundary 
0= Domain 
n = Normal to outer boundary 
f 0 = Inner boundary 
0 0 = Area of hole 
no = Normal to inner boundary 
x,y = Coordinate system 
bi = Design variables 
N = Number of design variables 
A = Area of shaft 
0= 21r/N 

Figure 7. Design variables of hollow shafts. 

The torsional rigidity is given by the negative of 

1/;0 = - In 2zdO - 2zoOo 

which, using Green's theorem, can be transformed to 

i 2 2 Ir au Ir au 1/;0 = - (x + y )dO + u-a dr + u-a df 
(} f n f" n 

(.42) 

(.43) 
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The area constraint for the hollow shaft is identical to equation (37). FollowIng Gelfand and 
Fomin [39), it can be shown that the first variation of the objective function of the hollow shaft 
is identical to the first variation for the solid shaft (38). 

It should notice that equations (43) is a boundary integral of the state variable and a domain 
integral of the geometry of the shaft. Thus for the shape optimal design of hollow shafts it is 
only necessary to evaluate the state variable at the boundaries. 

SHAPE OPTIMAL DESIGN OF STRUCTURES BASED ON MINIMUM COMPLIANCE 

The design objective is to find the shape of an unloaded boundary of a specified structure, 
with a given area and subjected to constraints in the design variables, which has minimum 
compliance. 

Consider an elastic body that is rigidly supported on a boundary fo and loaded by tractions 
on boundary fl(see Figure 8). Also let the design boundary f2 be free from loading. It is 
assumed that there are no body forces. The nomenclature used is shown in Figure 8. 

fo= Boundary where displacement are zero 
fl = Boundary where tractions are at t~ 
f2 = Design boundary (unloaded surface) 
0= Domain; fo U fl U f2 
til = Displacements 
ti = Tractions 
Xi = Coordinates 

Figure 8. Definition of domain. 

The objective function is the compliance of the structure, which is given by 

r 

(.44) 

The optimization problem is expressed as finding f2 to minimize tPo subjected to the area 
constraint 

tPl = In dO - A ::; 0 ( .45) 

where A is the given area of the domain. 
To solve this nonlinear programming problem numerically, it is necessary to evaluate the 

first variation of the objective and constraint functionals. A general formulation for sensitivity 
analysis of volume and boundary functionals is presented by Haug, Choi and Komkov [2). For 
unloaded design boundaries of linear materials the first variation of the objective functional of 
equation (44) becomes 

(.46) 

where U is the strain energy density and Vn is the» normal perturbation" of the boundary. The 
variation of the constraint functional of equation (45) is 

(.47) 
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The boundary can be divided into N linear and/or quadratic boundary elements. It is assumed 
that the design boundary is represented by M geometrical linear elements. With reference to 
Figure 6, the first order approximation of area change due to a small perturbation in the design 
variables is given by 

r v"dr = !sinOi(bi8bj + bj8bi) ir; 2 
(.48) 

The variation in compliance given by equation (46) can be accurately and efficiently calculated 
by the boundary element method. For linear elements, the strain energy density is constant on 
each element. Thus, equation (46) becomes 

M 

81/10 = - L Um h v"dr 
m=1 r", 

(.49) 

where Um is the strain energy density of a boundary element. This energy can be evaluated 
from the boundary tangential stress. For an unloaded design boundary, the only non-zero stress 
component is the tangential stress. 

For shape optimal design, all equations that are necessary (equations (44)- (47)) to imple
ment the Pshenichny linearization method [38] of nonlinear programming are boundary func
tionals of the displacement, tractions and stresses, and domain functionals of the geometry. 
Consequently, shape optimal design of structures, based on minimum compliance, can be effi
ciently and accurately solved using the boundary element method to discretize the structure. 
Also, there is no need of calculating displacement and stress in the domain. 

SHAPE OPTIMAL DESIGN OF STRUCTURES BASED ON STRESS CONSTRAINTS 

The design objective is to find the shape on an unloaded boundary for minimum area, 
subjected to constraints on the stresses and design variables. The nomenclature of Figure 8 is 
used. 

The objective function 

(.50) 

should be a minimum. The variation of this area functional is given by equation (47). 
The stress should be less than the allowable stress Ua in the domain or boundary. For plane 

stress or strain problems with smooth boundaries and without body forces, it can be proved 
[40] that the maximum Von Mises stress is always at the boundary. The Von Mises yield stress 
constraint functional, average over a small region Ok, defined in Figure 9, can be represented 
by 

i 10 t/>dO 
1/1/c = t/>m/cdO = l dO (.51) 

o Ok 

where 
(.52) 

U,I = VUll + U~2 + 3uf2 + Ull U22 (.53) 
and uii are the components of the stress tensor. In equation (51) m/c is a characteristic function 
defined as 

- 1. n 
m/c =m/c = --- an "/c 

10k dO 
m/c = 0 in 0 (.54) 
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Ii 

Figure 9. Domain of the stress constraint. 

Following Haug, Choi and Komkov [2], the variation of equation (51) is given by 

(.55) 

where £;;(A) are the components of the strain tensor of the adjoint structure. The adjoint 
structure is identical to the real structure, but with different loading conditions. For each 
constraint, the adjoint problem is defined by the equilibrium equation: 

O'ij.;(A) + F;" = 0 (.56) 

where A is the adjoint variable, and F;" are the adjoint body forces 

(.57) 

where D"Ii; are the stress/strain relations. The boundary conditions of the adjoint structures 
are: 

where t; are the adjoint tractions 

Ai=O on ro 
O'ijn;=O on rl U r2' rio 
O'ijnj=t; on rio 

and nj are the normal components to the boundary. 

(.58) 

(.59) 

It should be noticed that the sensitivity equation (55) depends on stress at the boundary of 
the real structure and on strains at the boundary of the adjoint structures. Also, there is no 
need of calculating displacements and stresses of the real and adjoint structures in the domain 

Thus, the boundary element method should be efficient and accurate in the shape optimal 
design of structures based on minimum area and stress constraints. 

It is assumed that the design boundary is represented by quadratic elements with straight 
geometries. For the boundary element model, the small area Ok is defined in Figure 10. 
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• Boundary node 
n = Normal direction 
s = Tangential direction 
I = Length of element 
0.1 :S f3 :S 0.25 
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Figure 10. Domain of the stress constraint for the boundary element model 

Also within 11k the tangential stress U 88 and strain, and the shear Un. and normal U nn 

stresses are linear in the s direction, but constant in the n direction. The shear and normal 
stresses are only dependent of the boundary tractions. These assumptions are only accurate, if 
the parameter j3 in the boundary element model is small, preferably much less than 0.25. 

With these approximations, the distributed adjoint body forces are zero. Also, the concen
trated adjoint body forces are identical to the adjoint boundary tractions. In Figure 11 it is 
represented the loading conditions of the adjoint structure. 

The application of the boundary element method to calculate the stresses and strains of the 
adjoint structure is almost standard. However, it should consider the integration of the pseudo 
tractions in surface 2, 3 and 4 of Figure 11. Because of the almost singularity of the integrals 
when i ( 11k it is necessary to integrate the pseudo adjoint tractions with nine Gaussian points. 
For this reason the parameter j3 is the boundary element model should be larger than 0.1. 

Figure 11. Adjoint loading for stress constraint. 

BOUNDARY STRESSES 

The accuracy of the boundary stresses ans strains is crucial for the shape optimal design 
of elastic structures. It is well known that the stresses at the boundary are more accuratelly 
calculated by the boundary element method than the finite element technique. 
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Contrary to the stresses at interior points, the stresses at the boundary are not calculated 
directly by the boundary element method. In reference [35] a technique for calculating boundary 
stresses is presented. However, this technique has been found not to be accurate as design 
changes [13]. Another technique has been developed by Hartmann [41;, which calculates accurate 
boundary stresses [131. 

The boundary element method calculates accuratelly the displacement u, and the tractions t, 
at the boundary. Also the derivative of the displacements with respect to tangential coordinate 
s (au;/as) can be calculated accuratelly. 

The stresses at the boundary must also obey the Hooke and Cauchi Laws. Thus the following 
equations can be derived: 

2J.l// 
u,']' = ---8,']'fkk + 2 11 f,']' 

1 - 2// r 

au; _ au; aXj 
as aXj as 

(.60) 

( .61) 

(.62) 

where J.l is the rigidity modulus, // is the Poisson ratio, 8;j is the Kronecker delta, and nj are 
the normal components of the boundary. 

For two dimensional elasticity these equations form a system of 7 algebric equations: 

1 0 0 a 0 0 -,\ U11 0 
nl 0 n2 0 0 0 0 un tl 
0 n2 nl 0 0 0 0 U12 t2 

0 1 0 -,\ 0 0 a Ul,l 0 (.63) 
0 0 0 -n2 0 nl 0 u2,l ul,s 

0 0 1 0 -J.l -J.l 0 Ul,2 0 
0 0 0 0 -n2 0 nl U2,2 U2,. 

where 

a = -,\ - 2J.L 
2J.L nu 

,\=--
1 - 2// 

(.64) 

The solution of equation (63) at any boundary point gives the boundary stresses. Since the 
right hand side of this equation is calculated accuratelly by the boundary element method, the 
boundary stresses are accurate. It should be noticed that equation (63) is only valid for smooth 
boundaries. 

AUTOMATIC MESH REFINEMENT 

Although the boundary element discretization is able to adapt itself to a new configuration 
without major distorsion of the boundary elements, it is convenient to have. an automatic gen
erator of boundary element meshes. Contrary to the adaptive finite element method which had 
been developed for more than a decade, the adaptive boundary element technique has just been 
iniciated. Rank [42-43] have developed an h-adaptive boundary element method using a local 
indicator based on a-posteriori estimated error derived from the Galerkin boundary element 
method presented by Hsiao and Wendland [44]. The author proved that uniform refinement 
presents a lower convergence rate than an adaptive refinement. The main drawback of the 
technique developed is that it can not be applied to the commonly used boundary element 
method. 
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Rencis and Mullen [45-47] have presented another h-adaptive method based on assymptotic 
error estimate in terms of the characteristic dimension of the uniform mesh This technique 
applied at local level allows the calculation of the number of elements necessary for a given 
accuracy. The authors have applied this technique to potencial and to elasticity problems. 

A p-adaptive boundary element method has been developed by Alarcon and colaborators 
[48-51] using a modified criterion defined for finite element analysis by Peano et al. r52]. The 
hierarchical process terminates when global equilibrium is achieved. The authors concluded that 
the use of hierachical functions are effficient since the introduction of new degrees of freedom do 
not destroy the previous system matrices. The technique has been applied to potential problems 
with some advantages. 

In this paper a technique for automatic boundary element mesh refinement is introduced 
based on a global and local equilibrium criterion. 

In a good discretization global equilibrium is achieved. For systems without body forces, 
the integrals 

1r ti d r i = 1,2 (.65) 

are almost null. If the integrals of equation (65) are more than a prescribed value means that 
equilibrium has not been obeyed and consequently discretization is not acceptable. In this case 
a global refinement is performed, being each element divided into two elements. This procedure 
is used until global equilibrium is obtained. 

After global equilibrium is achieved a local criterion is applied based on the continuity of 
the tangencial stresses for unloaded boundaries. The tangencial stress calculated for the same 
node in two adjacent elements should be almost the same; if the difference is greater than an 
acceptable value, the adjacent elements are divided into two elements. The number of divisions 
is limited to avoid numerical integration instabilities. 

The application of this technique to the gear tooth presented by Lachat [51] shows the 
effectiveness of the process for problems with large stress gradient. An acceptable discretization 
was achieved with one global and three local divisions (Figure 12). 

Acting 
~ __ ~Forces 

Figure 12. Adaptive process of boundary element mesh for gear tooth. 
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APPLICATIONS 

The models developed are applied to the shape optimal design of several shafts. In all 
applications, the boundary element model is based on the boundary integral formulation (13) 
of the Laplace equation (3). 

The constant element model is applied to the shape optimal design of a shaft presented 
by Choi, Haug, Hou and Sohoni [54]. The design objective is to choose the shape of a shaft 
with a cross-section of 14.0, that must fit a square housing of 16.0 and has a maximal torsional 
stiffness. This problem has been solved using finite elements and the model is shown in Figure 
13.a. The discretization used for the boundary element formulation is shown in Figure 13.b. 

384 linear finite elements 32 constant boundary elements 
209 degrees of freedom [54] 32 degrees of freedom 

(a) Finite element model (b) Boundary element model 
Figure 13. Finite element and boundary element models 

Table 1 shows the results obtained and compare them with a finite element solution. It 
can be concluded that the boundary element results converges faster than the finite element 
solution, because the nodal values of the normal deri vative of the state variable at the boundary 
are more accurate. 

Iteration b1 b2 b3 b4 b5 Torsional Area 
number Rigidity 

1 2.0000 2.0392 2.1648 2.1865 2.2109 31.0226 14.0906 
2 2.0000 2.0392 2.1648 2.1669 2.2218 30.8578 14.0451 
3 2.0000 2.0392 2.1648 2.1639 2.2212 30.8162 14.0338 
4 2.0000 2.0392 2.1648 2.1593 2.2206 30.7538 14.0169 

5 2.0000 2.0392 2.1648 2.1581 2.2206 30.7382 14.0126 
6 2.0000 2.0392 2.1648 2.1544 2.2203 30.6912 14.0000 

Finite 2.0000 2.0392 2.1648 2.1675 2.1953 30.4541 14.0021 
Elements (30 
iterations) 

~41 

Initial Design: Circle with 2.2 Radius; b; is the design variable at 11.25(i-l) degrees 

TABLE 1 - Numerical results for optimal design of shaft 

The boundary element constant model is also applied to the same problem but with dif
ferent initial shapes. In all the applications the model converges to the correct shape, without 
redefining the boundary element mesh, in a few iterations, as shown in Figure 14 and 15. 
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Housing 

shaft 

D 
Initial shape Iteration N ~ 1 

Iteration N ~ 2 Iteration N ~ 14 

Figure 14. Modification of the geometry of shaft with iteration process: square 
initial shape. 

Housing 

shaft 

Initial shape Iteration N ~ 1 

Iteration N ~ 13 Iteration N; 18 

Figure 15. Modification of the geometry of shaft with iteration process: 
triangular initial shape. 
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The constant element model for hollow shafts is applied to the shape optimal design of several 
shafts. The discretization used is presented in Figure 16. All the shafts have an elliptical, square 
or round hole and an initial circular or elliptical outside boundary. Several cross-sectional areas 
of the shaft are considered. In all the applications, the final shape is found in a few iterations 
and without redefining the mesh. Some results are presented in Figure 17 and these values are 
in accordance with the exact solutions of Banichuk [40] and the finite element results of Hou, 
Haug and Benedict [55]. The iteration process for two particular shafts are shown in Figure 18 
and 19. 

32 design variables 
64 constant boundary elements 
64 degrees of freedom 
• Boundary nodes 

Figure 16. Boundary element model for hollow shafts. 

Figure 11. Hollow shafts results for several cross-section areas. 

The linear boundary element model for hollow shafts is applied to the shape optimal design 
of shafts with an elliptical hole and subjected to constraints on the cross section area. The 
boundary element model has 48 degrees of freedom and 24 design variables. The results are in 
accordance with Figure 17.a. 

The boundary element model for structures based on minimum compliance is applied for the 
shape optimal design of several elastic structural components. The square plate of Figure 20 is 
subject to uniform in-plane tensile loads along its four edges. The design objective is to fing the 
shape of an initially square hole, of area 1.0 percent of the plate, that minimizes compliance. 

The boundary element model is represented in Figure 21. The model has 12 quadratic 
boundary elements, 12 linear design boundary elements, 13 design variables and 12 degrees 
of freedom. The final design is achieved after 7 iterations, 14 structural analysis, and 5 CPU 
minutes on a PRIME 750 super mini-computer. The evolution of the design of the hole is 
represented in Figure 22. It should be noticed that after only two iterations, the design is 
almost optimal. 
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o 
Initial shape Iteration N~3 

Iteration N~ 4 Iteration N ~ 12 

Figure 18. Modification of the shape of shaft with iteration process: 
elliptical hole. 

I nit i al shape Iteration N~3 

Iteration NH Iteration N~ 5 

Figure 19. Modification of the shape of shaft with iteration process: 
square hole. 
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Figure 20. Square plate subjected to biaxial applied loads. 

12 quadratic elements 
72 degrees of freedom 
13 design variables 

+--+ Linear boundary element 
.1.......-..1. Quadratic boundary 
,..........,. el~ment 

• Boundary node 

~ 12 linear design 

design 

*+./+++lt7 / ~~e:!~;~ 
variab les U.~_--+-_--+-__ .... 

Figure 21. Boundary element model of one quarter of plate. 

Convergence obtained 
7 iterations 
14 boundary element analyses 
5 CPU minutes on PRIME 750 

-.- .-.- Initial shape 

----- Iteration N~ 1 

Iteration N~ 2 

Final shape 

Convergence Obtained 

7 Iterations 
14 Boundary element analysis 
5 cpu minutes on a PRIME 750 

Figure 22. Evolution of design of hole with iteration process. 



www.manaraa.com

627 

The final design of the hole is almost a circle, whose radius is constant to within 1.8 percent. 
Also, the tangential stress at the boundary of the hole is constant to within 1.0 percent. The 
stress concentration factor of the hole is 2.02, which an error of only 1.0 percent. The final 
design is almost identical to the analytical solution given by Banichuk [40]. 

The same problem is also solved using a simpler model with 8 quadratic elements, 8 linear 
design elements, 9 design variables, and 48 degrees of freedom. A practically identical design is 
achieved. 

The formulation developed is applied to shape optimal design of the fillet shown in Figure 
23. The boundary element model is shown in Figure 24. Starting from an initially straight 
line design and with a constraint on the area, the design process takes six iterations and eleven 
boundary element analysis to achieve the final design. The evolution of shape of the fillet is 
shown in Figure 25. The iterative process takes 1.5 CPU minutes on a PRIME 750 super 
mini-computer. The stress concentration factor of the final design is 1.37. 

la, Ib= Applied loads 
r 2 = Design boundary: unknown 
Modulus of elasticity = 2.26 x 1011 N 1m2 

Poisson Ratio = 0.3 

0.229 0.165 0.114 

fbi~ ! If. 
!-I ---:-O.-::50::::8~m---t·1 

Figure 23. The fillet problem. 

9 design variables 
14 quadratic eelements 
10 linear elements 
76 degrees of freedom 

10 Linear design boIrodary __ ...,....~._nts 

Figure 24. Boundary element model for fillet. 

Number of iterations = 6 
N umber of analyses = 11 
Time of computation = 1.5 CPU minutes 
Stress concentration factor = 1.37 

Figure 25. Evolution of design of fillet with iteration process. 
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The boundary element solution are similar to finite element results presented in references 
[56-57]. The number of degrees of freedom of the boundary element model, however, is about 
five times smaller than the equivalent finite element model. The computer time required by 
the boundary element method is a factor of approximately eight less than that required by the 
finite element method. 

In each application with the compliance model, the final design is essentially achieved in a 
few iterations. However, due to the lack in sensitivity of compliance to a small perturbation 
in a remote boundary, the final iteration process converges slowly. This fact is a limitation of 
compliance as an objective function, especially for very stiff structures, for which the applied 
forces are very far from the design boundaries. 
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ABSTRACT 

A general method for shape design sensitivity analysis as applied to 

potential problems is developed with the standard direct boundary integral 

equation (BIE) formulation. The material derivative concept and adjoint 

variable method are employed to obtain an explicit expression for the 

variation of the performance functional in terms of the boundary shape 

variation. The adjoint problem defined in the present method takes a form 

of the indirect BIE. This adjoint problem can be solved using the same 

direct BIE of the original problem with a different set of boundary 

values, which brings about computational simplicity. The accuracy of the 

sensitivity formula is studied with a seepage problem. The detailed 

derivation of the formulas for general elliptic problems and a more 

elaborate numerical scheme will be described elsewhere. 
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1. Statement of the Potential Problem 

Consider the following mixed boundary value problem for a potential u 

defined on an arbitrary domain Q with a sufficiently smooth boundary aQ 

2 
V U = 0 in Q ( 1 ) 

u(x) = b(x) on aQo f 
a (2) 

a-nu(x) = c(x) on aQl 

where b(x) and c(x) are smooth functions prescribed on the boundary, and 

aQ = aQo U aQ 1 • 

By introducing the fundamental solution G, and applying the Green's 

formula for u and G, the following direct BIE is obtained: 

( ) ( a a au Xo + faQ {u x) an G(x,xo)- an-u(x) G(x,xo)} ds 

a={l'XOEQ 
~,x E aQ o 

o 

(3) 

where ds means that the integration is done with respect to x along aQ . 

For Xo e aQ, the direct BIE defined by Eq (3) can be transformed to the 

following boundary integral identity by multiplying an arbitrary function 

~(xo) defined on aQ and integrating over aQ with respect to xo 

- a~ u(x) faQ ~(xo) G(x,xo) dsoJ ds = 0 (4) 

where dso means the integration with respect to Xo along aQ . 

It is noted from the indirect BIE formulation [1] that an arbitrary 

potential w(x) can be expressed in terms of ~(xo) as follows 



www.manaraa.com

635 

(5) 

and the normal derivative on the boundary is expressed as 

(6) 

Substitution of Eqs (5) and (6) into Eq (4) yields the following simple 

expression 

fiH2 { u(x) ailn w(x) - ililn u(x) w(x) } ds = 0 (7) 

2. Method of Shape Design Sensitivity Analysis 

Consider now a general functional defined as an integral over the 

boundary in the following form 

_ (ilU ) 
1/1 - f ilQ f u, an ds (8) 

where f is a function of u and aU/iln defined on ilQ. The case of 

volume integrals can also be considered in this form since they can be 

transformed to boundary integrals with the application of Eq (3). 

Now the objective is to get an explicit expression for the variation of 

1/1 in terms of the boundary shape variations with the aid of the direct 

BIE formulation. Following the material derivative idea [2,3], a velocity 

field V(x) at t=O is considered and the varied domain is described by the 

following transformation: 

fit = T (fl , t ) 

xt = T ( x, t) ;;; x + t V (x) 
(9) 

Then the material derivatives at time t=O: 
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u U I + V'Vu (10) 

~ = f ClQ { P u + Q ~ + f H Vn } ds (11 ) 

where P = at/au, Q = at/(Clu/Cln), H is the mean curvature of the 

boundary and Vn is the normal component of V on the boundary, which will 

be termed as the boundary variation. Since a changed boundary can be 

described by specifying only Vn, the tangential component Vs is 

unimportant in general, as long as design of a shape is considered. 

Decomposing the right hand side of Eq (11) as a sum of integration over 

ClQ O and ClQ 1, and taking into consideration of the prescribed boundary 

conditions, 
. 

~ = f P u ds f Q au ds ClQl + ClQo Cln 

+ f P ~ V ds + f Q ~ Vn ds + f "" f H Vn ds (12) oQo on n oQl on 0" 

. 
Now u and ~ are related implicitly to Vn through the governing BIE 

(3). To represent these terms in terms of Vn, the identity (7) is 

utilized. After a lengthy manipulation with several simplifying relations 

among various derivatives, the following relation is obtained: 

f {'V u· 'V w - ~ ( oW + W H )} Vn ds - oQ s s an on (13 ) 

. 
In order to eliminate u and ~ in Eq (12), an adjoint system is 

introduced, which has the same form as Eqs (5) and (6) and satisfies 

the following condition 

u* = - Q 

ou*_ P 
a-n-

on 
(14) 

on 
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Although this adjoint system is expressed in a conventional indirect BIE, 

it can be shown that a direct BIE of the form as the original BIE, Eq (3), 

is equivalent to this. This direct BIE formulation is employed for 

numerical solution of u*. Substituting u* in place of the arbitrary 

potential w in Eq (13) and utilizing the condition (14), Eq (12) takes the 

form sought for: 

au au* 
-';;\U ·I;\U* + an ( an + u* H ) + f H } Vn ds 

+ J ( P - ~*) ~ V ds ( ) ac arlo an an n + J arl1 Q + u* an Vn ds (15) 

The evaluation of this sensitivity formula requires solutions for the 

potential u and the adjoint variable u*. The variable u* is obtained by 

means of a direct BIE instead of indirect BIE, as noted above. This 

facilitates an efficient calculation, since the same BIE is used with a 

different set of boundary values. 

3. Numerical Example for a Seepage Problem 

To illustrate a numerical implementation of the shape design sensitivity 

formula derived above, a seepage problem is considered. 

Consider a two dimensional flow through a porous medium as shown in 

Fig. 1. With some simplifying assumptions such as homogeneity and 

isotropy of the medium, the governing equation based on Darcy's law and 

the boundary conditions are given as follows 

2 
'V u 0 in rI (16) 

au 
0 rl l u = y, an- on 

u = 1 on r2 
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~ = 0 on f3 

J 
an 
u = 0.3 on f4 

u = y on f5 (I 7) 

where u is the total head. The over-determined conditions on fl make fl 

a free boundary. This problem can be transformed to an equivalent shape 

optimization problem by defining a proper objective functional associated 

with one of the conditions given on the free boundary. The following 

functional is taken for this purpose: 

(18) 

For determination of the free boundary, the height is chosen as the 

design variable, and the velocity field is assumed unidirectional so that 

fl stays within the dam width. Then, the normal and tangential movement 

of the boundary can be written as 

Vn = oy ny , Vs = oy nx (19) 

where nx and ny represent the x and y component of the normal vector on 

the boundary. Since the velocity field is taken to be vertical in the 

present problem, the sensitivity formula derived above is modified to 

include the tangential boundary variation Vs. Following a similar 

procedure as used above, the following result can be derived 

where oy is the boundary variation in vertical direction as given in 

Fig. 2, and ay/as = nx. 

If the formula (15) is used, one simply obtains 

• [aU au* 2 ] $ = If {---+(u-y) H} Vn -2(u-y) oy ds 
1 as as 

(21) 
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Table 3. Comparison of ~ and u-y values for initial and final design 

u-y value at each node 
~ value 2 3 4 5 6 

Initial 2.497E-03 -1.677E-02 -2.784E-02 -3.848E-02 -5.624E-02 -6.747E-02 
Final 2.596E-06 5.061E-05 6.693E-04 

7 8 9 
6.478E-02 -5.600E-02 -4.537E-02 
2.228E-04 2.393E-04 3.396E-04 

6 

2 

f T4 .3 

~~~~r~3~~~~JL 

6.848E-04 5.981E-04 6.829E-05 

10 11 12 
-3.589E-02 -2.380E-02 -1. 118E-02 
1.298E-04 2.268E-05 1.109E-04 

Fig.2 Shape variation 
corresponding to 
vertical nodal change oy 
and normal nodal change 

Vn 

Fig. 1 Initial geometry for seepage problem 

~I ~------------------------, 

.9 
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• 1 

LIGGETT .. LIU 

CURRENT METHOD 
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.433 
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Fig.3 Approximation of the normal 
vector n and curvature H 

at i-th node 

Fig. 4 Optimal solution of seepage problem 
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functional, and the 

au* 
Cln 

by ay V 
an n 

from the 

adjoi nt 

2{u-y) 

o 
u* 0 
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nyVn· In these equations, the last term in 

variation of y appearing in the objective 

variable u* is determined by the condition: 

(22) 

It is noted that the variations from (20) and (21) represent different 

situations; the sensitivity from (20) refers to the change of shape 

depicted in solid line in Fig. 2, while that from (21) corresponds to the 

change in dashed line. 

For a numerical experimentation for the sensitivity analysis, a linear 

boundary element model is used with 28 nodes and 11 design variables which 

are the y coordinates of node 2 through 12 as shown in Fig. 1. The y 

value of node 1 has been determined by extrapolation of those of node 2 

and 3 because of poor accuracy of solution at the corner. A simple 

numerical scheme is used in the following, and a more elaborate scheme 

will be reported later, with a proper treatment of corners and 

discontinuities. The nodal values of normal vector and curvature 

appearing in Eqs (20) and (21) are calculated by approximating the two 

line segments with 3 nodes as a circle passing through those 3 points as 

shown in Fig. 3. After all these calculations are performed, one obtains 

the desired sensitivity coefficients for each node on the free boundary. 

In order to compare the accuracy of the results by present method with 

those of finite differences, define ~o and ~k as the functional values 

for initial and modified designs for k-th node, respectively, and let 6~k 

be 1/Ik- 1/10, and let ~ be the predicted difference calculated by either 

(20) or (21), depending on the change taken. The ratio ~/6~k times 100 
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is used as a measure of accuracy. Numerical results for the change by 

solid line in Fig. 2 are shown in Table 1. Here, 0.1% change is used such 

that 6y = O.OOly. In Table 2, the sensitivities for design changes in 

the normal direction, corresponding to the dashed line in Fig. 2, are 

shown for comparison. Even with a simple numerical scheme, these results 

show good accuracy, except at node 11, where the absolute value of 8~ 

is an order smaller than the others. 

Utilizing the sensitivity results given by Eq (20), optimum free 

boundary is now obtained. A conjugate gradient method is used, and eight 

iterations are made from the initial shape given by Fig. 1. The result in 

[4J is compared in Fig. 4, and the two match very well. The objective 

functional and differences u-y at each node are compared in Table 3 for 

the initial and final design. 

4. Discussions and Conclusions 

The present work provides a procedure and formulas for the shape 

design sensitivity analysis using the BIE formulation. The method is 

illustrated by deriving explicit ~ormulas for potential problems. Despite 

that the formulated BIE is not in symmetric form, the adjoint variable 

method has been successfully applied by taking advantage of the relations 

between the direct and indirect BIE's. Design sensitivity analysis is 

carried out for a seepage problem, and the numerical results are compared 

with those of finite differences. Good accuracy has been obtained even 

with a simple numerical scheme. A detailed method extended to general 

elliptic type problems and a more elaborate numerical scheme will be 

reported elsewhere. 
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4. J. A. Liggett and P. L-F. Liu, The Boundary Integral Equation Method 

for Porous Media Flow, George Allen & Unwin, 1983 

Table 1. Sensitivity result for ~ calculated by Eq (20) 

Node 1/Ik L'l1/l k 1/1 ~/L'l1/lk(%) 

2 2.499E-03 2.423E-06 2.419E-06 99.8 
3 2.501E-03 4.340E-06 4.378E-06 100.9 
4 2.504E-03 6.481E-06 6.754E-06 104.2 
5 2.507E-03 9.653E-06 9.355E-06 96.9 
6 2.508E-03 1.141E-05 1.141E-05 99.9 
7 2.509E-03 1.161E-05 1.154E-05 99.4 
8 2.506E-03 8.539E-06 8.273E-06 96.9 
9 2.502E-03 4.537E-06 4.414E-06 97.3 

10 2.499E-03 1.990E-06 2.054E-06 103.3 
11 2.497E-03 2.714E-07 3.096E-07 114.1 
12 2.496E-03 -1.265E-06 -1.239E-06 97.9 

Table 2. Sensitivity result for 1/1 calculated by Eq (21) 

Node 1/Ik L'l1/lk 1/1 ~/L'l1/lk(%) 

2 2.504E-03 6.911E-06 6.900E-06 99.8 
3 2.508E-03 1.056E-05 1. 068E-05 101.2 
4 2.510E-03 1. 340E-05 1. 374E-05 102.5 
5 2.513E-03 1.617E-05 1.564E-05 96.8 
6 2.513E-03 1. 606E-05 1. 621E-05 101.0 
7 2.512E-03 1. 466E-05 1.459E-05 99.5 
8 2.507E-03 9.972E-06 9.652E-06 96.8 
9 2.502E-03 5.043E-06 4.899E-06 97.1 

10 2.499E-03 2.141E-06 2.207E-06 103.1 
11 2.497E-03 2.891E-07 3.260E-07 112.8 
12 2.496E-03 -1.299E-06 -1. 271E-06 97.8 

1/10= 2.4971::-03 
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SENSITIVITY ANALYSIS OF 

THERMOELASTIC SOLIDS 
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Abstract. Shape design sensitivity analysis of thermoelastic solids is done 
by using the material derivative idea and the adjoint variable method. Boun
dary element methods are proposed for spatial discretization of system of 
equations and relevant functionals. 

1. INTRODUCTION 

Inverse (or synthesis) problems of engineering science, as against direct 

(or analysis) problems, find important applications in practice. Optimization 

or optimal control problems, free and/or moving boundary problems, material/ 

load/shape/eigenvalue design or identification problems may be cited as 

examples. 

Shape design sensitivity analysis (SDSA) of elastic structures was de

veloped recently by several authors [1,2]. In reference [1], the material 

derivative idea of continuum mechanics and the adjoint variable method of 

design sensitivity analysis were utilized effectively to obtain computable 

expressions for the effect of shape variation on the objective functions. 

For spatial discretizations, the finite element method (FEM) has been 

extensively used for a variety of problems in structures. The boundary element 

method (BEM), however, is attracting more and more researchers as an alter

native technique in the field of shape sensitivity analysis [3,4). The main 

reason for this is that more accurate stress values may be obtained by this 

method, thus requiring a smaller number of iterations needed to find optimal 

shapes. 

The BEM is especially suitable for the "boundary method" of SDSA, as 

against the "domain method" [5). In the boundary method of SDSA the required 

sensitivity information is evaluated in terms of integrals defined on the 

boundary, where accurate data on functions is already available by the BEM. 

In this paper, the SDSA of thermoelastic solids is performed by the same 

scheme as given in [1] for elastic structures. The BEM is outlined in terms of 

an example problem for the spatial discretizations. 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
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2. PROBLEM STATEMENT 

Consider a thermoelastic, isotropic and homogeneous solid body in 3-

dimensions. The equilibrium equations may be written as 

in D -q. . + Q = 0 and cr .. . + b. = 0 
1,1 1J ,J 1 

where D is the domain of interest which is to be varied; q. and cr .. are the 
1 1J 

heat flux vector and stress tensor; Q and b i are the distributed heat source 

and body force vector, respectively. The constitutive equations may be written 

as 

q. 
1 

-k T, i and cr.. = ;\ uk k 0.. + \.l (u. . + U. .) - yTo .. 
1J ,1J 1,J J ,1 1J 

(2) 

where k is the thermal conductivity; ;\ and \.l are Lame's constants; T and u. 
1 

are the temperature and displacements, respectively, and y=(3;\+2\.l) a,a 

being the coefficient of linear thermal expansion. 

Mixed boundary conditions are applied on the surface S 

namely 

T = T 
o 

and u. = U. 
1 10 

and 

(3) 

(4) 

where qn is the normal heat flux; n i is the unit vector normal to the boundary, 

and ti are the boundary tractions. Conservative loading that depends on the 

position, but not the shape of boundary is considered on S2' 

A general integral performance functional, representing either an objec

tive functional to be minimized or a constraint to be satisfied, is adopted 

for the present SDSA of thermoelastic ~olids: 

I=!D f(x.,T,q.,cr .. ) dO +! g(xi,qn,t i ) dS +! h(x.,T,u.) dS (5) 
1 1 1J S1 S2 1 1 

It is now desired to find the effects of shape variation on the func

tional I. Once design derivative of the performance functional is calculated, 

iterative direct methods can be utilized for any structural optimization or 

shape identification problem in thermoelasticity. 

3. SHAPE DESIGN SENSITIVITY ANALYSIS 

Following reference [1], with a slight modification in the procedure, 

the adjoint variable method and the material derivative idea will be utilized 

for the present sensitivity analysis in thermoelasticity. 
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3.1. Augmented Functional 

-
By adopting an optimal control methodology, an augmented functional I 

is defined as 

* * I = I + f [T (-q. . + Q) + u. (a.. . + b.)l dD 
D 1.,1. 1. 1.J ,J 1. 

(6) 

* * where T and u i are the adjoint temperature and displacements, respectively. 

By inserting eqn. (5) into (6) and using integration by parts twice, I 
may take the form of - - - -

I = I +1 +1 where 
o 1 2 

* * * * I f (f + qiT'i + QT - a .. u. + b .u.) 
0 l.,j D I.J 1. 1. 

- * * I f (g + t.u. - qnT ) dS 
1 

SI 
1. 1. 

* * I f (h + t.u. -q T ) dS 
2 

S2 
1. 1. n 

3.2. Material Derivative of Integrals 

dD (7) 

(8) 

(9) 

Since the shape of domain D is treated as the design variable in the 

shape sensitivity analysis, it is convenient to think of D as a continuous 

medium and utilize the material derivative idea from continuum mechanics. 

Following reference [1], the material derivatives of domain and surface inte

grals are given as follows 

f WI dD 
D 

f w dS 
S 2 

f w' dD + f wIVn dS 
DIS 

flw' + (w + Hw ) V J dS 
S 2 2,n 2 n 

(10) 

( 11) 

where WI and w2 are general regular functions defined in D and on S; (.), 

( )' and () denote the material, partial and normal derivatives of ( ), ,n 
respectively; H is the curvature of the boundary S in R2 and twice the mean 

curvature of S in R3; and V is the normal component of the design pertur
n 

bation velocity Vi. 

By using eqns. (10) and (11), and noting the functional forms of f, g 

and h as given in eqn. (5), the material derivatives of eqns. (7)-(9) may be 

obtained in the following form: 

.!. 
(~ af af af , * *' I f T' +- q! + u! + a .. + q! T 

,i 
+ q. T , i 0 D aT aqi 1. au. 1. oa .. I.J 1. 1. 

1. I.J 

*' * *' *' + QT - a! . u. - (J! . u. + b. u. ) dD 
I.J l.,j I.J l.,j 1. 1. 
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+ J (f + 
S 

{ ~ J 
S1 aqn 

ah 
J { at S2 
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* * * * q.T . + QT - 0 .. u. + b. u i ) v dS 1 ,1 IJ 1,j 1 n 
(12) 

ag * *' * *' q' + t! + t! u. + t. u. - q'T - qnT n at. 1 1 1 1 1 n 1 

[ ag ~ t. * * + + + (t. u .) - (qn T ) aq qn,n at i 1,n 1 1 ,n ,n n 

( 13) 

ah , * *' - q I * *' T' + au. u· + t! u. + t. u. T - qnT 1 1 1 1 1 n 
1 

+[~ ah * * T + 
au. u. + (t.u .) - (q T ) 

aT ,n 1,n 1 1 ,n n ,n 1 

(h * * } + H +t .u. -q T )l v dS 1 1 n n 
( 14) 

It is noted that the curve aS2 that bounds the loaded boundary surface 

S2 is taken as fixed, so that the velocity field Vi at aS 2 is zero. 

At this point, partial derivative form of the constitutive eqn. (2) 

may be introduced into eqns. (12)-(14), and integration by parts may be used 

repeteadly. The boundary conditions (3)-(4) are also substituted into the 

resulting equations in their partial derivative forms. 

3.3. Adjoint Problem 

* It is now convenient to define adjoint heat flux vector q. and adjoint 
* 1 

stress tensor 0 •. as 
IJ 

q~ = -k(T*. + ~ ) 
1 ,1 aqi 

* o .. ~ ) * af * _ ~ )l '\ 0 .. + ]l [(u. . -" ) + (u. . 
00 kk IJ 1, J 00 ij J , 1 a 0 j i IJ 

The adjoint problem then satisfies the following equations 

* * in D -q .. + Ct.0 •• 
1,1 11 

* _ ag 
on S T -aq 1 n 

* ah on S qn aT 2 

af 
+ -

aT 

* and u. 1 

and 

o 

* t. 
1 

and * af 
0 ... +-

IJ,J aU i 
o 

ag 
at. 1 
ah 
au. 1 

( 15) 

(16) 

( 17) 

(18) 

(19) 
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3.4. Material Derivative of the Performance Functional 

If the primary and adjoint problems are satisfied, the material deriv

ative of the performance functional I can be expressed in terms of integrals 

defined only on the moving boundary portions Sand S , i.e., 

I J {[f 
Sl 

1 2 

* * * * * * + q. T , i 
+ QT - o .. u. + b.u. + t.u. qn T 1 lJ 1,j 1 1 1 1,n ,n 

* * * * + H (g + t.u. - qnT )l V + (t. u. k -q T k) Vk } 1 1 n 1 ~, n , 

* * * * + Clh T + f {[f +qi T , i 
+ QT - a .. u. + b.u. 

S 1J 1,j 1 1 ClT ,n 
2 

* + (t.u.) 
1 1 ,n 

* - (q T) + H (h + t.u* - q T*) 
n ,n 1 1 n 

V 
n 

* * - (u. t. k - T q k) Vk} dS 
1 1, n, 

dS 

Clh + - U. 
Clu. 1,n 1 

(20) 

It is noted that if the boundary inputs of T and u. on Sl, and of q and 
1 n 

ti on S2 do not vary along the corresponding boundary portions, or if the 

tangential component of Vk is taken as negligible, then it is suff~cient to 

consider only the normal component Vn of the design velocity field on the 

boundary for the derivative calculations. 

4. EXAMPLE PROBLEM 

A two-dimensional example problem is now given in order to explain spe

cifically some of the details of the BEM of discretization. The quantities 

Q, b i and u io are taken as zero; Sl is held fixed (i.e., Vn=O on Sl)' while 

S2 is varied. It is also assumed that To' q and Pi are constant along the 

corresponding boundary portions. 

A relevant performance functional is expressed as follows 

I '!'J (21\ T + 82qiqi + 83 O •• € .. ) dD 
2 D lJ lJ 

1 q2 i f (8 6 T2 + u.u.) + "2 J (8 .. + 85 t.t.) dS + 87 dS 
Sl n 1 1 S2 1 1 

(21) 

where 8i (i=1,2, .. 7) are given weighting parameters. The functional forms 

of the integrands in the above equation have been chosen such that the BEM 

especially proves to be efficient for numerical calculations. 

The primary and adjoint problems for the example problem can be given 

in terms of the primitive quantities, i.e., (primary and adjoint) temperature 

and displacements, as follows: 
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in D kT ,ii 0 (22) 

A u. J ,j i 
+ )l (u. . 

1.,J 
+ U .. ) . 

J ,1. , J 
yT , i 

0 (23) 

* * * (24) A u. + )l (u .. + u .. ) . 0 
J ,j i 1.,J J ,1. oJ 

* * k T ,ii + y(u. - f\u.) . + 8 1 0 (25) 
1. 1. , 1. 

T = T and u. 0 (26) 
0 1. 

* * (27) u. - 8 s ti and T 8 4 qn 1. 

on S 
2 

-k T , i 
n. q (28) 

1. 

A u. n. + )l (u. . + u .. )n. P. + yTn i (29) 
J ,j 1. 1.,J J ,1. J 1. 

* * .)n. (30) A u. n. + )leu>: . + u. 8 3 t i + 8 7u i J ,j 1. 1.,J J ,1. J 

* (31) -k T , i 
n. = k 82 q - 8 6 T 1. n 

The field equations (22)-(31) are written in an order, suggesting that 

* * they must be solved for T, u i ' u i and T consecutively following the same 

order at each iteration level in an iterative procedure. The material 

derivative of I is thus given by 

1 

* * +8 6 TT + 8 7 U.U. + t.u. - q T 
,n 1. 1.,n 1. 1.,n n,n 

5.. BOUNDARY ELEMENT METHODS 

V dS 
n 

(32) 

Accurate evaluation of boundary stresses and strains are essential for 

design sensitivity information. For the last several years there have been 

some attempts to use the BEM for shape optimal design of engineering systems 

[3,4]. The BEM can be viewed as consisting fundamentally of two major steps: 

(i) transformation of the differential equations in the domain D into integral 

equations on the boundary S; and (ii) discretization of these integral equa

tions via fini~e element concepts and subsequent solution by the collocation 

method. 
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The spatial discretization of the primary and adjoint problems can be 

achieved by means of the BEM. In the following subsections, some remarks on 

the utilization of the method for the specific problem at hand will be given. 

* 5.1. BEM for T and T Problems 

The primary and adjoint temperature problems, i.e., the so-called 11. and 

* T problems, are described by the Poisson's type of scalar elliptic PDE's. 

* The T-problem is defined by eqns. (22), (26) and (28), while the T -problem 

* is given by eqns. (25), (27) and (31). It is reminded here that the T -problem 

* is solved after the solution of T, u i and u i problems. Hence, the domain and 

boundary "inputs" in the relevant equations are assumed to be known for the 

current design estimate. 

In the case of Poisson's equation, the transformation of the differential 

equation into an integral equation is achieved through Green's second identity 

as follows : 

f QT dD + f (qn T - qn T) dS 
D S 

(33) 

where T and qn may denote either the primary or the adjoint temperature and 

normal heat flux, respectively; T is the "two-point" fundamental solution of 

Laplace's equation; q is the normal heat flux corresponding to T; ~ is any 
n 

boundary point on S; c(~) is the internal solid angle for any ~. 

* For the solution of T and T problems corresponding expressions for Q 

in D, Ton S1 and qn on S2 should be inserted in eqn. (33). It is noted that 

the domain integral in the above equation vanishes for the solution of the 

T-problem, since Q is prescribed as zero in the example problem. Hence, eqn. 

(33) represents a boundary integral equation for the T-problem. 

* In the case of the T -problem, the domain integral term in eqn. (33) 

may be put in the following form by noting eqn. (25) : 

* f [y(u1.' - 8 .. u .) . + 81] T dD 
D 1. ,1. 

(34) 

It is well known that the main advantage of the BEM is obtained when 

there exist no domain integrals in the relevant integral formulations [6J 
. * For the solut1.on of the T -problem, this advantage is lost due to the pres-

ence of the domain integral term in the above equation. It has been observed 

that for the SDSA of thermoelastic solids, this type of domain integrals 
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will always exist, coupling the primary and adjoint fields in the domain. 

For the implementation of the BEM, eqn. (33) represents the starting 

point. Standard BEM procedure [6] is then followed which is summarized as 

follows : 

i) Divide the boundary S into boundary elements 

ii) Approximate T and qn on each element by using finite element concepts 

* iii) Divide the domain D into internal cells (needed only for the T -problem) 

iv) Use point collocation method (using the element ~odes as the collocation 

points) 

v) Introduce the known boundary values for T on Sl and qn on S2 . 

vi) Solve the resulting set of algebraic equations for the unknown values 

of qn on Sl and T on S2· 

* 5.2. BEM for u. and u. Problems 
~ ~ 

The primary and adjoint displacement problems, i.e., the so-called u i 
* and u i problems, are described by vector elliptic PDE's, which are given by 

eqns. (23), (26), (29) and (24), (27), (30), respectively. The BEM for elas

ticity problems is based on Somigliana's identity [6]. The relevant boundary 

integral is given by 

f b. u .. dD + 
D ~ ~J 

-
f (t. u.. - u. t .. ) dS 
S ~ ~J ~ ~J 

(35) 

where u. and t. may represent either the primary or adjoint displacements 
~ ~ 

and tractions, respectively; u .. and t .. are the fundamental solution for 
~J ~J 

displacements and tractions; c .. is the coefficient that depends on the ge~ 
~J 

ometry of the boundary at point ~. 

It is noted that the thermal effects in the present thermoelastic problem 

are taken into account in the u.-problem by considering them as body forces 
~ * in D (i.e., -yT .) and 

,~ 
surface tractions on S (i.e., yTn.). The u. -problem 

~ ~ 

has no body forces involved as can be seen from eqn (24). Hence, the domain 

integral term drops out for this case in eqn. (35). 

Since the body forces in eqn. (23) are generated by the steady-state 

temperature field satisfying eqn. (22), it is possible to use a technique 

introduced by Rizzo and Shippy [7] to convert the domain integral into a 

surface integral. For the present 2-dim. problem, the domain integral term 

is thus given by the following [6] : 
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-J yT . dD -I yT n. dS + III J [T a (r2 Jl,nr) u .. u .. 
D ,~ ~J S ~ ~J 2(A+3jJ) 

S 
,n ~ 

- T 
a a (r 2J1,nr) dS an ~. 

J 

(36) 

where r is the euclidean distance between the field and source points. By 

introducing the above expression into eqn. (35) a boundary integral equation 

defined solely on S may be obtained. 

* Spatial discretization of eqn. (35) by the BEM, either for ui or u i -

problem, follows a similar procedure as is given in the preceding subsection, 

except that no internal cells are now required. 

5.3. Evaluation of I and i 

Domain integral terms in eqn. (21) may be converted into surface inte

grals by using integration by parts and the homogeneous thermoelastic equi

librium equations resulting in the following expression for I : 

1 1 I = -2 J [Sl(x.n. T- -2 X.x. T ) - S kTq + S t.u. ] dS 
S ~ ~ ~ ~ ,n 2 n 3 ~ ~ 

q2 + S t.t.) dS + -21 J (S T2+S 7u.u.) dS 
n 5 ~ ~ 8 2 6 ~ ~ 

(37) 

The derivative t is, on the otherhand, given by eqn. (32), where the curvature 

H of the linear boundary elements can be taken as zero. 

* * After the solution of T, u i ' u i and T problems by the BEM for the 

current design estimate of domain D, the evaluation of I,eqn. (37), is 

straightforward. To find t, however, it is necessary to calculate boundary 

stresses and the derivatives of displacements. This can be done through the 

use of thermoelastic constitutive equations and Cauchy law on the boundary. 

Further details on these calculations and also the treatment of V on the n 
boundary as an expression in terms of design variable perturbations can be 

found in references [3,4]. 

6. CONCLUSIONS 

The SDSA for thermoelastic solids has been performed by using the material 

derivative idea and the adjoint variable method. Coupled thermal and elastic 

fields are taken into account in obtaining the material derivative of a general 

performance functional. 

The BEM has been proposed for spatial discretization of relevant equations. 
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It has been found that domain integral terms will always exist in the inte

gral equation associated with the adjoint temperature equation due to the 

thermoelastic coupling effects. It is maintained, however, that the BEM still 

has advantages over the other domain type of methods, ~ecially with its 

inherent higher accuracy in the evaluation of boundary stresses, which is 

crucial for any shape design sensitivity analysis. 
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INTRODUCTION 

Engineering system design used to be compartmentalized by 

discipline. Material specialists would design better 

materials, fluid mechanics specialists would design optimum 

shapes, structural analysts would produce optimum structural 

designs based on materials and loads obtained by material and 

fluid mechanics specialists, and so on. Occasionally, 

interdisciplinary effects forced cooperation between 

disciplines. Aeroelastic phenomena such as flutter or loss of 

control-surface effectiveness forced aerodynamic and 

structural analysts to cooperate in the creation of the new 

discipline of aeroelasticity. However, when such 

interdisciplinary phenomena did not force cooperation, very 

little existed, beyond the conceptual design level. 

While integrated design is more truly optimal than 

compartmentalized design (e.g., ref. 1), the difference in 

performance was not enough of an incentive to overcome the 

difficulties associated with design integration until two 

modern developments provided an additional incentive to do so. 

The first development is the advent of tailored materials 

such as graphite-epoxy composites which permit the designer to 

tailor material properties to suit the specific requirements 

of the system being designed. The second development is the 

introduction of active control systems which permit a designer 

to improve performance through the use of a control system 

rather than by improving structural, aerodynamic, acoustic or 

other system characteristics. 

The increasing interdisciplinary nature of the design 

process is most noticeable in the aerospace industry. A case 
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in point is the Grumman X-29A forward-swept-wing fighter for 

which composite materials were tailored to produce favorable 

aerodynamic-structure interaction. Because a metal swept

forward wing has an inherently destabilizing interaction 

between bending and twisting, it is not practical to build 

this type of wing with metal. However, a composite material 

was developed to reverse this destabilizing interaction and 

make the X-29A design feasible. 

Integration in the design of complex engineering systems 

can be achieved at the governing equations level, by 

decomposition into self-contained but coupled tasks, or by 

judicious use of both approaches. 

Equation-level integration in analysis typically begins 

with a realization that a number of disciplines contribute 

terms to equations that describe a particular physical 

phenomenon. Then, it is logical to form a unified set of 

equations from the terms contributed by the participating 

disciplines, research the best ways of solving these 

equations, and build operational experience by verification 

tests and applications. 

In most cases equation-level integration is not required 

to describe physical phenomena, and integration is useful only 

for obtaining superior designs. Then integration by 

decomposition is in order. Each discipline remains a self-

contained task. The integration is achieved by defining the 

interdisciplinary information channels, and finding the best 

ways of sequencing (iterating) the disciplinary computations. 

The sequencing can be strictly serial, figure 1, or it can 

exploit parallelism that leads to a hierarchial arrangement 

shown in figure 2. Frequently, a mix of the serial and 

parallel schemes is appropriate. 

The same two approaches may be distinguished with regard 

to synthesis. Equation-level synthesis relies on equation

level integrated analysis in the same manner as single 

discipline synthesis - as a source of data describing the 
behavior and sensitivity of the object being optimized. The 
optimization procedure is shown in figure 3. 
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The same scheme can accommodate synthesis based on 

analysis decomposed serially by placing the content of figure 

1 in the "ANALYSIS" box in figure 3. Examples of this type of 

multidisciplinary optimization applied to a large space-based 

antenna structure and a glider configuration are provided 

later. 

However, if the analysis is decomposable in a way shown 

in figure 2, then the optimization can also be decomposed as 

shown in references 2, 3, giving rise to a multilevel 

optimization scheme illustrated in figure 4. According to 

reference 4, each box in the scheme can represent a physically 

separable subsystem (object decomposition), or a discipline 

analyzing one of many aspects of the same object (aspect 

decomposition). 

The scheme relies on the separate optimization subtasks 

self-contained within subsystems or disciplines, and on 

sensitivity derivatives of the optimum to the inputs coming 

from the next higher level in the decomposition hierarchy. An 

example of one such sensitivity derivative is a derivative of 

minimum structural weight with respect to the wing aspect 

ratio. An algorithm for computing optimum sensitivity 

derivatives without engaging in a costly finite difference 

procedure is given in reference 5. Optimization of the entire 

system uses these derivatives for approximate assessment of 

the effects of system-level design decisions on the subsystems 

and contributing disciplines. 

The objective of the present paper is to survey 

multidisciplinary optimization applications and focus on 

multilevel optimization as a means for integrating the design 

process. The paper begins with a survey of multidisciplinary 

optimization problems, continues by reviewing one practical 

multilevel optimization technique applied to a generic system 

and concludes with an example of a multilevel 

multidisciplinary optimization. 

SURVEY OF INTERDISCIPLINARY OPTIMIZATION PROBLEMS 

In some distant future we may expect that engineering 

system design will be fully integrated. At the present, 

design integration is typically proceeding by combining the 
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design process of two or three disciplines. The following 

survey discusses briefly several areas of multidisciplinary 

optimization and then describes in more detail two 

multidisciplinary design studies. 

Controls and Structures 

Active control systems are intended to reduce the demands 

on the structure by load alleviation or by active damping. 

Load alleviation systems anticipate naturally occurring loads 

and add loads that tend to cancel some of these original 

loads. A typical example is the load alleviation system 

designed for the B-52 Bomber which senses gusts ahead, and 

deflects control surfaces to alleviate them. Similar systems 

(called active suspension) are envisioned for future cars 

which will sense the bumpiness of the road and apply 

compensating loads to improve ride quality. 

Active suspension systems also include an active damping 

component in that they sense vibrations and apply forces to 

damp them out. This active vibration damping is particularly 

important in applications to large and flexible space 

structures (e.g,. ref. 6). 

At present the control and structure design are 

compartmentalized with the control system designer assuming 

that the structural design is given. There is, however, a 

growing interest in simultaneous control/structure design (see 

ref. 6 for additional references). As shown in reference 6, 

the compartmentalized design approach can result in very large 

weight penalties if it leads to a structure which is too 

flexible. 

Material and Structure 

Tailored materials such as graphite-epoxy composites 

permit the designer to tailor material behavior to suit the 

structural application. For example, by proper selection of 

ply orientations it is possible to produce a composite 

laminate with a miniscule coefficient of thermal expansion, 

suitable for minimizing thermal deformations in large space 

antennas. Similarly, it is possible to take advantage of the 
different failure characteristics of various ply combinations. 

For example, reference 7 shows that the failure load of 
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compression-loaded plates with holes can be increased by 

removing the zero plies from a strip containing the hole. 

At the present, while there is substantial interaction 

between composite material designers and structural 

designers, the design process is still disjoint. This is not 

acceptable because in composite materials, both material 

response and failure characteristics depend on the structural 

applications. That is, the same composite material can 

display vastly different characteristics when used in 

different structures. Therefore, optimum structural design 

must be coupled with the material design process to produce a 

true optimum, and to prevent unexpected failure modes. 

Structures and Aerodynamics 

The interaction between structures and aerodynamics is 

strong enough 50 that even in the traditional design process 

it was considered a separate superdiscipline - aeroelastic 

design. However, the aeroelastician worried only about 

aeroelastic interactions where the deformations of the 

structure affect the aerodynamic loads. Thus aeroelastic 

design considered phenomena such as divergence, flutter, and 

control surface effectiveness. Aeroelasticians did not 

consider the possibility of using the structural deformation 

to improve aerodynamic performance (because the effect is too 

small in metal aircraft), or changing the aerodynamic design 

to reduce structural weight. This latter trade-off between 

aerodynamic and structural performance was considered in an 

approximate way in the conceptual design stage. 

With the growing use of composite materials designers are 

beginning to consider using structural deformations to improve 

aerodynamic performance. The next section of this paper 

contains an example of combined aerodynamic/structural design 

of a glider. It was performed by a cooperative effort between 

aerodynamicists and structural analysts, rather than by a 

person or a group who mastered both disciplines. 

Structure and Heat Conduction 
Currently there is little interaction between the thermal 

design and structural design of systems subjected to high 

thermal loads. A typical example is a reentry vehicle which 
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requires thermal protection systems such as insulation, 

ablation shields, or passive and active cooling systems. In 

the current design process the thermal protection system is 

designed to keep the temperature of the structure below a 

specified limit. The structure is then designed to carry the 

thermal and mechanical loads at that temperature. The current 

interaction between the two design processes is due to the 

fact that the structural material distribution affects the 

temperature distribution. 

Reference 8 showed that the sequential thermal/structural 

design process is not always optimal. The combined design 

process can reduce the total weight of the system by 

overdesigning the thermal protection system to produce a 

structure operating at lower temperatures where its strength 

is higher. The combined design approach is facilitated by 

finite element software packages which permit the analyst to 

perform both the structural and thermal analysis 

simultaneously. 

MULTIDISCIPLINARY DESIGN EXAMPLES 

To complete this survey of interdisciplinary optimization 

problem, we consider in more detail two multidisciplinary 

design studies. The two have in common a serial decomposition 

approach (see fig.3). 

Aerodynamic/Structural Optimization of Glider Wing 

The integrated aerodynamic/structural design of the 

glider wing (ref. 9) is an example of combined optimization 

where the disciplinary analyses are performed separately and 

integrated through the optimizer. This case also provides an 

example of the pay-offs of integrated design. 

The glider mission is to fly over a distance by gaining 

altitude circling in a thermal, and then glide to the next 

thermal, losing altitude in the process (see fig. 5). One 

measure of performance used in the study was the cross-country 

speed of the glider which is the average speed considering 

both phases of the flight. A second measu"re of performance 

was the weight of the glider for a given cross-country speed. 
The design variables and constraints are summarized in tables 

1, 2 and figures 6, 7. Two optimization procedures used to 
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demonstrate the advantage of the integrated approach are shown 

schematically in figure 8. The first is a sequential 

approach, typical of the traditional compartmentalized 

approach. The aerodynamic design is first obtained for an 

initial estimate of the weight by varying the aerodynamic 

variables to maximize the cross country speed. The loads 

based on this aerodynamic design are then used to optimize the 

structure for minimum weight, and the new weight is used to 

restart the aerodynamic design. The process was considered 

converged when the change in weight from one iteration to the 

next was less than 0.2 percent. The combined optimization 

varies simultaneously both the aerodynamic and structural 

parameters to obtain the optimum design. The combined 

approach is able to take advantage of two interactions that 

the sequential approach cannot. The first interaction is the 

reduction in structural weight that can be achieved by 

modifications in aerodynamic shape, and the second is the 

improvement in aerodynamic performance which can be achieved 

by tailoring structural deformations. 

The two design procedures were applied to a simple model 

of the wing. The aerodynamic analysis was based on lifting 

line theory, the aerodynamic design variables controlled the 

planform and twist distribution, and constraints were placed 

on maximum angle of attack and bank angle. The structural 

analysis was based on a beam model, the design variables were 

skin and web thickness and spar-cap areas, and constraints 

were placed on stresses and the divergence speed. The results 

of the two optimization procedures are compared in table 3. 

The iterated sequential design performance was only one 

percent inferior in the performance to the integrated design. 

However, this one percent in performance was parlayed into an 

11 percent weight gain, when the combined design was optimized 

for minimum weight. The reason for the disparity is that the 

structural design was limited to orthotropic skin (no changes 

in ply orientations or percentages of various plies allowed) 
so that no anisotropic aeroelastic tailoring for improving 
aerodynamic performance was available. On the other hand, 
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there was complete freedom to tailor the aerodynamics to help 

the structure. 

Optimization of Antenna Parabolic Dish Structure for Minimum 

Weight and Prescribed Emitted Signal Gain 

This particular optimization application has been 

described in reference 10. The object of optimization is the 

minimum weight design of the support structure of a large (55 

m diameter) parabolic dish antenna shown in figure 9. The 

support structure is made up of two surface lattices held 

apart by connecting struts forming a tetrahedral-cell truss. 

The concave side lattice is overlaid with a fine wire mesh 

that forms a parabolic reflector converting the 

electromagnetic radiation emitted from the feed placed in the 

focuS into a coherent beam. 

In orbit, the antenna moves through the Earth shadow and 

changes its orientation relative to the Sun. The resulting 

heating which varies over the structure and also in time 

distorts the support structure and the parabolic reflector 

surface causing a loss of emitted signal strength. The 

optimization calls for finding the cross-sectional areas of 

the support trusses such that the structural weight is minimum 

while not permitting the surface distortion to rise above the 

level that would weaken the electromagnetic radiation below a 

prescribed limit. 

Two design variables were chosen to control three cross-

sectional areas: one for all members in both of the two 

surface lattices, and one for all the connecting truss 

members. The analysis begins with thermal analysis to 

determine the member temperatures at a particular location on 

orbit. The temperatures are functions of the member cross-

sections and generate stresses and deformations which are 

calculated next. The deformations are passed to the 

electromagnetic radiation analysis program to obtain the 

resulting weakening of the emitted signal. 

Thus, the analyses are arranged serially as shown in 

figure 10 (the thermal and thermal-structural analyses were 
executed in this implementation as processors of the same 

finite element programming system, reference 11). Derivatives 
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required for optimization, performed by a useable-feasible 

directions algorithm (ref. 12), were obtained by a finite 

difference procedure. In keeping with the programming system 

approach (ref. 13), the optimizer was coupled directly not 

with the full analysis (boxes TA, SA, EMRA in fig. 10), but 

with an approximate analysis (box AA) to conserve the computer 

resources and to leave their control in the hands of the user. 

The approximate analysis is a linear, derivative-based 

extrapolation with an automatic switching to reciprocal 

variables as proposed in reference 14. 

The results shown in figure 9 indicate a weight reduction 

by more than 1/3 from the initial value representing the best 

design achieved without systematic optimization. The surface 

precision as measured by the deflection RMS value has also 

improved, and the emitted signal strength measured by the gain 

value was kept above the required minimum of 19000. Judging 

by the results the optimizer reduced weight and distortion 

together. This occurred because in a thermally loaded 

structure, the internal forces may be reduced by reducing the 

structural sizes. The optimizer took advantage of this and 

achieved increased performance and reduced weight. 

MULTILEVEL OPTIMIZATION 

The last two examples, the glider and the antenna, 

demonstrated benefits attainable when optimization of 

engineering systems is carried out by means of stringing out 

disciplinary analyses in a sequence coupled to an optimizer 

set to improve a measure of system performance under all the 

appropriate constraints. The set of analyses included in the 

sequence responds to the optimizer requests for information as 

if it was a single analysis; therefore, one may call this 

arrangement optimization with integrated analysis. 

Although this arrangement is demonstrably effective, it 

may not be practical for very large design tasks involving 

numerous engineering staff. Engineers tend to cluster into 

specialty groups operating concurrently. This time-honored 

mode of operation, which results in a broad work front 

reducing the design elapsed time, requires decomposition of 

the system optimization into several smaller sub-optimizations 
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each assigned to an engineering group. The remainder of the 

paper is devoted to an algorithm that supports such 

decomposition while preserving the internal couplings of the 

system optimization problem. 

This section introduces multilevel optimization by 

decomposition in a particular formulation that applies to 

structures. As shown in reference 15, it is natural to base 

that formulation on the well-known analysis by substructuring 

which is a form of the object decomposition. 

Optimization Terminology 

An optimization formulation without decomposition serves 

as a reference from which the multilevel optimization 

algorithm is derived. The optimization is defined in terms 

of: the design variables, Zb (see Table 4 for notation), 

which are the cross-sectional dimensions of the structural 

components; the objective function F(Z) that can be any 

computable function of these variables (structural mass is the 

frequent choice);and the constraints, g (Z) imposed on the 
w 

behavior variables to account for the potential failure modes. 

Writing constraint functions as 

g = dlc - 1 :; 0 ( 1 ) 

the optimization problem in a standard formulation is 

min F(Z); such that g (Z) :; 0 (2) 
w 

and requires a search of the design space considering all the 

design variables and constraints concurrently. In contrast, 

the algorithm presented in the next section breaks the problem 

into a number of search and analysis operations, each 

concerned with a smaller number of design variables and 

constraints. 

Preliminary Definitions 

The diagram in figure 11 shows a structure decomposed 

into several levels of substructures. The term "substructure" 

will refer to any entity in this decomposition scheme 

including the extremes of the full, assembled structure 

represented by the box on the top of the pyramid and single 

structural components representing the ultimate geometrical 
details appropriate to the problem at hand. The substructure 

levels are numbered from 1 on the top to i max at the bottom. 
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The hierarchical nature of the scheme instigates the use of 

the term "parent" to the structure at level i which, in turn, 

is decomposed into a number of "daughter" substructures at 

level i+1. A daughter may have only one parent and that 

parent must be at the level immediately above. Thus, it will 

be convenient to label each substructure SSijk, where i 

denotes the level, j defines the position at the level i 

counting from the left, and k identifies the parent's position 

at the level i-1. The substructure occupying the lowest 

position in a particular parent-daughter succession represents 

the ultimate level of detail at which the decomposition stops. 

There is no requirement that all such substructures must be at 

the same bottom level i max In discussions involving more 

than one substructure, the triplets nIp, mkl, ijk, are used to 

distinguish among the substructures forming the the hierarchy 

shown in figure 12. 

Substructuring analysis (e.g., refs. 16, 

establishes the following functional relations (note 

subscript for the parent substructure is omitted): 
Qij=f(Kbij, pbij) 

1 7 , 

that 

1 8 ) 

the 

(3) 

( 4 ) 

( 5 ) 

( 6 ) 

(7) 

pij z S (pbi+1,j) (8) 
p 

The symbol f appearing in equations 3-8 denotes a general 

functional relationship which is different for each equation, 

and is computable in a manner prescribed by the particular 

substructuring algorithm chosen. For example, equations 4 and 

7 take the form of matrix equations given in reference 17, 

Ch.9, Sec.1, as equations 9.13 and 9.14, respectively. 
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For SSijk at the ultimate level of detail, the 

distinctions between Kbij , pbi j , and Kij , pij vanish, and Kij , 

Mij , derive directly from zij. Consequently: 

Mij = f(Zij) (12) 

The local constraints that arise in SSijk at the ultimate 

level of detail involve calculation of stresses, strains, 

local buckling, etc., from Qij and zij. In addition, 

constraints may be imposed on the internal forces, critical 

forces, and displacements of SSijk to account fully for all 

the constraints that would have been included in the one-level 

optimization problem represented by equation 2. 

Although the foregoing definition of substructuring 

analysis is based on the finite element stiffness method, the 

use of a finite element analysis is not mandatory for the 

multilevel optimization algorithm presented here. As far as 

that algorithm is concerned, the analysis is a "black box" 

where only the inputs and outputs are important. 

Multilevel Optimization Algorithm 

With the substructuring scheme and analysis established 

in the foregoing, this section describes the optimization 

algorithm itself. The essentials of the computer 

implementation are also given. 

Basic Concept.- The basic idea for the proposed multilevel 

optimization by substructuring stems from the elementary 

observation, based on equations 3 through 8, that the effect 

of a daughter 
bi" through K J, 

SSijk on its parent SSi-l,kl is felt only 
i" bi" b i+1 J" i+1 J" M J, and P J which depend on K' ',M " 

b "+ 1 " 
and P ,1 ,J, respectively. Consequently, the entries of 

K b ,i+1 ,j, Mi+1 ,j, and pb,i+1 ,jmay be manipulated as 

generalized design variables without disturbing the results of 

the 3Si-1,kl analysis as long as the entries of Kbij, Mij , and 
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pbij are held constant. If these entries are held constant, 

then the boundary forces Qij acting on every SSijk in SSi-1,kl 

remain constant and the effect of manipulating the generalized 

design variables in a particular SSijk is limited to that 

SSijk itself and its daughters. As explained later, the 

purpose of the above manipulation of the matrix entries is not 

to minimize the substructure mass Mij which, as stated above, 

remains constant. Instead, the purpose is to improve 

satisfaction of the constraints in the SSijk and its 

daughters, while performing the task of the total mass 

optimization at the assembled structure level. 

Invariance of the entries Kbij , Mij , and pbij can be 

enforced by rewriting equations 4 through 8 as equality 

constraints. 

h ij = Kb1L f(K bi +1 ,j) 
K 

h ij = Mij - f(M i +1 ,j 
M 

o 

o 

h ij = 
P 

pbij _ f(pbi+1 ) = 0 

( 1 3 ) 

( 1 4 ) 

( 1 5 ) 
bi . 1 . 

Equations 13, 14, and 15 establish the entries of K J, M J, 
b' . 

and P lJ as given parameters in optimization of SSijk. Simple 

replacement of indices renders these equations valid for SSi-

1 ,kl and redefines the optimization parameters of the daughter 

SSijk as generalized design variables in the optimization of 

its parent SSi-1,kl, so that 

{x i - 1 ,kt = {yijt (16 ) 

(17) 

These equations define a recursive relation of the variables 

and parameters that extends from the top of the substructuring 

scheme to the bottom. 

Of course, the number of design variables Tij must exceed the 

number of constraints vij (which is equal to the number of 

individual equations in the vector equations 13, 14, and 15). 

Tij > Vij (18) 

for a design freedom to exist, allowing for the symmetry of 

the stiffness matrices. Otherwise, if 
Tij Si vij (19 ) 
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then the equality constraints of equations 13 through 15 

either define the SSijk design variables uniquely or 

over determine them. 

The basic concept outlined above translates into an 

algorithm to be introduced now in detail. 

Optimization at the most detailed level.- Introduction of the 

optimization algorithm begins at the level of the most 

detailed substructures. Consequently, equations 9 through 12 

apply and the design variables are the cross-sectional 

dimensions so that 
xij • zij (20) 

and the parameters (held constant during optimization at this 

level) are 
{yij}t. {KijIMijlpij}t (21) 

It is assumed that a complete, topndown, substructuring 

analysis for an initial structure has been carried out so that 

for an SSij k one has computed its Qi j , while its Mij , zij, 
i ° ij K J, and P are given. 

Optimization for improvement of inequality constraint 

satisfaction is achieved by minimizing a single measure 

representing all the constraints and called the cumulative 

constraint, a concept similar to the use of a penalty 

function. A differentiable cumulative constraint function can 

be obtained (as it was in ref. 19) by means of the 

Kreisselmeier-Steinhauser function (KS) defined in reference 

20. 
ij i ° 0 j C = KS(g J) = lip In (L °exp (pgl )) (22) w w 

w 
that has the property of approximating the maximum constraint 

so that 

MAX ( g i j) < K S ( g i j) < MAX ( g i j) + 1 I pIn ( W i j ) ( 2 3 ) 
w w w w w 

with the factor p controlled by the user. Thus, the KS 

function serves as a convenient single measure of the degree 

of constraint violation (or satisfaction). 

Analysis of SSijk yields the local inequality constraints 
as 

(24) 
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Based on the above definitions, the optimization problem is 

formulated. 

min Cij (X ij , yij, Qij) such that 

Xij 
a) 

b 1 ) 

b2) 

b3) 

c) 

( 25) 

Solution of this optimization problem (by any technique 

available) yields a constrained optimum described by a vector 

n ij composed of the minimum value of the cumulative 

constraint, C ij and the optimal vector of the design-
- ij variables, X 

n ijt= {c ij Ixij}t (26) 

This solution depends on yij and Qij, and the derivatives 

dnij/dyij may be expressed by a chain differentiation to 
z 

account for equations 3 and 21 that tie Qijto yij 

dCij/dY lJ = oCij/oy ij + L (oC ij /OQij) (oQij Ioy ij ) ( 27) 
z z r r z 

r 

dXij/dyij= oXij/oy ij + L (oX ij loQij) (oQij Ioy ij ) (28) z z r r z r 

In equations 27 and 28, the partials of Cij with respect to 

yij and with respect to Qij are obtained from the algorithm z r 
described in reference 5, and the partial Q ij with respect 

r 
to Y ij by conventional structural sensitivity analysis. z 
Parenthetically, one may add that the algorithm of reference 5 

uses second derivatives of constraints that may be expensive 

to calculate. However, a modified version of the algorithm is 

available in reference 21 that avoids the cost of second 

derivatives and calculates the sensitivity derivatives for 
Cij , but not for Xij. 
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Optimization of the lowest parent substructure.- The design 

variables for all parent substructures control the stiffness 

and mass distribution in that substructure. They could be 

elements of the substructure boundary or mass matrices, or 

quantities which control these entries. Because these 

substructure design variables are not necessarily tangible 

quantities, they are referred to in the following as 

"generalized" design variables. As shown in figure 12, the 

parent substructure SSmkl, m=i-1, receives from its daughters, 

SSijk, the minimized values of their cumulative constraints, 
-ij -ij C , optimal values of their design variables, X , and the 

optimum sensitivity derivatives of these quantities with 

respect to parameters, Qij and yi j , calculated from 

equations 27 and 28. 

Preparing for the formulation of the optimization problem 

for the parent substructure, we consider the recursive 

relation between the design variables and parameters according 

to equations 16 and 17, and recognize that equations 9 through 

12 do not apply. When optimizing the parent substructure, we 

want to improve satisfaction of the assembled substructure 

inequality constraints, such as limits on its elastic 

deformations and stability that depend on the substructure 

stiffness, mass, and boundary forces: 
gmk gi-1,k = f(Xmk, ymk, Qmk) (29 ) 

At the same time, we want to improve constraint satisfaction 

in all the substructure daughters. These can be approximated 

(as in ref. 19) by linear extrapolation of their cumulative 

constraints using the derivatives from equation 27 and 

replacing yij with xmk according to equation 16. 

(30 ) 

This extrapolation plays a key role in the algorithm because 

it approximates the daughter-parent coupling without incurring 

the expense of reoptimizing the daughters (repeating eq. 25) 

for every change of the parent design variables. 
-ij mk Including the Ce values together with g in a cumulative 

constraint formed by the KS function we have 
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mk \ mk \ C = 1 I pIn (I.. ex p (p gw ) + I.. 
w j 

and the optimization problem to be 

1 ,k lis 
miQ Cmk(Xmk , ymk, Qmk) STOC 
Xm 

where 

Xij = xij + e 0 

The increment 6X mk is defined as 

exp (PC ij )) e 
(31) 

solved for the parent SSi-

a) (32) 

b) 

c) 

d) 

(33) 

6X mk = Xmk _ Xm (34) 
o 

The constraints of equation 32b are analogous to equations 

25b1, b2, b3 written in a compact format. The constraints of 

equation 32c incorporate the side constraints to prevent the 

design variables from attaining physically impossible values 

(e.g., negative diagonal entries in a stiffness matrix) and 

include the move limits to control the extrapolation errors 

introduced by equation 30. The constraints of equation 32d 

are introduced to keep the design variables in the daughters 

from exceeding their side constraints. These constraints are 

not essential because their function may be performed directly 

by the daughter side constraints. In fact, omitting the 

constraints of equation 32d eliminates the need for the 
i . 

derivatives of X J and allows replacing the algorithm of 

reference 5 by the much less costly algorithm of reference 21. 

However, these constraints are included in this description 

for completeness. 

Solution of the problem of equation 32 generates the 

result vector and \ts derivatives that are analogous to those 

of equations 26, 27, and 28 with the indices ij replaced by 

m=i-l, and k. 

Optimization of the next parent structure.- Moving on to the 

substructure SSnlp, everything stated in the preceding 
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subsection on optimization of SSmkl applies to SSnlp directly, 

provided that: the indexes n, I, and p are replaced by 

another triplet, say, a, 13, Y, that identifies the parent of 

SSnlp at the level a = n-1; and the indexes m, k, 1 are 

replaced by n, I, p. For consistency, equation 32d, if used, 

should be replicated to encompass fully each line of 

succession emanating downward from SSnlp. Beyond these 

changes, no new conceptual elements are introduced, and no 

additional definitions or discussion are needed at the 

junctions between the levels until one arrives at the top 

level. Hence, any number of intermediate levels of 

substructuring can be inserted, if physically justified, into 

a line of succession extending downward from the assembled 

structure on the top; i.e., the algorithm is recursive. 

Optimization of the assembled structure.- The assembled 

structure is designated SS110. Its optimization problem is 

similar to the one described for a parent substructure SSmkl 

with the following differences: 

1. No parameters are defined solely for the 

decomposition purposes; therefore, there is no need 

for the equality constraints to enforce constancy of 

the mass and the boundary stiffnesses. 

2. The objective function is the mass of the assembled 

structure. 

3. There is no need for a single cumulative constraint 

(unless one needs it to reduce the number of 

constraints to be processed at that level). 

4. The boundary forces are the external loads on the 

assembled structure. 

Accounting for these differences, the optimization problem for 

the top level is 
1 1 1 1 

min M (X such that 
1 1 

X a)(35) 
1 1 

g ~ 0 b) 

- 2j Ce ~ 0 c) 

1 1 1 1 11 
L ~ X ~ u d) 
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L2j ~ i 2 j~ U2j e) 
e 

where equation 35e is analogous to equation 32d with the 
2j 2" 

limits L ,U J applied in conjunction with extrapolations of 

the type expressed by equation 33, extended recursively to 

encompass all the levels below as mentioned in the subsection 

on SSnlp. Unlike in the daughters SSijk, the optimization of 

SS110 does not have to be analysed for the optimum 

sensitivity. Information transmitted to the top level 

optimization problem is indicated in figure 12. 

!~~~~~l!~_£~~£~~~~~~~ When the SS110 optimization is 

completed, the entire structure has acquired a new 

distribution of stiffness and mass within the move limits. 

Hence, the analysis must be repeated and followed by a new 

round of substructure optimizations in an iterative manner 

until convergence. 

steps: 

Accordingly, the procedure follows these 

1. Initialize all cross-sectional dimensions. 

2. Perform a substructuring analysis, including for each 

substructure at each level the transformation of the 

stiffness matrix into the boundary stiffness matrix 

and the transformation of the forces applied to the 

interior degrees of freedom to the forces coinciding 

with the boundary degrees of freedom. Calculations of 

the behavior derivatives needed for the ensuing 

optimizations and for the optimum sensitivity 

analyses are included in the substructuring analysis. 

3. Perform the operations of optimization and optimum 

sensitivity analysis as defined by equations 25 

through 34. 

4. Optimize the assembled structure as defined by 

equation 35. 

5. Repeat from step 2 and terminate only when: all 

constraints gij are satisfied at all levels and Mll 

has entered a phase of diminishing returns. 

This procedure is illustrated in figure 13 by a flow chart in 

the Chapin's chart format (ref. 22). 
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Salient features of the a1gorithm.- In perspective, the 

multilevel algorithm differs from a single-level one in a 

number of the following salient features. 

A multitude of smaller problems, that may be processed 

concurrently, replace a single large problem. Although the 

subproblems are isolated, their coupling is preserved because 

the influence of the changes in the parent on the daughters is 

represented by linear extrapolation based on the optimum 

sensitivity and behavior sensitivity derivatives. With the 

exception of the most detailed level, the stiffness and mass 

distributions are controlled directly by generalized design 

variables. Mass is the objective at the top level, while the 

constraint satisfaction improvement is the objective at all 

levels below. 

Selection of the generalized design variables is a matter 

of judgment. In the extreme case, one may choose to control 

as design variables all entries of the boundary stiffness 

matrix, boundary forces vector, and mass of each daughter; 

although, intuitively, this would seem impractical. 

Experience will probably show that a limited control, e.g., 

over the diagonal entries of the stiffness matrix only, will 

suffice in most cases. 

The overall procedure building blocks; i.e., the 

operations of substructure analysis, constraint calculations, 

optimization, and the behavior and optimum sensitivity 

analyses are "black boxes" whose algorithmic contents may be 

freely replaced provided that the input/output definitions 

remain unchanged. For example, different types of structural 

analysis may be used at each level and even for each 

substructure, as it will be shown in the numerical example. 

PORTAL FRAME EXAMPLE 

Problem Description.- The subject algorithm was tested by 

optimizing, with and without decomposition, a framework 

structure similar to the one used in references 19, 23, and 

24. As shown in figures 14 and 15, the framework assembled at 

level 1 decomposes into three box beams, each beam being a 
substructure at level 2. Finally, each beam decomposes into 

three walls (the fourth wall is symmetric), each wall being 
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the most detailed substructure at level 3. The external loads 

were applied at one corner of the framework as shown in figure 

14. There were no interior loads on the substructures. 

The objective was to minimize the structural material 

volume subject to constraints on the displacements of the 

loaded pOint, the in- and out-of-plane elastic stability of 

each beam treated as a column, and the stresses and local 

buckling of the wall panels treated as stringer-reinforced 

plates. There were also minimum gage constraints and the 

physical realizability constraints on the cross-sectional 

dimensions. 

The objective functions, design variables, parameters, 

and constraints are defined for the multilevel optimization in 

table 5. A comprehensive description of all the physical and 

computational details of the test problem is given in 

reference 15. 

Tools for Analysis and Design Space Search.- A finite element 

analysis was used to calculate the framework's displacements 

and the beam end-forces. Stresses in the beams loaded with 

the end-forces were computed by engineering beam theory. The 

beams were treated as columns for stability analysis, and 

local buckling of the walls was based on closed form "designer 

handbook" formulas provided in references 25, 26, and 

implemented as described in reference 27. 

At each level, the optimization was conducted by the same 

general-purpose nonlinear mathematical programming code 

CONMIN, based on the useable-feasible directions technique and 

documented in reference 28. 

Three-Level Optimization.- The framework was first optimized 

without decomposition to establish reference results. Then, 

the multilevel optimization algorithm was applied to the 

structure decomposed as shown in figures 14 and 15. In the 

decomposition, the stiffened panels are daughters clustered in 

triplets under a parent box beam. The beams, in turn, are 

daughters of the assembled structure. 

As shown in table 5, the top level optimization 
manipulates the beam extensional and bending stiffnesses 

through the cross-sectional areas and bending moments of 
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inertia. The cross-sectional area also controls the beam 

volume which contributes directly to the objective function. 

At the middle level, the stiffnesses expressed by the 

area and moment of inertia become fixed parameters and the 

variables are the wall membrane stiffnesses controlled by the 

geometrical dimension variables. These variables, and 

consequently the membrane stiffnesses become fixed parameters 

at the bottom level at which the ultimate detail dimensions 

are engaged as variables. The equality constraints arise 

between the parameters and variables. Owing to relative 

simplicity of the expressions involved, (see Appendix, ref. 

15), these constraints were solved explicitly. 

Examination of table 5 in conjunction with the previous 

description of the analysis tools illustrates the point that 

dissimilar analyses may be used as needed at different places 

in a decomposition scheme. 

The sensitivity analysis of behavior was carried out by a 

single step forward finite difference technique. The optimum 

sensitivity analysis was based on the algorithm given in 

reference 5. 

Results and Remarks on the Method Performance.- Figure 16 

shows a sample of results obtained with and without 

decomposition. The starting pOints for both methods are the 

same. The normalized plots illustrate the objective function, 

a selected individual constraint, and a cumulative constraint 

containing the above individual constraint as they varied over 

the iterations. An iteration is defined in the optimization 

without decomposition as the following set of operations: one 

analysis including gradients, computation of a useable

feasible search direction, and finding a constrained minimum 

in that direction. In the three-level optimization, it is 

defined as one execution of the series of steps listed in the 

procedure definition in the previous section. 

The results verified that the multilevel algorithm was 

capable of finding a feasible design having an objective 

function close to and, in some cases lower than, the reference 
optimization without decomposition. As in reference 19, 

differences up to 72.1% were observed among the detailed 
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design variables obtained by the two methods. However, these 

differences were no larger than those observed by comparing 

the designs obtained without decomposition starting from 

different initial design pOints. Therefore, these differences 

can be attributed to the problem non-convexity. The jagged 

appearance of the graphs in figure 16 is a characteristic of 

the usable-feasible directions search algorithm, amplified in 

the multilevel optimization by the extrapolation errors. A 

detailed comparison of the results from both methods is given 

in reference 15. 

Regarding computational efficiency, the main intrinsic 

advantage of the multilevel algorithm is in its capability to 

process the subproblems concurrently. Demonstration of this 

advantage would require a large application, distributed 

computing, and division of work among many people. 

Consequently, computational efficiency was not one of the 

goals in execution of the relatively small numerical example 

on a conventional serial computer. However, the example showed 

that the amount of computational labor per iteration was less 

in the multilevel algorithm than in the single-level, 

conventional one, and that both algorithms required about the 

same number of iterations for convergence. The example also 

showed that for the multilevel algorithm programming of the 

operations of data moving and bookkeeping was the dominant 

effort. 

DECOMPOSITION APPROACH IN OPTIMIZATION OF A GENERIC 

ENGINEERING SYSTEM 

In the preceding discussion, the multilevel optimization 

by decomposition was introduced using a structure that was 

partitioned into components - an example of an object 

decomposition. This section describes that approach as it was 

extended in reference 3 to a case of a generic engineering 

system decomposable in both the object and aspect sense. 

Decomposition of Two-Level System.- The key to the proposed 

approach is a formalized decomposition of the large design 
problem into a set of smaller manageable subproblems coupled 
by means of the densitivity data that measure the change of 

the subsystem design due to a change in the system design. 
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Let ES be an engineering system composed of the subsystems 

SS" •.• SS2' ..• SSi' SSn as shown in figure '7 (the 

ab~reviations are defined in table 6, and table 7 gives 

examples for the generic quantities in the context of aircraft 

design). The design variables are grouped in a vector SV for 

ES and the vectors DV i for SSi. The ES has a performance 

index PS that should be maximized within the system 

constraints collected in a vector GS. The ES imposes demands 

on each SS .. 
1 

These demands are quantified by entries of a 

vector DS i which depends on SV through analysis of ES. Each 

SSi is designed by manipulating DV i so that it meets its DS i , 

regarded as constants, while maximizing its safety margin SM i 
representing (e.g., by using the KS function, ref. 20) a set 

of subsystem constraints GSS i . These tasks, separate for each 

SSi' can be carried out concurrently by whatever means the SSi 

designers choose, including the appropriate analysis, 

optimization, and also judgment and experimentation. 

A new element required under the proposed approach is 

evaluation of the sensitivity of the maximum (optimum) SM. to 
1 

changes in DS i in the form of optimum sensitivity derivatives 

aSMi/aDS i • At the ES level, these derivatives combined with 

the derivatives aDSi/aSV in chain differentiation yield the 

sensitivity of SM i to changes in SV in the form of derivatives 

aSMi/aSV. The maximum SM i and its derivatives show the ES 

designer, with a linear extrapolation accuracy, how the change 

of SV that he controls will affect the SM i for each SSi. 

Guided by this information and by the ES analysis, the ES 

designer can decide which variables in SV to change and by how 

much in order to move toward the goal of satisfying all the 

constraints GS and GSS i while maximizing the PS. The SV 

change will alter the DS i • Responding to that, the SSi 

designers modify their designs and pass updated information to 

the ES designer who, then, changes the SV again, and so on. 

In this manner, the ES and the SSi designers carryon a 

systematic iteration toward an improved system design, trading 

data in the form of OS., SM. and their derivatives. Each 
1 1 

designer works on a separate assignment with the control of PS 

vested in the ES designer, while the SSi designers focus on 
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their SSi feasibility. The whole problem is decomposed, yet 

remains coupled by the ES-SS i data exchange shown in figure 

17. 

Overall Procedure. Based on the above qualitative 

description, one may now formulate a step-by-step procedur~ to 

implement the decomposition approach. 

Initialize the system. Step 1. 

Step 2. Analyze the system. Calculate PS, GS, DS i , and 

aDSil asv. 

Step 3. Design subsystems SSi. The DV i are manipulated 

within upper and lower bounds, Li and Ui , so as to maximize 

SM i for given DS i • The latter requires vector of equality 

constraints GE i for those DS i that are also functions of DV i . 

These constraints enforce equality of the DS i values 

prescribed at the system level and computed as a function of 

DV i so that 

GEl' = DS.(SV)-DS.(DV.) O. Formally, the task may be 
1 1 1 

formulated as an optimization problem 

subject to constraints 

The output of the operation is: 

subsystem design variables, DV i . 

(36) 

Step 4. Analyze each SSi design for sensitivity to the 

inputs received from the system to obtain the aSMt/aDS i • 

Step 5. Modify the SV to improve the system design. In 

this operation, one uses the aDSi/asv, SM i , and aSMi/aDS i 
obtained in Steps 2,3, and 4, to extrapolate each SM i as a 

function of the increment ~SV 

SM i + 
aSM i aDS i 
aDS i asv ~SV 
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Improvement of the system design may be formalized as an 

optimization: 

a) max PS(SV) subject to constraints 
SV 

b) GS(SV) :; 0, c) SM. (SV) i:: 0 (for all i) 
1 

d) L :; SV :; U 

(38 ) 

in which the system level analysis provides the PS and GS, and 

the SM. in equation 38c is approximated by equation 37. The 
1 

bounds in equation 38d include "move limits" protecting the 

accuracy of the extrapolation in equation 38c. The above 

optimization problem may have no feasible solution within the 

move limits in equation 38d if it begins with significant 

constraint violations in equations 38b and c. If a feasible 

solution cannot be found, an acceptable outcome of equation 38 

is a new design point moved as close to the constraint 

boundary as possible. The result of this step is a new SV 

defining a modified design of the system. 

Step 6. Repeat from Step 2 until all the constraints GS 

are satisfied, all safety margins SM i are non-negative, and 

the performance index PS has converged. 

In the above procedure, also shown in figure 18, the 

analyses in Step I and 2 are problem-dependent. The behavior 

sensitivity analysis required to obtain the aDSi/asv can be 

obtained by either a finite difference technique or, 

preferably, by a quasi-analytical method (e.g., ref. 29). The 

optimization defined by equations 36 and 38 can be carried out 

by any suitable algorithm. The extension of the above two-

level algorithm to multilevel systems is given in ref. 2, and 

its application to aerospace systems is discussed in reference 

30. 
MULTILEVEL OPTIMIZATION STUDY OF A TRANSPORT AIRCRAFT 

The general algorithm introduced in the preceding section 

has been tested in a design optimization study of a transport 

aircraft reported in reference 31. The procedure was applied 

to an eXisting transport aircraft, and the fuel for a 

particular mission was selected as the objective function. 

Everything in the aircraft system was fixed as in the existing 
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design, except for the airfoil depth-to-chord ratio, h, and 

the cross-secti~nal dimensions of the stringer-stiffened wing 

cover panels. Constraints included those typical for the 

aircraft performance requirements; e.g., runway length, climb 

rate, cruising speed, etc., and the strength and local 

buckling limits on stresses in the wing box covers. 

The optimization was predicated on the trade-off between 

the structural wing weight and the drag, both being functions 

of "h." In order to intensify that trade-off to obtain 

conclusive study results, the cruise Mach number was set at 

.90, significantly greater than in the subject aircraft That 

artifically high Mach number made the wave drag a larger 

fraction of the total drag. The problem was a natural 

candidate for decomposition approach because it contained a 

very large number of detailed design variables (6 per each of 

216 panels for a total of 1296 variables) which were distinct 

from the system-level configuration variable "h." The 

analyses involved also differed in their nature, and ranged 

from a semi-empirical performance aerodynamics for entire 

aircraft, through a highly detailed finite element analysis of 

the wing box, to a handbook level stress and buckling analysis 

of each stiffened panel. 

Following the approach described in the previous section, 

the problem was decomposed as shown in figure 19, and an 

iterative procedure was implemented, with each iteration 

consisting of top-down analyses and bottom-up optimizations. 

The existing aircraft data initialized the procedure. 

The top, system-level analysis was carried out by a 

performance analysis program, reference 32, that included a 

semi-empirical aerodynamic analysis. The middle-level 

subsystem - the wing box - was analyzed by a finite element 

program, reference 11, and the resulting edge forces were 

applied to individual panels at the bottom level. 

Optimizations began at the bottom level, separately for 

each panel. The objective function was the panel cumulative 

constraint representing all the stress and buckling 
constraints by means of the KS function, reference 20. The 

constraints included side constraints and equality constraints 
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on panel skin thickness and equivalent, smeared stringer 

thickness which preserved the thicknesses set at the wing box 

level. These equality constraints assured that the panel 

membrane stiffnesses stayed constant; hence, the edge forces 

remained constant, and the panel was isolated from its 

neighbors for the duration of its optimization. Sensitivity 

analysis was performed on each optimized panel using 

algorithms described in reference 5 to obtain derivatives of 

the minimized cumulative constraint with respect to the 

thicknesses and edge forces that were defined above as the 

optimization parameters. 

The middle level optimization designed the skin thickness 

and the equivalent, smeared stringer thickness. Spanwise 

distributions of these thicknesses were described by 

polynomial functions whose coefficients were the deSign 

variables. The objective function was a cumulative constraint 

formed from the cumulative constraints that were minimized for 

each panel. At the middle-level, these constraints were 

extrapolated linearly using the optimum sensitivity 

derivatives with respect to the wing box thickness variables. 

The equality constraint on the wing box weight kept it 

constant at the value set at the top, system level. Optimum 

sensitivity derivatives were computed for the objective 

function with respect to "hh and the wing-box weight. 

Finally, the optimization at the highest level used only 

two design variables: the depth-to-chord ratiO, "h," and the 

wing box structural weight. Its objective function was the 

mission block fuel, and the inequality constraints included, 

in addition to the performance constraints, the wing box 

cumulative constraint that was minimized at the middle ievel. 

The latter constraint was extrapolated with respect to the 

design variables using the optimum sensitivity derivatives 

calculated at the middle level. 

Nonlinear mathematical programming was used for 

optimization at all levels. The bottom and middle levels 

employed the usable-feasible directions algorithm. It was 
coupled directly to the analysis program at the bottom level, 

but at the middle level, it was coupled to an approximate 
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incorporating the Davidon-Fletcher-Powell algorithm was 

implemented at the top level. 

The study demonstrated that the procedure converged well, 

in 4 to 5 cycles, to the same end result when started from 

different initial design pOints (including the existing 

design). As seen in a sample of the optimization history, 

shown in figure 20, the convergence was reasonably smooth. 

Some improvements of both the fuel consumption and the wing

box structural weight were achieved relative to the existing 

design. The improvement of the fuel consumption was small, as 

expected when starting the optimization with an already 

refined design. Also, it has to be emphasized that the 

improvement should not be interpreted as an indication of the 

actual potential still remaining in the subject aircraft 

because the analysis was not as complete as the one that was 

used in support of the actual design (e.g., the gust loads 

were not considered, and manufacturing constraints were 

excluded). However, the study demonstrated a multilevel, 

multidisciplinary optimization system in operation. 

CONCLUDING REMARKS 

Modern developments such as the increasing use of 

composite materials tend to increase the interactions between 

various disciplines in the design of engineering systems. 

Interdisciplinary design approach will yield, in general, a 

better design, but requires a systematic algorithm to account 

for the interactions and to ensure convergence and efficiency. 

The paper presents a survey of some of the more important 

interdisciplinary interactions and examples of the benefits of 

interdisciplinary design. It then reviews multilevel 

optimization as a tool of breaking down the multidisciplinary 

design problem to a set of manageable tasks. A specific 

~ultilevel algorithm is first presented in the context of 

structural optimization and then generalized to engineering 

system design. 
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Table 1: Design Variables for Glider Design 

3 Performance Design Variables 

6 Geometric Design Variables 

24 Structural Design Variables 

1 • Angle of attack at the 

root dur ing the turn. 

2. Angle of attack at the 

root during cruise. 

3. Radius of the turn. 

4. Angle of twist at the 

break relative to the 

root. 

5. Angle of twist at the 

tip relative to the 

root. 

6. Chord length at the 

root. 

7. Chord length at the 

break. 

8. Chord length at the 

tip. 

9. Distance to the break. 

10-17. Spar cap thickness 

for each wing 

section. 

18-25. Spar web thickness 

for each wing 

section 

26-33. Skin thickness for 

each wing section. 
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Table 2: Design Constraints for Glider Wing 

Stall Constraints 

during turning maneuver. 

Performance Constraints 

Structural Constraints 

(at 43 mlsec, 5.9 g) 

1. No stall at the root. 

2. No stall at the break. 

3. No stall at the tip. 

4. Bank angle less than 

50%. 

5. Climb speed greater 

than zero. 

6. Minimum divergence 

speed. 

7-14. Maximum spar cap 

strain for each wing 

section, .3%. 
15-22. Maximum shear stress 

for e a c h win g 

section, web 

shear ~ 6000 N/mm 2 • 

23-30. Wing skin must 

satisfy Tsai-Hill 

strength constraint 

for e a c h win g 

section. 

Minimum average cross-country speed was also used as a 

constraint for weight minimized designs. 

Table 3: Optimal Glider Designs 

Iterated Sequential 

Cross-country speed (m/s) 3.44 

Mass of one wing (kg) 13.0 

Integrated Design 

Maximum Cross- Minimum 

country Speed 

3.48 

12.5 

Mass 

3.44 

11.6 
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Table 4: Nomenclature for Multilevel Structural Optimization 

Algorithm 

Quantities 

A 

C 

c 

d 

F 

f ( ) 
i . 

g J 

I 

Kij 

Kbij 

L ij 

Mij 

pij 

Cross-sectional area. 

Cumulative constraint (equation 22). 

Capacity: limitation on the ability to meet 

a particular demand d (e.g., allowable 

stress) • 

Demand: a physical quantity the structure is 

required to have, to support, or to be 

subjected to in order to perform its function 

(e.g., stress). 

Objective function. 

Functional relation. 

Vector of constraint functions, 

w = 1 + wij • 

Vector of partitions 

(eq.25b). 

h ij 
K 

h ij 
M ' 

Vectors of the equality constraints defined 

by equations 13, 14, and 15, respectively. 

The vector elements are, respectively: 
ij ij ij 

, hMS2 ' hrS3 ' where S1 = 1 + S1 ' 
S2 • 1 + S2 J, S3 = 1 + s~j. 
Cross-sectional moment of inertia. 

Stiffness matrix of SSljk. 

Boundary stiffness matrix for SSijk. 
i· 

Lower bound on X J including move limits. 

Mass of SSijk (a scalar). 

ij 
h KS1 

Vector of the External loads applied to 

interior and/or boundary of SSijk. 
i . ij 

Boundary forces, Q J, of SSijk, r • 1 + R • 
r . 

Vector of pij transferred to the boundary of 

SSijk: 

Vector of the forces, Q;~ r = 1 + Ri~ acting 

on the boundary of SSijk. 

Boundary forces, Qij, of SSijk, r _ 1 + Rij. 
r 
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SSmkl 

SSSnlp 

STOC 

Tij 

wij 

u ij 

vij 

1T 

p 
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Summation of stiffnesses contributed by 

substructures SSijk assembled in a parent 

substructure SSmkl. 

Summation of the boundary loads contributed 

by substructures, SSijk, assembled in a 

parent substructure SSmkl. 

A substructure (including the extremes of the 

assembled structure and a single structural 

element). 

A substructure-parent of SSijk, m 

fig. 12. 

i-I, see 

A substructure-parent of SSmkl, n = m-l, see 

fig. 12. 

Acronym: ~ubject!£ £onstraints. 

Total number of design variables for SSijk. 

Number of inequality constraints. 
ik Upper bound on X including move limits. 

Number of constraints defined by eqs. 

(13)-(15). 

Vector of design variables, X t , in SSijk, 

t = 1 .. Tij • 

Vector of the entries in Kbij , Mij , and the 

entries in pbij that are held constant as 

parameters in optimization of SSijk. The 

vector yij contains Vijelements yij. 
v 

Vector of cross-sectional dimensions, Zbij , 
i . 

b - 1 .. B J, used as design variables in 

SS1jk that corresponds to a single structural 

element. 

A vector defined by equation 26. 

A user-controlled constant in the KS function 

(eq. 22). 

Increment of a variable (see definition of 

subscript 0) 

Indices, Subscripts, and Superscripts Not Included in the 
Definitions Above 

Over bar Denotes an optimal quantity 
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Superscript to denote an association with the 

SS boundary 

Subscript to identify an extrapolated value 

Subscript to identify an original (reference) 

value from which an increment is measured. 

Table 5: Quantities Defined for the Multilevel Test Case 

Optimization 

OBJECTIVE: 

DESIGN VARIABLES: 

CONSTAINTS: 

OBJECTIVE: 

DESIGN VARIABLES: 

CONSTRAINTS: 

OBJECTIVE: 

DESIGN VARIABLES: 

CONSTRAINTS: 

TOP LEVEL 

The framework material volume. 

A and I of the beams. 

Displacements of the loaded corner and 

Cefor the beams. 

MIDDLE LEVEL 

Cumulative constraint C representing 

the column buckling and Ce for the 

walls. 

Wall membrane stiffness contributing 

to the beam axial and bending 

stiffnesses controlled through the 

dimensions shown in Fig. 14, Section 

A-A. 

Equality - beam cross-sectional area 

and moment of inertia. 

BOTTOM LEVEL 

Cumulative constraint C representing a 

set of stress and local buckling 

constraints of the wall. 

Cross-sectional dimensions shown in 

Fig. 14, DETAIL B. 

Inequality minimum gages, 

geometrical proportions, and 

geometrical realizability. 

Equality - membrane stiffnesses for 
tension-compression and bending of the 
wall in its own plane. 
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GS 

PS 

SV 
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Table 6: Notation for Multilevel Generic Optimization 

vector of demand quantities imposed by the system on 

subsystem i. 

vector of design variables for subsystem i. 

(engineering) system. 

vector of equality constraints for subsystem i. 

vector of system inequality constraints; an 

inequality constraint is defined as 

g = k(DEMAND/CAPACITY)-1, satisfied when g S O. 

vector of inequality constraints for subsystem i. 

vector of lower limits on SV, and DV i , respectively 

(move limits included). 

performance index for ES (a scalar). 

safety margin for SSi (a scalar), defined as 

SMi= max (CAPACITY/DEMAND)-1. 

sUbsystem i. 

vector of system design variables. 

vector of upper limits on SV, and DV, respectively 

(move limits included). 
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Examples of the Equivalents of the Generic Terms 

Typical for an 

Aircraft Application 

at the middle level: lift required of the wing; at 

the bottom level: edge loads Nx ' Ny, Nxy on a wing 

cover panel. 

at the middle level: wing bending stiffness 

distribution; at the bottom level: 

panel dimensions. 

aircraft, top (system)level. 

detailed wing 

at the middle level: wing structure weight 

prescribed at the top level; at the bottom level: 

panel spanwise membrane stiffness prescribed at the 

middle level. 

runway length. 

at the middle level: wing tip deflection; at the 

bottom level: panel local buckling. 

fuel economy for a given mission. 

the wing box, middle level; the wing cover stiffened 

panels, third (bottom) level. 

wing structural weight, and airfoil thickness to 

chord ratio. 

3DS./3SV derivative of wing lift with respect to structural 
1 

weight. 

3SM i /3DS i derivative of wing panel safety margin with respect 

to edge loads. 
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DISCIPLINE ANALYSIS 1 

DISCIPLINE ANALYSIS 2 

DISCIPLINE ANALYSIS 1 

DISCIPLINE ANALYSIS n 

Figure 1. Many disciplinary analyses performed in series. 

DISCIPLINE 
ANALYSIS 2 

DISCIPLINE 
ANALYSIS 5 

DISCIPLINE 
ANALYSIS 3 

DISCIPLINE 
ANALYSIS 4 

Figure 2. Disciplinary analyses in a hierarchical framework • 

.------<---;/"\ 
OPTIMIZATION I ANALYSIS 

PROCEDURE 

Figure 3. Multidisciplinary analysis coupled to an optimization procedure. 
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SUBOPTIMIZATION 
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SUBOPTIMIZAT ION 
2 

SUBOPTIMIZATION 
3 

Figure 4. Multidisciplinary optimization as a hierarchy of subtasks. 

B 

11 
H ...-__ v 

Figure 5. Glider mission profile. 

Figure 6. Typical cross-section of glider wing element. 

Figure 7. Planform geometry variables. 
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PERFORMANCE 
SENSITIVITY 

CONSTRAINTS 

PLANFORM. LOADS 

j 
WEIGHT 

SENSITIVITY 
CONSTRAINTS 

AERODYNAMIC 
ANALYSIS 
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NEW PLANFORM 

OPTIMIZER 

STRUCTURAL 
AEROELASTIC 

ANALYSIS 

WEIGHT 

NEW S"ffiUCT. 
SIZES 

COMBINED DESIGN 

AERODYNAMIC 
ANALYSIS 

r-----'------'---..... 

STRUCTURAL 
AERO ELASTIC 

ANALYSIS 

PERFORMANCE 
SENSITIVITY NEW PLAN FORM 

CONSTRAINTS ,......-------.L., NEW S"ffiUCT. SIZES 

OPTIMIZER 

Figure 8. Schematic of sequential and integrated (combined) 
optimization procedures for glider wing. 

IJ: 
)(l1( 

j) )ij,l ~ XI\ 

XI\ 

\)1 ~ )q,) '!JI..j 
)(Il( J 

\ IJ. Xl 

ANTENNA CONFIGURATION >:lI )(J)()(J)( 'f.Y./ 

FINITE ELEMENT MODEL 

MASS 2 1496 LBS 
RMS 2 0.398 IN 
GAIN. 18755 

INITIAL DESIGN 
(CONTOUR INTERVAL .2) 

OPTIMIZATION RESULTS 

MASS ,. 1442 lBS 
RMS = 1.444 IN 
GAl N ,. 18802 

MASS 1305 LBS 
RMS = 0.444 IN 
GA IN = 19640 

CYCLE 2 
(CONTOUR INTERVAL .2) 

SURFACE DISTORTION CONTOURS 

MASS = 968 LBS 
RMS = 0.125 IN 
GAIN = 20113 

CYCLE 3 
(CONTOUR INTERVAL .05) 

ngure 9. Antenna structure and optimization results. 
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I START I 
I 

I INITIALIZATION I 
(.I) THERMAL ANALYSIS (TA) I LLI 
U I z (.I) 
LLI l-

I = :z STRUCTURAL ANALYSIS (SA) LLI LLI 
u.. -u.. Q I - ~ Q I (..!:) ELECTROMAGNETIC LLI 
I- = RADIATION ANALYSIS (EMRA) - a z u.. -u.. 

I OPTIMIZER I 
I 

I 
APPROXIMATE 
ANALYSIS (AM 

PROCEDURE 
TERMINATION 

CRITERIA 

I STOP 

Figure 10. Antenna optimization procedure. 

Figure 11. Multilevel substructuring. 
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-i' acij acij axij axij 
X J ----, ... .. " .. 

aylJ, aQIJ, aylJ, aQ'J 

Figure 12. Flow of information. 

INITIALIZE 

SUBSTRUCTURING ANALYSIS, INCL. 
BEHAVIOR SENSITIVITY. 

SUBSTRUCTURE OPTIMIZATIONS 

SUBSTRUCTURE OPTIMUM SENSITIVITY 
ANALYSIS 

FOR ALL LEVELS i>l 

ASSEMBLED STRUCTURE OPTIMIZATION 

DO UNTIL UNTIL Mll CONVERGES AND ALL 
CONSTRAINTS gCij) <=0 

Figure 13. Multilevel optimization procedure flowchart. 
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I Bottom plate I ~ .. 
NX '~Detail B 

I -f---+ 
I ss \ A-A 

t-

Section A-A X3 
B ~ 

~""""""""T 
X5 

Figure 14. A portal framework. 
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Assembled 
frame 

Figure 15. Hierarchical decomposition of the framework structure. 

Normalized 
objective function 

o~~ 
0.6 
0.4 : 

o Single level results - iterations 
!fJMultilevel results - cycles 

o ONE OF THE INDIVIDUAL CONSTRAINTS RECOGNIZED IN THE 
SINGLE LEVEL OPTIMIZATION, 

O MULTILEVEL CUMULATIVE CONSTRAINT CONTAINING THE ABOVE 
INDIVIDUAL CONSTRAINT, 

® Single level displacement constraint 
181 Multilevel displacement constraint 

0.1 
O~----~~-------

-Q 1 
-0. 2 

Constraint value -0.3 
-0.4 
-0. 5 t;;+,.-=.---r''----------M 
-0.6 
-0.7 
-0. 8 O.'--~---:.I::----:L:----,J 

Figure 16. Representative results. 
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All SSi 
Iconcurrently 

Figure 17. Typical two-level system. 

Figure 18. Two-level system optimization procedure. 

Coupling information 

Analysis results 
Sensitivity of analysis 
Sensitivity of optimum 

Figure 19. Aircraft and a schematic of its 
multilevel optimization. 

1.0 
, 8 
.6 
.4 
.2 

X 1000 

!'ocr. 

o 
-.2 
-.4 180 50 
-. 6 

17 40 

o h 

o Wing weight~ Ib 
6. Fuel weight 
o Wing box 

cumulative constraint 

2 3 4 6 
Iteration 

Figure 20. Histogram of an aircraft multilevel optimization. 
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DESIGN SENSITIVITY ANALYSIS 

OF DYNAMIC SYSTEMS 

Edward J. Haug 
Center for Computer Aided Design 

and Department of Mechanical Engineering 
University of Iowa 

Iowa City, Iowa 52242 

Abstract. Methods for calculation of first and second design 

derivatives of performance measures for nonlinear dynamic 

systems are presented. Design sensitivity analysis 

formulations for dynamic systems are presented in two 

alternate forms~ (1) equations of motion are written in terms 

of independent generalized coordinates and are reduced to 

first order form and (2) equations of motion of constrained 

systems are written in terms of a mixed system of second order 

differential and algebraic equations. Both first and second 

order design sensitivity analysis methods are developed, using 

a theoretically simple direct differentiation approach and a 

somewhat more subtle, but numerically efficient, adjoint 

variable method. Detailed derivations are presented and 

computational algorithms are discussed. Examples of first and 

second order design sensitivity analysis of mechanisms and 

machines are presented and analyzed. 

1. INTRODUCTION 

The theory of sensitivity analysis for dynamic systems has 

been well developed in the theory of differential equations 

and control systems [1,2]. Design sensitivity analysis theory 

that was originally developed in optimal control theory [2J 

has been extended to a unified theory for structural and 

dynamic systems in Refs. 3 and 4. Second order differential

algebraic equation formulations have been employed to develop 

a more practical and directly useable formulation for system 

dynamic design sensitivity analysis [5,6]. In a related 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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development, second order dynamic design sensitivity analysis 

has been treated in Ref. 7. While general formulas for second 

derivative calculation are quite complex, the advent of 

symbolic computation techniques makes calculation of second 

design derivatives practical. 

Alternative formulations of initial-value problems that 

describe system dynamics are employed in this paper, to yield 

algorithms for computation of design sensitivities. In 

Section 2, direct differentiation and adjoint variable methods 

are presented for design sensitivity analysis of mechanical 

systems that are described by nonlinear systems of first order 

differential equations. This theory is extended in Section 3 

to present a new and remarkably efficient approach for second 

order design sensitivity analysis. This new method is based 

on combining the direct differentiation and adjoint variable 

methods, an idea that was introduced by Haftka for structural 

static design sensitivity analysis [8J. 

Elementary examples are studied in Sections 2 and 3 to 

illustrate use of the equations derived. A more realistic 

automatic cannon second order design sensitivity analysis 

example is treated in Section 4. Design sensitivity 

calculations are presented and the validity of first and 

second order approximations, using design sensitivity results, 

are analyzed. 

An extension of the methods of Section 2 for first order 

design sensitivity analysis of large scale systems that are 

described by mixed differential-algebraic equations is 

presented in Section 5. As in the preceding, both the direct 

differentiation and adjoint variable approaches are 

presented. It is shown that both formulations lead to linear 

adjoint systems of mixed differential-algebraic equations that 

have similar structure to the original system. Examples using 

this second order formulation, with a computer code that 

automatically generates and solves the system equations of 

motion, are presented to illustrate feasibility of automated 

design sensitivity analysis. A related recently developed 

singular value decomposition numerical integration method has 
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been presented in Ref. 9 for accurate solution of both the 

dynamic and adjoint equations. 

2. FIRST ORDER DESIGN SENSITIVITY ANALYSIS FOR SYSTEMS 
DESCRIBED BY FIRST ORDER DIFFERENTIAL EQUATIONS 

Design sensitivity analysis of mechanical system dynamics 

for formulations in which the equations of motion have been 

put in first order form has progressed to the point that first 

derivatives of dynamic response measures with respect to 

design parameters can be calculated [1-3]. Direct 

differentiation of equations of motion was initially used to 

obtain state sensitivity functions [1]. More recently, an 

adjoint variable method that was introduced in optimal control 

theory [2] and developed for mechanical design [3] has been 

successfully employed for design sensitivity analysis of large 

scale planar dynamic systems [5] and smaller scale dynamic 

systems with intermittent motion [6]. 

First Order Formulation of the Problem 

Dynamic systems treated here are described by a design 
T variable vector b = [bl, ••• ,bk ] and a state variable vector 

z(t) = [Zl(t)' ••• 'Zn(t) ]T, which is the solution of an 

initial-value problem of the form 

z = f(z,b) 
(2.1) 

1 z(t ) = h(b) 

. dz t l is given, t 2 where Z dt 
, and is determined by the 

condition 

o(t2 ,z(t2 ),b) = 0 (2.2) 
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The function f that appears on the right side of the 

differential equation of Eq. 2.1, the function h in the 

initial condition of Eq. 2.1, and the function n in Eq. 2.2 

are assumed to be twice continuously differentiable in their 

arguments. Classical results of the theory of ordinary 

differential equations [10] assure that the solution of Eq. 

2.1, denoted z(t:b), exists and is twice continuously 

differentiable with respect to both t and b. 

Consider a typical functional that may arise in a design 

formulation, 

(2.3) 

where the first term involves only behavior of the state of 

the system at the terminal time and design. The second term 

involves an integral measure of state and design over some 

period of motion. This form of functional is adequate for 

treating a large class of dynamic system optimal design 

problems [2,3]. 

Note that dependence on the design variable b in Eq. 2.3 

arises both explicitly and through the state variable, which 

is written in the form z(t:b) to emphasize that it is a 

function of time that depends on design. In order to obtain 

the derivative of ~ with respect to b, Leibniz rule of 

differentiation [11] may be applied to obtain 

d~ 2 [ 2 • 2 2 ] 
db gt2tb + gz ~(t ) + z(t )tb + gb 

+ 
t 2 

II [Fz~ + Fb]dt 
t 

(2.4) 

where a subscript denotes derivative with respect to the 

subscripted variable. For a summary of matrix differentiation 

notation employed in this paper, the reader is referred to the 

Appendix. It is important to note that zb is the derivative 

of a vector function with respect to a vector variable. It is 
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thus a matrix, and the order of terms in matrix products is 

important. 

Equation 2.4 may be reduced to a form that depends only on 
2 

~ and not on tb. Differentiating Eq. 2.2 with respect to b 

yields 

Since Eq. 2.2 must determine t 2 , the coefficient O(t2 ) of 

t 2 cannot be zero. Using Eq. 2.1 for z, 
b 

and 

~(t2) = Q 2 + flz f(Z(t 2 ),b) 
t 

Substituting this result into Eq. 2.4 yields 

+ 

where 

(2.5) 

(2.6) 

(2.7) 

In order to make use of Eq. 2.6 practical, terms that 

involve ~ must be calculated or replaced by terms that are 

written explicitly as functions of computable quantities. Two 

very different methods of achieving this objective are now 
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presented. The first and most classical method [1] uses 

direct dif£erentiation of Eq. 2.1 to obtain an initial-value 

problem for ~, which is solved and the result is substituted 

in Eq. 2.6. The second method, which has attractive 

computational features, introduces an adjoint variable [2,3] 

that is used to write an alternate form of Eq. 2.6, which 

requires less computation than the direct differentiation 

method. 

Direct Differentiation Method 

Direct differentiation of Eq. 2.1 yields 

(2.8) 

Note that since ~ is an nxk matrix, Eq. 2.8 is in fact a 

system of k first order linear differential equations for the 

k columns of the matrix zb' 

The initial-value problem of Eq. 2.8 can be solved 

numerically by forward numerical integration, to obtain the 

solution Zb(t) on the interval t l ~ t ~ t 2 • The result may 

be substituted directly into Eq. 2.6 to obtain the first 

derivative of the functional ~ of Eq. 2.3 with respect to 

design. While this computational algorithm is conceptually 

very simple and can be implemented with a minimum of 

programming difficulty, if k is large it requires a 

substantial amount of numerical computation and data storage. 

Adjoint Variable Method 

It is desirable to find an alternate method of first order 

design sensitivity analysis that reduces the amount of 

computation associated with the direct differentiation method 

of the preceding subsection. To meet this objective, an 
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adjoint variable ~ is introduced by multiplying both sides of 

Eq. 2.1 by _IT and integrating from t l to t 2 to obtain the 

identity 

t 2 
-J AT[~ - f ~ - f ldt 

1 D Z D b 
t 

o 

Integrating the first term by parts gives 

t 2 
J [(iT + lT fz );, + lTfbldt - IT(t2 );,(t2 ) 

t l 

where Zb(tl ) = ~ has been substituted from the initial 

condition of Eq. 2.1. 

(2.9) 

(2.10) 

Recall that Eq. 2.10 holds for any function 1 = ~(t). In 

order to obtain a useful identity, the function ~ is chosen so 

that the coefficient of zb in the integrands of Eqs. 2.6 and 

2.10 are equal: i.e., 

(2.11) 

Further, equating coefficients of ~(t2) in Eqs. 2.6 and 2.10, 

1(t2 ) 2 2 T -G( t ,z( t ), b) - -gz 

['( t 2 ) + 9 2 + 9 z f ( t2)~ 
r? + t (2.12) 

~l(t2) z 

The sum of terms in Eqs. 2.6 and 2.10 involving zb are now 

equal. The terms in Eq. 2.6 that 

replaced by terms in Eq. 2.10 that 

derivatives with respect to design 

variable 1. Thus, Eq. 2.6 becomes 

involve 

involve 

and the 

zb may now be 

only explicit 

adjoint 



www.manaraa.com

712 

[g 2 + g f(t 2 ) + F(t 2 ) l~ 
dW t z 

g -db b Q(t2 ) 

_ AT(tl)~ + 
t 2 

- ATfbldt J [Fb (2.13) 

t l 

Thus, the first derivative of W with respect to design can 

be evaluated. The computational cost associated with 

evaluating this derivative vector includes backward numerical 

integration of the terminal-value problem of Eqs. 2.11 and 

2.12, to obtain A(t). Numerical integration in Eq. 2.13 then 

yields the desired design derivative. This method is called 

the adjoint variable method of design sensitivity analysis. 

It has been used extensively in optimal control and mechanical 

design [2,3]. 

Note that the derivative of W with respect to design is 

obtained in Eq. 2.13, with only backward numerical integration 

of a single terminal-value problem of Eqs. 2.11 and 2.12. If 

several design variables are involved: i.e., k » 1, then the 

adjoint variable method is substantially more efficient than 

the direct differentiation method. If, on the other hand, the 

design variable is a scalar, then the same number of 

differential equations must be integrated. For large numbers 

of design variables, the adjoint variable is computationally 

more efficient. 

There is one practical complication associated with the 

adjoint variable method. The state variable z(t) must be 

stored at discrete times and interpolated for use in subsequent 

backward integration. 

First Order Design Sensitivity 
Analysis of a Simple Oscillator 

Consider the simple oscillator of Fig. 2.1 as an 

example. The objective is to derive first order design 

derivatives of position at a given terminal time t2 = ~2. 
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/}---- x ----3i>I> I 
k 

m 

T 
Figure 2.1 Simple Oscillator 

The second order equation of motion and initial conditions 

are 

mx + kx = 0, 

x(O) o (2.14) 

x(O) = v 

where v is the initial velocity. Equation 2.14 can be written 

in the first order form of Eq. 2.1 as 

(2.15) 

- [0 ] _ h(b) 
- b 2 

. 
where zl = x and z2 = x 
taken as b = [k,v]T 

. 
zl.. The design variable vector is 

To simplify the problem, let m 1. Then the closed form 

solution of Eq. 2.15 is 

Zl(t) 
b 2 

sin~ t 
IEl (2.16) 

Z2(t) b 2 cos~ t 

The functional treated in this simple example is the position 

f h . 1· 2 /2· o t e mass at term~na t~me t = n : ~.e., 
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sin 1f~ 
2 

From Eq. 2.2, since t 2 has a given fixed value, 

and 

rl z o 

Q 2 1 
t 

From Eq. 2.7, 

(2.17) 

(2.18) 

(2.19) 

Direct Differentiation Method: To illustrate use of the 

direct differentiation method, the initial-value problem of 

Eq. 2.15 may be differentiated with respect to design, using 

the notation y? = (z')b ,to obtain the matrix differential 
~ ~. 

equations and initial cdnditions 

["' .2] 
- ~:, J [: y:] [:, J 

Yl Yl 

·1 ·2 
Y2 Y2 o Y2 Y2 

~: 2J [ J 
(2.20) 

Yl 0 

Y~ It') ~ 0 Y2 

substituting the closed form solution of Eq. 2.16 into Eq. 

2.20 for zl' the initial-value problem of Eq. 2.20 may also be 

solved in closed form to obtain 
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1 
(zllb 

(b2t) _ 
t -(2(bb~372) sin/bl Yl - = 2b l cos/bl t 

1 1 

1 
(z2 1b 

·1 
Y2 - Yl 

1 
(2.21) 

2 
(zl )b 

(/b: 
) sinlt\ t Yl - = 

2 

2 _ 
(z2 1b 

·2 
Y2 = = Yl 

2 

These results may be substituted, with Eq. 2.19, into Eq. 2.6 

to obtain 

dljl 
[1,O]zb(1I/2) = [yi(1I/2) , Y~(1I/2~ db 

~'b, 1T~ b 2 1I/bl 1 . "b~ = cos--2- -
2(b )372 

sin--2 - sl.n--2-4bl Ibl 1 

(2.22) 

A direct calculation of the partial derivatives of IjI of Eq. 

2.17, using the solution of Eq. 2.16, shows that the result 

obtained by the direct differentiation method is exact. 

Adjoint Variable Method: Next, the adjoint variable 

method is applied. From Eq. 2.13, the first design 

derivatives of IjI are given by 

where 

(2.23) 

(2.24) 
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and A is the solution of Eqs. 2.11 and 2.12. In this case, 

[::J + [: -:~ [::J o 

(2.25) 

A(i) ~ - G] 
The solution of Eq. 2.25 for A is obtained in closed form as 

[_CO:/bl(~ ~t: ] 
- -- sin/b (- - t) 

Ib 1 1 2 

substituting Eqs. 2.24 and 2.26 into Eq. 2.23, 

" 

11 Ibl 
cos---2- , 

~ 
11 

Ibl 

1 Sin'~] 

(2.26) 

+ {~OS/bl (~ - t), ~ sin/b, (~ - t~ ~:, ~dt 

Using the solution for zl in Eq. 2.16 and integrating, 

dljl 
db 

1Ib2 11 Ibl 
4bcos---2-

1 
, -~sin 1I1E!:] 

It) 2 
1 

(2.27) 

which is indeed the result obtained by direct differentiation 

of Eq. 2.17. 

3. SECOND ORDER DESIGN SENSITIVITY ANALYSIS FOR SYSTEMS 
DESCRIBED BY FIRST ORDER DIFFERENTIAL EQUATIONS 

In some situations, first derivatives with respect to 

design are inadequate. For example, optimization algorithms 



www.manaraa.com

718 

t 2 
+ II [(F z~. )Z;, + Fb . z;' + Fb.b]dt 

t ~ ~ ~ 

+ {GT(t2)~ib(t2) + t
2 

} ~l FZ~ibdt (3.2) 

where - denotes a variable that is to be held fixed for the 

partial differentiation indicated. 

In order to evaluate terms on the right side of Eq. 3.2, 

the first partial derivatives of z with respect to b may be 

evaluated, using the direct design sensitivity analysis method 

of Section 2. Second derivatives of z with respect to design, 

however, arise and must be evaluated. To extend the direct 

design sensitivity analysis method, one component of Eq. 2.8 

can be differentiated to obtain 

. 
~.b - fz~.b = (fz~. )z~ + (fz~.)b + fb.z~ + f b . b 

~ ~ ~ ~ ~ ~ 

1 
(3.3) 

~.b(t ) = ~.b 
~ ~ 

Equation 3.3 for i = l, ••• ,k could be solved to obtain all 

second derivatives of state with respect to design and the 

result could be substituted into Eq. 3.2 to complete 

calculation of the matrix of second derivatives of ~ with 

respect to design. While this is mathematically feasible, an 
', .. 

exceptionally large number of computations would be 

required. First, the system of k first order equations of Eq. 

2.8 must be solved for zb' which is then substituted in the 

right side of Eq. 3.3. Then, the system of k2 equations of 

Eq. 3.3 must be solved for the second derivatives of z with 

respect to design. All of these results would have to be 

stored and the results substituted into Eq. 3.2, for 

evaluation of second derivatives of ~ with respect to 

design. Taken with the original state equations of Eq. 2.1, 

this constitutes a total of I + k + k 2 systems of differential 

equations, each being n first order differential equations in 
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that use second order derivatives are generally superior to 

gradient based methods. Of more direct importance in design, 

bounds may be placed on the sensitivity of system performance 

to variation in some parameter. In this case, the derivative 

with respect to the parameter must be bounded. The designer 

thus needs second derivatives, in order to adjust the design 

to stay within an acceptable range of first order parameter 

sensitivity. These and other design requirements motivate the 

desire to calculate second design derivatives. 

Three approaches to second order design sensitivity 

analysis are presented in Ref. 12. Only the hybrid second 

order method based on an idea introduced by Haftka for 

structural design sensitivity analysis [8J, is presented here. 

To avoid notational difficulties that are associated with 

defining the derivative of a matrix with respect to a vector, 

consider one component of Eq. 2.6; i.e., the derivative 

of ~ with respect to the i-th component of b, 

t 
+ f12 [Fz~. + Fb . ]dt (3.1) 

t 1 1 

To further simplify notation, attention will be limited here 

to the case in which the condition ~(t2,z(t2») = 0 does not 

depend explicitly on design. 

Since ~b. is a scalar quantity, it may be differentiated 
1 

with respect to design, using the chain rule of 

differentiation and Eqs. 2.1 and 2.5, to obtain 
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n unknowns. This approach is not pursued further, since it is 

clearly intractable. 

An observation made by Haftka [8] allows for coupling the 

direct first order design sensitivity analysis method and the 

adjoint variable technique to efficiently solve the second 

order design sensitivity analysis problem. Consider that the 

direct first order design sensitivity analysis method of 

Section 2 has been used to obtain all first derivatives of 

state with respect to design. In this situation, the only 

terms in the second order design sensitivity formula of Eq. 

3.2 that are not known are those involving second derivatives 

of state with respect to design: i.e., 

T 
- G zb.b + 

~ 

t 2 

J F z. bdt 
1 Z O. 

t ~ 

where SOT denotes second order terms that are to be 

computed. 

(3.4) 

As noted earlier, direct solution of the second order 

state sensitivity equations of Eq. 3.3 is impractical. As an 

alternative, multiply the differential equation of Eq. 3.3 by 

_IT and integrate from t l to t 2 , using integration by parts, 

to obtain the following identity in 1 : 

t 2 
- J [AT(~.b) 

t l ~ 

(3.5) 

Following exactly the same argument as in the adjoint variable 

method for first order design sensitivity analysis, select 1 

so that the coefficients of ~.b in the second line of Eq. 3.5 
~ 

and in Eq. 3.4 are identical: i.e., 

(3.6) 
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Note that the terminal-value problem of Eq. 3.6 is 

identical to the terminal-value problem of Eqs. 2.11 and 2.12 

for first order adjoint design sensitivity analysis. Using 

this result, the second order terms of Eq. 3.4 may be 

evaluated, using Eq. 3.5 evaluated at the solution of Eq. 3.6, 

to obtain 

(3.7) 

This result may be substituted into Eq. 3.2 to evaluate all 

second derivatives of ~ with respect to design. 

The remarkable aspect of this approach is that the adjoint 

equation of Eq. 3.6 does not depend on the index i. 

Therefore, only a single backward adjoint equation must be 

solved. Thus, to evaluate the full matrix of second 

derivatives in Eq. 3.2, only the single state equation of Eq. 

2.1, the system of k first order state sensitivity equations 

of Eq. 2.8, and the single adjoint equation of Eq. 3.6 need to 

be solved. This is a system of only 2 + k systems of first 

order equations, each in n variables. 

Second Order Design Sensitivity of a Simple Oscillator 

It is fascinating that precisely the information needed 

for second order design sensitivity analysis of the simple 

oscillator is available from the first order sensitivity 

analysis presented in Section 2. Specifically, ~ is given in 

Eq. 2.21 and 1 is given in Eq. 2.26. Thus, no new 

integrations are required. Substituting these results into 

Eqs. 3.7 and 3.2 yields the desired results, 
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sin 

cos 1l2~} 

{- 2b~72 
1 

ll ibl 
sin -2-

11 1l2~} + 4b cos 
1 

{- 2b~72 
1 

1l~ + 11 sin --- cos 
2 4bl 

<bl} o 

(3.8) 

This is the same result obtained by direct differentiation of 

Eq. 2.17, so the second order design sensitivity analysis 

method yields precise results. 

As a numerical example, using the computational algorithm, 

the first and second design derivatives are calculated with 

b = [1.0, 1.0]T. Numerical results and exact values from Eqs. 

2.27 and 3.8 are given in Table 3.1. 

Table 3.1 First and Second Design Derivatives of 

Simple Oscillator, for b = [1.0, 1.0]T 

* Design Derivatives 

* a2 lji lji .. = -=-~-
~J ab. ab . 

~ J 

Numerical Results 

-0.49999972724 

1.0000000000 

0.13299722240 

-0.49963656519 

-0.49999972723 

0.0 

Exact Values 

-0.5 

1.0 

0.13314972501 

-0.5 

-0.5 

0.0 
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Using the first and second design derivatives obtained, 

first and second order approximations of the functional ~ 

may be calculated, using Taylors formula; i.e., 

~ (bi ) '" ~(bO ) + ~(bO )(bi - be) (3.9) 

~ (bi ) '" 1/I(bO ) + ~~(bO )(bi _ be) 

+ 1 (bi _ bO)T D(bO )(bi _ be) 
2" db2 

(3.10) 

bO [1.0, T b i bO iob, with ob [0.05, where = 1.0] , and = + 
0.05]T. Results are compared with exact values of ~(bi ) in 

Fig. 3.l. Note that second order approximation is much more 

accurate than first order approximation. This illustrates one 

potential value of second order design derivatives. 
o 
r<l 

o 
C\J 

LO 

0 
....: 

LO 
q 

0 
q 

LO 
(]') 

0 

o - exact solution 

o - first order approximat"ion 

b _ second order approximation 

-I 0 2 :3 4 5 6 7 B 9 10 II 

Figure 3.1 Linear and Quadratic Approximations of ~ 
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4. DESIGN SENSITIVITY ANALYSIS OF A 
BURST FIRE AUTOMATIC CANNON 

A burst fire automatic cannon can be modeled as shown in 

Fig. 4.1. The second order equation of motion of the 

recoiling mass is 

mx - fO + cd(i) + mgsin6 + F(t) 

with initial conditions 

x(O) 0 

i(O) 0 

0, 0 .:; t .:; T 

where cd(~) represents a general damping force. 

Figure 4.1 Model of Burst Fire Automatic Weapon 

(4.1) 

(4.2) 

At t = 0, a latch is released, allowing the recoiling 

parts to move forward prior to firing, under the action of the 

actuator force foe Three shots are contained in a magazine 

that is attached to the recoiling parts and are to be fired in 

rapid succession, with a given time ~t between shots. The 

system is to be designed so that the impulse of the rounds 

fired brings the recoiling parts to rest at a fixed distance 

to the rear of the initial position, so that they can be 

latched again at the position x = O. 

The period of feeding and firing a three round burst 

is T sec., with each round exiting the tube in a 



www.manaraa.com

724 

characteristic period E sec., with an impulse IO. The 

ballistic force F(t) acting on the recoiling parts is 

approximated by 

F(t) 

(:IO) slon2(t -to) t '" t"'t + 1° = 1 2!., i.... ... i E, 
E 

a , otherwise 

as shown in Fig. 4.2 

F(t) 

Figure 4.2 Ballistic Force 

1,2,3 

(4.3) 

t 

As a numerical example, let given data be as follows: mg 

1000 lb, m = 2.5892 lb/(in/sec2 ), IO = 1000 lb sec, 

fO = 3,555 lb, and E = 0.005 sec. Calculating the dynamic 

response with F(t) given in Eq. 4.3, it is found that for the 

given value of fa and with c = 0 and 6 = 0, T = 0.8461 sec 

and X(T) = -1.103 in. 

It is important to know how X(T) varies with variations in 

the parameters f O' c, and 6. If variations of these 

parameters that may occur in application cause X(T) to be 

positive, then a failure of function will occur. 

Linear Damping Case: In the case of linear damping, 

cd(i) = ci in Eq. 4.1. Using a first order state variable 

formulation, Eq. 4.1 can be written as 

F(t) J f(z,b), 
(4.4) 
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with initial conditions 

(4.5) 

where b = [fO' c, 6]T and F(t) is given in Eq. 4.3. The 

terminal time t (playing the role to t 2 in earlier sections) 

is the time at which the extreme rearward position occurs, so 

it is determined by 

o 
The functional for which design sensitivity is to be 

calculated is 

Non-zero terms in Eqs. 2.8 and 3.6 are 

i + fT A = 0 z 

A(t) T ~zf( Tj r? = -gz + fl f( t) z z 

where 

fT =[: :~ • f( T) = ~l 0 

- F( T)] z - mgsinb3 
m 

T 

= G] o~ = [~ gz 

[; 0 

-9:OSb3] 
fb z2 

m 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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In terms of solutions of the state and adjoint equations, 

the first and second design derivatives are evaluated in Eq. 

2.13 and Eqs. 3.2 and 3.7, respectively. 

Using the nominal design b O = [fa, 0, O]T , first and 

second derivatives of ware calculated. From Eqs. 3.9 and 

3.10, with the design variation 6b = [O.OSfO' 0.05, O.OS]T and 

b i = b O + i6b, i = 1,2, ••. , 10, one and two term Taylor 
i approximations of W(b ) are calculated. Results are given in 

Fig. 4.3. As can be expected, the second order approximation 

is more accurate than the first order approximation. 

0 
~ 
N 

C! 
N 
N 

C! 
0 
N 

0 
cO 

0 
~ 
0 
~ 

C! 
N 

C! 
Q 

0 
cO 

C! 
ID 

0 
~ 

0 
N 

0 
0 
0 
N , 

o - exact solution 

o - first order approximation 

D. - second order approy.imation 

..... :.i 

..... :.~. 

-I 0 2345678 

.. :/> 

... :.:l 

9 10 II 

Figure 4.3 First and Second Order Approximation of W in 
Linear Damping Case 
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Quadratic Damping Case: In case of quadratic damping, 

cd(i) = cilil and the state equation becomes 

f(z,b), 

where the terminal time T is determined by Eq. 4.6. The 

response functional is the same as in Eq. 4.7. 

Terms in the state sensitivity and adjoint equations of 

Eqs. 4.8 and 4.9, in this case, are 

[: o J 0 
fT 2b 2 f( T) z --Iz I b - mgsinb3 - F(T) m 2 1 

m 

(4.13) 

(4.14) 

(4.15) 

Using the solutions of the state and adjoint equations, 

first and second design 
o T 3 

b = [fO' 0, 0] and b 

0.005, 0.05]T. The one 
i of W(b ) are calculated 

b i = bO + iob, i = 1,2, 

derivatives are calculated for 

b O + 30b, where ob = [0.005fO' 

and two term Taylor approximations 

for these two nominal designs, with 
i 0 ••• , 10, and b = b + iob, i -3, 

-2, ••• , 7, respectively. Results are given in Figs. 4.4 and 

4.5. Note that in both cases the quadratic approximation is 

far more accurate than the linear approximation, for moderate 

design variations. For the first nominal design, Fig. 4.4 
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shows that for very large design perturbations, error in the 

quadratic approximation can be of the same order of magnitude 

as the first order approximation. 

q 
o 
(\I 

q 
lD 

q 
(\J 

q 
CD 

o 
.,f 

q 
o 

q 
V 

I 

q 
CD 

I 

-I 0 

o - exact solution 

o - first order approximation 

6 - second order approxiNation 

.•••• J!,. 

2 3 4 5 

i 

.bo· 

6 7 8 9 10 II 

Figure 4.4 First and Second Order Approximations of ~, with 

Quadratic Damping about bO 
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o - e xac t solution 

o - first order approximation 

6 - second order approximation 

-4 -3 -2 -\ o 2345678 

Figure 4.5 First and Second Order Approximations of ~, with 

Quadratic Damping about b 3 

5. FIRST ORDER DESIGN SENSITIVITY ANALYSIS FOR SYSTEMS 
DESCRIBED BY SECOND ORDER DIFFERENTIAL-ALGEBRAIC EQUATIONS 

The first order design sensitivity analysis methods 

presented in Section 2 are based on explicit differential 

equations of motion that are written in first order form. 

Many constrained mechanical systems involve numerous bodies 

that are connected by kinematic joints, which may be described 

by mixed systems of differential-algebraic equations. 

Automated formulation techniques are now available that 

provide computer generation of system equations of motion and 
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numerical algorithms for their direct solution. The purpose 

of this section is to present a formulation that extends 

design sensitivity analysis methods to treat such classes of 

problems, with the ultimate objective of both computer 

generation and solution of equations of design sensitivity 

analysis. 

A general formulation for constrained equations of 

mechanical system dynamics is presented in this section. Both 

the direct differentiation and adjoint variable methods of 

Section 2 are extended to treat these problems. Examples that 

have been solved with general purpose computer codes are 

presented. 

Problem Formulation 

Dynamic systems under consideration are presumed to 

involve constrained rigid body motion, under the influence of 

time varying forcing functions. Design of such systems is 

defined by a vector of k design parameters, denoted 

b ( 5.1 ) 

These parameters are at the disposal of the designer and 

represent physical properties that define design of the 

system, such as dimensions, spring constants, damping 

coefficients, masses, or force magnitudes. In contrast to 

parameters that are specified by the designer, dynamic 

response of the system is described by a vector of n 

generalized coordinates q(t), 

q(t) T 
[q 1 (t) , ••• , qn ( t) ] ( 5.2 ) 

The generalized coordinates are determined by the governing 

equations of motion for the system, under the action of 

applied loads. Forces applied to the system are transformed, 

using the principle of virtual work [13], to obtain 

generalized forces that correspond to the generalized 
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coordinates of Eq. 5.2. The generalized force vector treated 

here is of the form 

(5.3) 

The class of systems under consideration is subject to 

holonomic kinematic constraints of the form 

t(q,b) = 0 

where t(q,b) is a vector of constraint functions, 

T 
[tl (q,b), ••• , tm(q,b)] 

(5.4) 

(5.5) 

For details concerning the form of such equations, see Refs. 

5, 6, 7, or 13. These algebraic, time dependent constraints 

define dependencies among the state variables that must be 

accounted for in the equations of motion of the system. Note 

also that the constraints are design dependent. 

Since dynamic systems under consideration are nonlinear, 

kinetic energy of the system is written in the form 

1 ·T • 
T = '2 q M(q,b)q (5.6) 

where M is a mass matrix that depends on the position of the 

system and design. Using the kinetic energy expression of Eq. 

5.6 and the constraints of Eq. 5.4, the Lagrange multiplier 

formulation of the constrained dynamic equations of motion 

[13] may be written as 

• T 
Mq - S(q,q,b) - 0 + • l. = 0 q (5.7) 

where l. is the Lagrange multiplier vector that is associated 

with the constraints of Eq. 5.4, S contains Coriolis and 

related terms, and a subscript denotes partial derivative. 

The reader is referred to the Appendix for definition of 

matrix calculus notation that is employed here. The 
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differential equations of Eq. 5.7 and the algebraic constraint 

equations of Eq. 5.4 constitute the system equations of 

motion. 

To simplify notation, the values of generalized 

coordinates at specific times t i are denoted as 

i i q :: q(t ) i 1,2 (5.8) 

It is presumed that the initial time t l is fixed and the 

final time t 2 of the dynamic event is determined by 

2 2 n(t ,q ,b) = a 

which are defined by the engineer. The generalized 

coordinates must satisfy Eq. 5.4 at t l and t 2 , so 

i 1,2 

(5.9) 

(5.10) 

A complete characterization of the motion of the system 

requires definition of initial conditions on position and 

velocity. The initial conditions are specified by relations 

of the form 

2·1 Aq 

a(b) 

c(b) 

(5.11) 

(5.12) 

where Al and A2 are matrices that define initial conditions on 

position and velocity, respectively. Since Eqs. 5.4 and 5.11 

are to determine the full set of initial generalized 

coordinates ql, the matrix 

(5.13) 

must be nonsingular. 
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In addition to the initial conditions, the generalized 

velocities must satisfy the constraint velocity equation 

i = 1,2 (5.14) 

which is obtained by differentiating Eq. 5.4. Equation 5.12 

and Equation 5.14 with i = 1 must determine the initial 

velocity, so the matrix 

(5.15) 

must also be nonsingular. 

A necessary and sufficient condition [13] for Eqs. 5.4 and 

5.7 to uniquely determine motion of the system is that the 

following matrix be nonsingular: 

(5.16) 

Under the foregoing assumptions, once design b is 

specified, dynamic response of the system is uniquely 

predicted by the system constraints and equations of motion of 

Eqs. 5.4 and 5.7 and the initial conditions of Eqs. 5.11 and 

5.12. A reliable numerical method of integrating these 

equations of motion is presented in Ref. 14, employing a 

generalized coordinate partitioning-constraint stabilization 

technique for automatic formulation and integration of the 

equations of motion. 

Well-known results from the theory of initial-value 

problems [10] show that the dynamic response of this system is 

continuously differentiable with respect to the design 

variables, as long as the matrix of Eq. 5.16 retains full 

rank. It is therefore of interest to consider a typical 

functional that may arise in an optimal design problem of 
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selecting the design b to minimize some cost function, 

subject to constraints on performance, each given in terms of 

functions of the general form 

t 2 
f F(t,q,q,).,b)dt 2 2·2 w = g(t ,q ,q ,b) + (5.17) 

t l 

The function W is allowed to depend on all variables of the 

problem. Since the Lagrange multiplier ). uniquely determines 

reaction forces in the constrained system, such as reaction 

forces in bearings, bounds on force transmitted are included 

in the integral of the second term of Eq. 5.17. 

Design Derivative of W 

Derivatives of the functional of Eq. 5.17 with respect to 

design are to be calculated. Since t 2 , q2, q2, q(t), 

q(t), and ).(t) depend on design, Leibniz rule [llJ for the 

derivative of an integral and the chain rule of 

differentiation may be used to obtain 

(5.18) 

2 2 2·2 where F = F(t ,q ,q ,b) and the following relations are 

employed 

dq2 2 ·2 2 (5.19) db qb + q tb 

2 
~ ·2 ""2 2 

(5.20) 
db qb + q tb 

Integration by parts of the second term in the integral of 

Eq. 5.18 and rearranging terms yields 
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(5.21) 

In order to make use of Eq. 5.21, partial derivatives of 

q, q, A, and t 2 with respect to b must be evaluated or 

rewritten in terms of computable quantities. This is done in 

the following two subsections, using direct differentiation 

and adjoint variable methods, respectively. 

Direct Differentiation Method 

For direct evaluation of Eq. 5.21, partial derivatives of 

all state related terms with respect to design must be 

calculated. This can be done by direct differentiation of the 

state equations. Beginning with the differential equations of 

motion of Eqs. 5.7 and 5.4, taking the derivative with respect 

to design, 

= - t 
b 

(5.22) 

This is a system of linear second order differential-algebraic 

equations in the variable~. In order to solve these 
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1 • 1 ) equations, a set of initial conditions for ~(t ) and qb(t 

must be calculated. 

Differentiating Eqs. 5.10 and 5.11 with respect to design 

yields 

(5.23) 

Similarly, differentiating Eqs. 5.12 and 5.14 with respect to 

design yields 

(5.24) 

Since the coefficient matrices in Eqs. 5.23 and 5.24 are the 

same as in Eqs. 5.13 and 5.15, respectively, and are thus 

nonsingular, q~ and q~ are uniquely determined. 

Having calculated initial conditions, the mixed system of 

differential-algebraic equations of Eq. 5.22 can be solved 

for qb(t) and~. Having calculated these quantities, Eq. 5.9 

may be differentiated and solved for t 2 as 
b 

(5.25) 

Since all terms on the right are known, Eq. 5.25 may be used 

to obtain t b , yielding all terms that are required to evaluate 

the total derivitave of ~ with respect to design in Eq. 5.21. 

Numerical Examples by Direct Differentiation 

The direct differentiation algorithm presented here was 

coded in FORTRAN and implemented on a PRIME 750 supermini 
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computer, as presented in Ref. 15. The program was tested on 

several problems, results of which are summarized here. 

Verification Procedure: Results of design sensitivity 

calculations can be checked by methods based on perturbation 

theory. Two such methods are used to verify design 

sensitivity calculations by the present method, as follows: 

(a) Check on Functional Design Sensitivity: The 

vector ~b of design sensitivity coefficients is checked by 

calculating state design sensitivity and constraint functional 

at a nominal design b. The design is then given a small 

perturbation 6b, so that the new design becomes 

* b = b + 6b (5.26) 

* The equations of motion are now solved at the new design b 

and the constraint functions are re-evaluated. Let the value 

of the constraint function at the original design be ~(b) and 
* its value at the perturbed design be ~(b ). The actual change 

in the value of the constraint function is given by 

(5.27) 

The design sensitivity prediction of the change in functional 

value for the design change 6b is given by 

(5.28) 

If design sensitivity analysis is correct and if significant 

digits are lost in the difference of Eq. 5.27, then the value 

of ~~i obtained from Eq. 5.27 should be approximately equal to 

the value of 6~i obtained from Eq. 5.28. 

(b) Check on State Design Sensitivity: As a check on 

state design sensitivity ~, the system is solved at the 
* original design b and the perturbed design b. Consider the 

variation in acceleration of generalized coordinate at time t 
* when the design is changed from b to b. This variation may 

be written as 
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.. .. * .. 
llq(t) q(t,b ) q(t,b) (5.29) 

For a design change ob, the change in acceleration at time t 

is predicted by design sensitivity theory as 

oq(t) ~(t) ob (5.30) 

The perturbations of Eqs. 5.29 and 5.30 should be 

approximately equal. Acceleration design sensitivity accuracy 

is checked, since if it is accurate, then position and 

velocity sensitivities will be even more accurate. 

For each example, the perturbation in design is chosen to 

be 

t 0.001 for b. ~ 0 
1. 

ob. (5.31) 
1. 

0.001 for b. < 0 
1. 

Example 5.1; Four-Bar Linkage under Self-Weight: The 

initial configuration of a four-bar linkage is shown in Fig. 

5.1. The design variables are the coordinates of the revolute 

joints, as indicated in Fig. 5.1. The only loading is self

weight of the members. The simulation time is from 0 to 1 

sec. Input data are as follows, in slug-inch units: 

Masses; 

8.0 

Moments of Inertia; 

8.0 

The nominal design is 

b :: [-70.9107, 70.7107, -50., _55.jT 

The performance functional is chosen to be 

1 2 
~ :: J (sin~2 - 0.2389) dt 

o 
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@~ 
b2 

b3Tb4 

x CD 

I--- 100 

@ 
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Figure 5.1 Four-bar Linkage under Self Weight 

The design sensitivity vector for 0/ is found to be 

o/b :: [-5.841, 1.616, -2.356, 2.601] x 10-3 

Using this design sensitivity vector and the design 

perturbation of Eq. 5.31, the predicted change in cost is 

-5 00/ = 1.24 x 10 

Reanalysis with the perturbed design yields 

60/ = 1. 28 x 10- 5 

which is quite close. 

The check on state sensitivity was carried 

C3 
d 2 

cos~3' where ~3 is the angle of link -
dt2 

with the x-axis. Plots of lIC3 and oC3 for this 

out for 

3 in Fig. 

test are 

5.1 

shown 

in Fig. 5.2. The curve obtained from state design sensitivity 

and the curve obtained by perturbation coincide to within 

numerical accuracy. The graph of C3 is shown in Fig. 5.3., 

which indicates a substantial acceleration variation. 
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Figure 5.2 State Sensitivity Check for Example No. 1 
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Figure 5.3 C3 Versus Time Curve for Example 1 

Example 5.2: Slider-Crank Mechanism: Figure 5.4 shows a 

slider-crank mechanism in its initial position. The loading 

in this case is the weight of the members and a constant force 

F = 125 lbs, which acts on the piston in the direction 

indicated in Fig. 5.4. The simulation time is from 0 to 1 
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y 
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___ -+----------J-----L..-+ 

~ 0.2 _~--X __ 0.49----+t~1 
Figure 5.4 Slider-crank Mechanism 

sec. The input data are given, in foot-pound units, as 

follows: 

Masses1 

Moments of Inertia; 

The nominal design is 

T b = [-0.25, 0.25] 

15.0, m4 8.0 

8.0 

and the functional selected fo~ analysis is 

1 2 
~ = J (X4 - 20) dt 

o 
For this problem, the functional design sensitivity vector 

was found to be 

~b = [46.48, -34.73] 

The predicted cost function variation is 

6~ = -0.0812 

Perturbation and reanalysis yielded the comparable result 
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[;1/1 = -0.0814 

which again shows good agreement. 

The state design sensitivity verification was done 

on x4 and, again, coincident curves 0: Fig. 5.5 were 

obtained. Figure 5.6 is the plot of x4 versus time. 

1.00.--------------------------. 

.75 

.50 
C'J~ 

.25 u 
<V 
en 

'-.. 000 of---
<t" -.25 x 

:<J 

-.50 

-:75 
0.0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.8 

Time (sec) 
Figure 5.5 State Sensitivity Check of Example 3 

75. 

60· 
C'J~ 45. u 

<V 
~ 30. of---<;j- 15. :x 

O. 

-15. 

-30. 
0.0 0.1 0.5 06 0.7 0.8 0.9 1.0 

Time (sec) 

Figure 5.6 x4 Versus Time Curve for Example 3 
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Adjoint Variable Method 

Variations in state variables and initial and final times 

must be consistent with the system constraints and equations 

of motion. To implicitly account for this dependence and to 

avoid explicit computation of derivatives of state with 

respect to design, a sequence of adjoint relationships is now 

developed, using a method that has been widely applied in 

mechanical and structural design [3,4]. First, both sides of 

the equations of motion of Eq. 5.7 and the constraints of Eq. 

5.4 are multiplied by arbitrary multiplier vector functions 

p(t) and v(t), to obtain the identities 

2 
t T •• T 

f \.I [Mq - S - 0 + • >']dt 
I q 

t 

o (5.32) 

and 

o (5.33) 

These equations hold for all values of design, so the total 

design derivative of both sides of Eqs. 5.32 and 5.33 may be 

taken, yielding 

o (5.34) 

and 
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o (5.35) 

Integrating terms in the integrals of Eq. 5.34 involving 

qb and qb by parts and using Eqs. 5.19 and 5.20 yields the 

identity 

T T···T T· T T· T··, + 2p M + P M + P s· + P s· + P Q. + P Q. + P (Mq) q q q q q 

+ o 

(5.36) 

Equation 5.9 may similarly be multiplied by an arbitrary 

multiplier ~2 to obtain the identity 

(5.37) 

Since this equation must hold for all design, the total design 

derivative of both sides yields the identity 

(5.38) 

Multiplying the kinematic constraint equation of Eq. 5.10 

at t 2 by an arbitrary multiplier vector y2 yields the identity 

2T 2 2 
Y • (q ,b) = 0 (5.39) 

Taking the total design derivative of both sides of Eq. 5.39 

yields the identity 
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2 Velocity variations must satisfy Eq. 5.14 at t. Hence, 

Eq. 5.14 may be multiplied by an arbitrary multiplier 
2 vector ~ to obtain the identity 

o (5.41) 

Taking the total design derivative of both sides yields the 

identity 

(5.42) 

The identities of Eqs. 5.35, 5.36, 5.38, 5.40, and 5.42 

are relationships among design derivatives of state, Lagrange 

multiplier, and initial and final times. All of these 

identities are valid for arbitrary multiplier functions p(t) 

and v(t) and multiplier parameters ~2, y2, and ~2. The 

objective in use of these identities is to select the 

arbitrary multipliers in such a way that terms involving state 

derivatives with respect to design in Eq. 5.21 may be written 

explicitly in terms of computable quantities. The technique 

employed here is an extension of the adjoint variable method 

that has been used extensively in optimal control and optimal 

design literature [2-4]. The idea is simply to sum identities 

of Eqs. 5.35, 5.36, 5.38, 5.40, and 5.42, to obtain a linear 

expression in all the derivatives involved. The coefficients 

of each design derivative of state, Lagrange multiplier, and 

final time are equated to corresponding coefficients on the 

right of Eq. 5.21. This process yields the following set of 

adjoint relations: 

Equating coefficients of ~ in the integrals yields 



www.manaraa.com

746 

[2M + 81' T • 
[M + 81' + ·T M)I + + o· ]p + o· q q q q 

00 T 
8T _ OT + (tT>.'T] FT d (F. )T + (Mq) - q )q )I = - dt q q q q q 

Equating coefficients of ~ in the integrals yields 

Equating coefficients of q~ yields 

T 
- O~ i + 

q 

+ (.2.2)T 2 = T + qq q n g 2 
2T 

F. 
q q 

Equating coefficients of ·2 yields qb 

M2)12 + 2T 2 T . " g.2 q q 

Equating coefficients of t 2 
b yields 

( .2) 2 .2 T 2 T 2 T 
+ ·2 (t22)T n 2 + n 2q ~ + q t Y q • q q t q q 

002T 2T 2 
g 2 + 

·2 002 
+ F2 + q t " g 2q + g.2q q t q q 

2 n 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

Presuming that Eqs. 5.43 through 5.47 determine all 

multipliers, the resulting terms in the summation of Eqs. 

5.35, 5.36, 5.38, 5.40, and 5.42 yield a formula for the sum 

of all terms in Eq. 5.21 involving design derivatives of 

state, Lagrange multiplier, and initial and final times. This 

identity is substituted into Eq. 5.21, yielding an explicit 

expression for the derivative of ~ with respect to b as 
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(5.48) 

The design sensitivity analysis vector of Eq. 5.48 may be 

evaluated numerically, once the state and adjoint equations 

have been solved. 

Adjoint Variable Design Sensitivity Analysis Algorithm 

In order to evaluate the design sensitivity vector ~b 

in Eq. 5.48, it is important to define a practical 

computational algorithm that determines all variables that 

arise. For a nominal design b, the following sequence of 

computations uniquely determines all variables that are 

required for evaluating the sensitivity vector in Eq. 5.48: 

Step 1: Integrate the equations of motion of Eqs. 5.4 and 

5.7, with initial conditions of Eqs. 5.11, 5.12, and .. 
5.15. Store q(t), q(t), q(t), and A(t). The 

numerical method of Ref. 14 can be employed for this 

calculation. 

Step 2: Equations 5.46 and 5.44 at t 2 are 

Known terms (5.49) 
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Since the coefficient matrix is the nonsingular 

matrix of Eq. 5.16, p2 and q2 are uniquely 

determined. 

. 
Equation (~tOq)P+ d T 5.45 and tqll = - dtFl from Eq. 

5.44 at t 2 are 

M2 2T ·2 T 
t II Sl 2 q q 

~2 + known terms (5.50) 
.2 0 2 0 q -y 

Since the coefficient matrix is nonsingular, 
·2 and 2 uniquely determined functions II T are as 

of ~2. 

Equation 5.47, with the solution of Eq. 5.50, 

determines ~2 , hence ·2 and 2 
11 Y . 

Ste,e 5: Backward integration of Eqs. 5.43 and 5.44, employing 

the numerical methods of Ref. 14, yields p(t), p(t), 

Ste,e 6: 

Ste,e 7: 

1 ·1 and v(t), hence II and p Uniqueness follows since 

these equations are linearizations of the constraints 

and equations of motion of Eqs. 5.4 and 5.7. 

1 ·1 Equations 5.23 and 5.24 yield ~ and qb 

The design sensitivity vector Wb of Eq. 5.48 is 

evaluated, using results of Steps 1 through 6. 

This algorithm has been implemented in the dynamic 

analysis program DADS. The program automatically assembles 

the constraint equations and the governing differential 

equations for the problem from user supplied data. The user 

identifies design variables and all derivatives that are 

needed in the adjoint equations are assembled. Integration 

forward in time is carried out for the state and backward 

integration in time is carried out for the adjoint 
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variables. Backward integration requires that the state, 

Lagrange multipliers, mass matrix, and Jacobian matrix be 

stored on disk during forward integration, to be retrieved at 

the appropriate times during backward integration. When a 

successful time step is taken in forward integration, q, 

q, q, ~, the Jacobian, and the mass matrix are written on 

disk. Polynomials that interpolate for q and ~ are also 

generated and stored on disk. During backward integration, 

accelerations are obtained by interpolation and q and q are 

obtained by integrating the polynomial for q. 

Numerical Examples by the Adjoint Variable Method 

Several example problems have been analyzed with the 

software developed, two of which are discussed here. 

Example 5.3: Two Degree Freedom Spring Mass System: As 

the first example, a simple two degree freedom spring mass 

system shown in Fig. 5.7 is considered. Two masses of 20 Kg 

and moment of inertia 125 Kgm2 are connected by springs and 

dampers, as shown in Fig. 5.7. Body 1 is excited by a force 

F=lOOO sin20t. The spring constants and damping coefficients 

are the design variables, as shown in Fig. 5.7. Analysis is 

carried out for a period of 1 sec and a nominal design b O = 

[3920, 10, 3920, 10]T. 

The dynamic response functional for this problem is taken 

as 

1 
where Yl = 5 is the initial position of body 1. For this 

system, the vector of constraints is simply 

and the Jacobian matrix is 
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x 

Figure 5.7 Elementary Two Mass Example 

~ 
0 0 0 0 

~ • 0 1 0 0 
q 0 0 1 0 

0 0 0 0 

The mass matrix M is 

M diag (20, 20, 125, 20, 20, 125) 

Bodies 1 and 2 are initially at distances 5m and 10m from 

the global X-axis respectively. The terminal values of 

p and q are obtained (Step 2) from 
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(5.51) 

h · h' [2 2 JT w 1C g1ves p, ~ 
·2 2 o and p and yare obtained (Step 3) 

from 

(5.52) 

T 
which gives [p2 y2 JT = O. Using these terminal conditions, 

the equations for p and v in Eqs. 5.43 and 5.44 are solved to 

provide p and p (Step 5). Substitution of these quantities in 

Eq. 5.48 gives the vector of design sensitivities. The design 

sensitivity vector was calculated from the program as 

~b = [-0.1681, -5.707, -1.049, 6.08] x 10-4 

The design sensitivity vector obtained approximately by 

perturbation (finite difference) analysis is 

[-0.1788, -6.259 -1.19, 0.608] x 10-4 

Good agreement is seen between the design sensitivities 

computed by the program and by differencing. 

Example 5.4; Four Bar Mechanism: As a second example, a 

four bar mechanism (Fig. 5.8) that falls from rest under its 

own weight is considered. Links 1 and 2 are initially at rest 

at angles of 45° and -45°, with respect to the global X-

axis. The design variables are locations of revolute joints, 

as shown in Fig. 5.8. The simulation was carried out for a 

period of one second. 

In this problem, the dynamic response functional is taken 

as 
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B @ 

1-4----_150 

!.------ 250 -----------.1 

b o :: [-70.9107,70.7107,-50,55]T 
Figure 5.8 Four-Bar Linkage Example 

1 
W = f [sin6 3 + 0.23893455]2dt 

o 

For this system, the constraint equations are the constraint 

equations for the four revolute joints, 

xl + 70.9107 cos 61 - x2 - bl cos 62 

Yl + 70.9107 sin61 - Y2 + b l sin62 

x2 + b 2 cos 62 - x3 - b 3cos6 3 

• Y2 + b 2 sin62 - Y3 - b 3 sin6 3 
0 

xl - 70.7107 cos61 

Y -1 70.7107 sin61 

x3 + b 4cos6 3 

Y3 + b 4 sin63 
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and the Jacobian matrix is 

1 0 -70.9107sin91 -1 0 b l sin 92 0 0 0 

0 1 70.9107cos91 0 -1 -blcos92 0 0 0 

0 0 0 1 0 -b2 sin92 -1 0 b 3 sin93 

0 0 0 0 1 b 2cos9 2 0 -1 -b3cos9 3 • q 

1 0 70.71 707sin 91 0 0 0 0 0 0 

0 1 -70.7107cos91 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 -b4 sin93 

0 0 0 0 0 0 0 1 b 4cos93 

The mass matrix is a 9x9 diagonal matrix. The terminal values 

of the adjoint variables and their derivatives are computed as 

in Eqs. 5.51 and 5.52 of Example 5.3. The initial design was 

selected as 

b O = [-70.9107, 70.7109, -50, 55]T 

The design sensitivity vector from the program is 

ljIb = [-0.9731, 0.272, -0.3897, 0.4125xlO] x 10-2 

The design sensitivity vector obtained by perturbation (finite 

difference) is 

-2 [-0.96, 0.24, -0.35, 0.42] x 10 

yielding good agreement between results obtained by the 

program and result obtained by differencing. 
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APPENDIX 

Matrix Calculus Notation 

For x E Rk, Y E Rm, a(x,y) E Rl, A an mxn consta.nt matrix, 

g( x) E Rn, and h( x) E Rn, using i as row index and j as 

column index, define 

aa [1~Jlxk a - ax -x 
(A.I) 

9 x - [ag'J ax~ nxk 
(A. 2) 

~!:~YjJ k~ a aaT 
(a;)y a - = ay(ax ) -xy (A. 3) 

Using this notation, the following formulas are obtained: 

a (A9) 
[a!i (Au,g R.~ C ag R. 

A9xJ ax = A --i R. aX j 
(A. 4) 

a 
(9Th) 

[a!j (g R.h R.J 
[ag R. ahR.] 

ax = --h + --ax j R. g R. ax j 

hT gx + Th 
9 x (A.5 ) 

where summation notation is used with repeated indices in the 

same term. A ~ over a term indicates that it is held fixed 

for purposes of partial differentiation: e.g., 
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INTRODUCTION 

In the early stages of development of new fields, 

happens time and again that the imminent potential impact 

it 

of 

the new field is exaggerated to the point of a new panacea, 

usually by workers at the fringe or outside the research area 

of the field. An attendant consequence often is increased 

scepticism, if not outright hostility, among the broader 

community of researchers who cannot separate fact from fiction. 

This appears to be somewhat 

emerging field of artificial 

the case currently with 

intelligence ( AI> and, 

particular, with its applied branch of expert 

the 

in 

or 

knowledge-based systems. It is therefore with some caution 

that the present article, not addressing the mainstream 

research community of AI, examines the issues involved in 

developing knowledge-based systems for optimal design. By the 

the nature of the present state of the art in the field, 

exposition is to a large degree speculatory. There is yet very 

little done that would qualify as concrete results in the 

field. Still, the motivation for developing such systems is 

eminently strong and the apparent potential results are 

overwhelmingly desirable, so that at least some speculation is 

justified. 

In the present article, the utilization of "knowledge" in 

AI is outlined first, followed by a description of the nature 

of knowledge-based systems. The potential application of these 

ideas to design optimization is examined next, followed by a 

description of current early work - to the best of the author's 

knowledge. 

NATO ASI Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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KNOWLEDGE IN ARTIFICIAL INTELLIGENCE 

A formal strict definition of knowledge in the usual sense 

seems impossible, much the same as a definition of 

intelligence. This is due not only to the complexity of 

representation and processing abilities involved but also to 

the philosophical attitude that one is compelled to assume when 

attempting such a definition. The latter points in fact to the 

possible necessity for including "bel iefs" when describing 

knowledge, something that AI researchers do attempt to 

for. 

account 

Operationally, it is more useful to view knowledge, within 

a specified domain, as consisting of descriptions, relations 

and operations in this domain. Descriptions pertain to ways of 

identifying and distinguishing objects in the domain. 

Relations are special descriptions giving associations among 

objects, such as defining classes and taxonomies. Operations 

are procedures which combine objects f"or the purpose of meeting 

a goal, such as solving a problem 

In a given domain of knowledge, 

or generating new objects. 

these objects constitute a 

knowledge base and they represent facts. Known relations among 

objects are also facts, while domain operations are procedures 

for manipulating facts. 

Things should become clearer it we appreciate the fact 

that these ideas are expressed in the context of computers and 

computer programming. 

the facts being data 

A knowledge base is indeed a database, 

items. Procedures are just computer 

programs that manipulate the database. So "knowledge" can be 

simply viewed as the representation and processing of domain 

information in the computer. This appears, at first sight, no 

different than traditional computing. But this view is rather 

deceptive. In traditional computing detailed instructions are 

described by calculus and executed sequentially. Deviations 

from that are not significant. Now, however, the desire is for 

programs that can handle ideas, judgement and experience, and 

that can manipulate forms explicitly and symbolically. 

We will proceed to examine some issues about how knowledge 

may be represented and manipulated. 
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Knowledge, or information, is not operationally useful 

unless it can be represented in an operationally useful way. 

The ability to use traditional computing for problem-solving 

exists to the extent that we can use mathematical modeling to 

represent the problem. For example, in order to apply 

optimization techniques to a design problem we must first 

develop a mathematical model which contains several things: 

the design variables which describe each design variation 

uniquely for each set of (arithmetic) values they assume; the 

design constraints which are precise functions of the variables 

judging unambiguously which designs are acceptable and which 

are not; the design objective which measures exactly how goad 

each design is and expresses preferences stated in advance. In 

spite of the conceptual simplicity of such models, it is well 

recognized that good modeling is still a difficult task, often 

accounting for at least half of the expended effort in an 

optimization study. Apart from the difficulty of analyzing 

adequately the real world, there is the added complexity of 

modeling affecting the solution in terms of speed and/or 

quality. This is not true only for optimal design, but also 

for general knowledge representation in AI. Therefore the 

choice of representation of knowledge is related to the 

intended use of the knowledge base. This is a recurring issue 

in artificial intelligence. 

Any method of knowledge representation contains also 

procedures for manipulating knowledge in order to derive new 

facts from known facts. This is referred to as an inference 

mechanism and it is an important consideration in judging 

representations. Keeping in mind that any representation must 

be coded and stared in the computer, key operational issues in 

representation are: amount of storage needed to represent the 

facts in the knowledge base and the relations among them, 

complexity of inferencing. and amount of information needed for 

special bookkeeping storage to facilitate inferencing. It is 

useful to keep in mind also the AI idea that the methods of 

inferencing are generally considered part of the knowledge in 

the system. 
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Let us now outline briefly some of the ways that may be 

used to represent knowledge. 

State-Space. Here each object in the knowledge base is a data 

structure called state. Each state is described by a set of 

values given to the state variables, just like design points in 

a design optimization problem. Since for many problems it 

would be impossible to include every state in the database, the 

collection of all states, i . e. the state-space. can be 

described by a set of permissible operations with which all 

other states can be generated from some initial one(s). 

Initial State Goal State 

1 3 1 2 3 

6 2 4 ~ 8 4 

5 7 8 7 6 5 

up! 
.~ ~ 

1 2 3 1 3 1 3 

6 4 6 2 4 6 2 4 

5 7 8 5 7 8 5 7 8 

A 8 c 

Figure 1. The Eight-Puzzle 

As an example, consider the eight-puzzle, a popular 

example in AI textbooks. The objective is to rearrange a given 

initial configuration of eight numbered tiles on a 3x3 board so 

that a final desirable configuration is achieved. 

Rearrangement is allowed only by sliding a tile onto an empty 

square from an orthogonally adjacent position, Figure 1. In 

the state-space representation, the final configuration of the 
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puzzle is called the qoal state. The initial state can be used 

to generate three new states by applying the operators "up", 

"right", or "left". If the purpose of this state 

representation is to reach the goal state, then a search 

procedure must be developed. This state-space search is one of 

the simplest search formulations for problem solving. The 

presence of an objective raises the question of how it will be 

achieved. Clearly, the positioning rules above will allow the 

generation of the goal state eventually. But there is no 

information in the state description of the new states A, B, C 

about which one is closer to the goal state. Thus the state 

representation requires additional information (or knowledge) 

that defines the remaining subproblem. This can be a heuristic 

function that estimates the "distance" from the goal. In the 

eight-puzzle example, this function could be the number of 

tiles that are not in their proper position. This heuristic 

may not be a particularly good one and others can be proposed. 

AND/OR Graphs. In the eight-puzzle example each state can be 

considered as a node in a graph and the task is represented as 

a procedure for finding a sequence or a path through the 

state-space graph. This graph is a disjunctive OR graph, since 

the generated states cannot occur together, Figure 2(a). There 

are classes of problems where a node is a conjunction of 

several others, Figure 2(b). In this figure node B has a 

single parent node (5: starting node) and two successors E and 

F. Node E has an "OR" successor D and two "AND" successors I 

and :1. If this was a truth-seeking graph, B would be true if E 

and F were true together. If this was a problem-solving graph, 

problem B would generate two subproblems E and F, and both must 

be solved. Note however that each subproblem could be solved 

in isolation of its siblings, which is why we treat them as 

individual nodes. Presumably these subproblem. are each easier 

to solve than the parent one, hence this graph is called a 

problem-reduction representation. Such graphs, containing OR 

and AND links, are called AND/OR graphs, or hypergraphs. 
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(b) 

Figure 2. 

764 

(a) 

(c) 

(a) OR Graph; (b) AND/OR Graph; (c) 
Two solution graphs for graph (b), 
the dark nodes representing goal 
states. 
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A solution for an AND/OR representation is not a path, as 

in state-space, but a subgraph of the entire graph. Such a 

solution graph for the problem in Figure 2(b) is given in 

Figure 2(c), where the dark nodes represent goal states. 

Problems whose solution is a strategy rather than a single 

prescribed goal state, would be usually served best by 

knowledge representation in the form of AND/OR graphs. 

Examples are symbolic integration and theorem proving. 

Knowledge representations that utilize OR graphs 

(state-space) or AND/OR graphs have received a lot of attention 

because they provide the simplest basis for problem-solving 

methods, i.e. in the form of graph searches. This is a point 

where AI and traditional operations research meet. It is also 

a point where the difference in viewpoint is quite evident. 

Operations research views a graph as a preexisting set of 

objects; a procedure such as branch-and-bound is considered a 

method for eliminating objects from the set until the solution 

object is isolated. Artificial intelligence views a graph as 

an object creation process, where a new node represents a newly 

generated object. Thus, the branch-and-bound method used for 

problem solving in AI is called a generate-and-test process. 

This difference in emphasis is due to the AI effort to treat 

problem solving in a human-like way, versus the operations 

research desire to prove optimality conditions (Pearl, 1984). 

Descriptions for graph-searching procedures are given in 

most introductory AI texts (for a thorough treatment, see 

Pearl, 1984). Search methods for general problem solving are 

called weak methods, for example generate-and-test, hill 

climbing, breadth-first, depth-first. The methods can be 

data-directed, starting from the initial condition(s) and 

moving towards the goal(s) (forward searching), or 

goal--directed, starting from the goal state(s) and moving 

towards the initial condition(s) (backward searching). 

Bidirectional searching is used also sometimes. A depth-first 

method considers always a single successor to each state, 

"diving" into the graph. A breadth-first method considers all 

successors for all states at a given level, "spreading out" 

over each level. Uninformed searches can easily lead to 
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combinatorial explosion. To avoid that, an informed search 

preferred, which uses a heuristic function estimating 

chances of success among the candidate alternatives. 

is 

the 

The 

heuristic employs domain-specific information and is an example 

of domain knowledge representation and utilization. It is 

useful to recall here that by "heuristic" we define a strategy 

which aids, often substantially, the problem solving ability 

(of humans or machines) but with no guarantee that it will 

never lead in a wrong direction. 

Predicate Calculus. Any attempt at automated logical reasoning 

would require a formal language that is able to state facts and 

make logical deductions. Predicate calculus is such a system 

of logic able to express both mathematical and everyday natural 

language statements. Given a set of statements, predicate 

calculus contains general rules of inference which can be used 

to deduce new statements. 

The syntax of predicate calculus involves an "alphabet" of 

symbols and definitions of expressions that can be constructed 

from symbols. Given a knowledge domain, a set of semantics 

connect the language with the domain, so that language 

expressions represent assertions or facts about the domain. 

The basic symbols used are: 

1. Punctuation marks: comma(,) and parentheses. 

2. Logic symbols: not("'), implies(~), and (1\) , or(V), 

universal quantifier<V) , existential quantifier(3). 

3. Function symbols: f.n for i~l, n~O; if n=O, then f.o 
1 1 

are called constants. 

4. Predicate symbols: p.n for i~l, n~O; 
1 

are called propositions. 

if n=O, then P.o 
1 

Given a domain of knowledge 0 that contains some elements 

(it is nonempty), a constant is associated semantically with a 

particular element of 0; a function is associated with a 

mapping of each n-tuple of elem~nts of 0 into an element of 0, 

for example the function "addition" in real numbers; a 

predicate is associated with a particular relation among 

elements of 0, for example the relation "greater-than". The 

n-adic letters correspond to the n-adic functions or relations. 
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As an example consider the following statements about the 

nonlinear programming code VMCON (Crane et al., 1980): 

1. VMCON is a Constrained Nonlinear Programming code 

(CNLP) • 

2. VMCON is a Numerical Algorithm (NA). 

3. All CNLP's are NA's. 

4. All common CNLP's contain some unconstrained NLP (UNLP) 

or some Step Size Algorithm (SSA). 

We may write these as follows: 

1. CNLP(VMCON) 

2. NA(VMCON) 

3. ~x CNLP(x) ~ NA(x) 

4. ~x 3 y 3 z CNLP ( x) 1\ common ( x ), UNLP (y), SSA ( z ) 

~ contain(x,y) V contain(x,z) 

Now we can use these to prove or disprove statements such 

as 

common(VMCON) /\ ~ contain(VMCON,UNLP) -+ contain(VMCON,SSA). 

This is a trivial example and backward or forward reasoning can 

be used to prove it. Note, however, that in order to do any 

reasoning we must scan through the list of statements to check 

for matching. The ability to provide primitives for 

manipulating lists and management for list storage is the idea 

behind the development of list-processing languages such as 

LISP. 

A symbol processing language such as LISP uses a prefix 

syntax type of predicate calculus. For example, statements 1 

and 3 above become 

(ISA VMCON CNLP) 

(All x) (IF (ISA x CNLP)(NA x». 

This tends to create more convenient symbol structures. 

Symbols are used to create classes of expressions, defined 

recursively: 

Terms describe names of things, so they are either constants or 

made up from functions of terms previously created, i.e. if 
n (i=l, ••• ,n) are terms, then f. (t 1 , ••• ,t ) are also terms. 

J n 

t. 
1 
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Atomic Formulas 

terms, i.e. if 

describe propositions or 

t. (i=1, ... ,n) are 
1 

terms, 

are 

then 

predicates of 

P n(t t ) 
j 1'···' n 

are atomic formulas. 

Well-Formed Formulas (wff's) describe expressions built out of 

terms and atomic formulas by using connectives and quantifiers, 

i.e. the legitimate logic symbols of the calculus. 

statements 1,2 above are atomic formulas, while 3 and 4 are 

wff's. Of course, atomic formulas are wff's. 

In statements 3 and 4 above we also introduced the symbol 

var i ab 1 e, e. g. x, y or z , which is used together with a 

quantifier. We say, then, that a formula is quantified over a 

variable. If quantification is allowed over terms but not over 

predicates the calculus is called fi rst order. 

Predicate calculus allows well defined representation of 

many involved statements. It also contains rules of inference 

that are generally applicable. Two often useful ones are 

A, A ~ B yields 8 [modus ponens] 

A, «'Qx), P(x» yields P(A) [universal specialization] 

The modus ponens rule infers the wff 8 from the wff's A and 

A~8. The universal specialization infers the wff P(A) 

the wff «~x),P(x» where A is any constant. 

from 

Inference using predicate calculus statements as is can be 

very involved. It is possible to create an efficient procedure 

that operates on a standardized form of statements called the 

clause form. A clause is a diSjunction of literals, a literal 

being either an atomic formula, or its negation. The 

transformation procedure is quite staightforward (see, e.g. 

Nilsson, 1971, or Rich, 1983) • Clauses are used in a 

problem-solving prDcedure called resolution which proves facts 

by contradiction (or refutation in AI jargon), see op. cit. for 

complete description. 

Predicate calculus can be used also together wi th a 

state-space approach. For this, we need a set of wff's to have 

a complete state description. Then, computations which change 

one set of wff's to another will serve as state-space 

operators. The goal state will be a set of goal wff's and 

operators will be selected at each state based on a set of 

applicability wff's. 
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Production Systems. An IF-THEN, or condition-action rule of 

the form 

IF < antecedent >, then < consequent> 

is called a production. The 

rule may consist of many 

antecedent, or IF part, of 

conditions and similarly 

the 

the 

consequent, or THEN part, of the rule may have several actions. 

A production system is a rule-based representation consisting 

of three elements: 

(i) a database (or knowledge base) which contains the 

information to be used by the system. This 

information, or knowledge, can be of permanent nature 

related to the system or of transient nature related 

to the specific problem currently addressed by the 

system. 

(i i) a set of productions which operate on the database. 

(iii) a control strategy which specifies how the rules are 

examined, i.e. sequencing of comparisons with 

the database, conflict resolution and other 

issues which may arise in the use of the rules. 

The terms "rule-based" or "production" system are used 

interchangeably and describe a general and powerful way to 

represent and infer knowledge. 

or backward reasoning is now 

backward-chaining respectively. 

forward-chaining process may 

antecedents match the current 

Inferencing done with forward 

called forward-chaining or 

In a data-driven domain a 

collect all rules whose 

situation in the database 

(current state in a state-space representation 

execute the consequents implied by the rules. 

and proceed to 

If any conflict 

exists is the antecedents, a conflict-resolution strategy is 

invoked. The process continues until a problem is solved (goal 

state is reached) or no rules exist with antecedents satisfied 

by the current situation (dead end, 

knowledge etc.). 

lack of sufficient 

A rule whose antecedent is satisfied by the current 

situation is said to be triggered. A rule whose consequent is 
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executed is said to be fired. Clearly, in the presence of 

conflict a triggered rule may not be fired. 

As an example, in a program that tries to fit an 

appropriate optimization technique to a given NLP model, we may 

have a rule such as 

If the model is unconstrained and 

the objective is nonlinear and 

the Hessian is sparse 

then use either a discrete Newton method 

or a conjugate-gradient method. 

Another rule may be used to define what "sparse" means, 

yet another may be introduced 

Hessian matrix. 

to measure the density of 

whi Ie 

the 

Statements in the antecedent or consequent parts may be 

expressed in predicate calculus, as was implied above with the 

"either, or" form in the consequent. This allows a complex yet 

flexible way to represent knowledge. 

The control strategy in a production system determines the 

sequence of rule firing. A general requirement for any control 

strategy is that it be systematic, meaning that it does not 

overlook any rule and it does not trigger the same rule more 

than once. The former aims at not missing the generation of a 

possible desired outcome, and the latter aims at avoiding the 

inefficiency of repetitive computation. The search methods we 

discussed earlier for state-space or graphs could form the 

basis of a control strategy. In many cases the search will 

lead to more than one nodes for possible expansion, which in 

the production system means more than one rule will be 

triggered. A conflict-resolution strategy must then determine 

the firing selection. Such a strategy is usually heuristic, 

i.e. ad hoc with no particular science base. However, it can 

be effective provided it is systematic. Some examples of 

conflict-resolution strategies are (Winston, 1984): 
• Rule Ordering: All rules are arranged in a single priority 

list and the first one triggered, say starting from the top of 

the list, is fired - the others being ignored. 
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Data Ordering: All data (e.g., states) are arranged in a 

single priority list. Assuming forward chaining, the 

triggering rule with the highest priority antecedent is fired. 

Size Ordering: Rules are assigned priorities according to the 

difficulty of satisfying the antecedent. Highest priority goes 

to the rule with the longer list of conditions in the 

antecedent. 

Recency Ordering: The most recently, or least recently, 

rule is assigned highest priority. 

used 

Specificity Ordering: If the antecedent of a triggering rule 

is a superset of the antecedent of another triggering rule, 

then the rule with the superset is fired. The idea behind this 

is that it is more specialized to the current state. This 

the assumes a forward-chaining procedure; similarly for 

consequents of backward-chaining procedures. 

Context Limiting: The rules are separated in groups. Only 

some groups are allowed to be applicable at any time, said to 

be activated. A procedure for activating and deactivating 

groups is required. 

Production systems are flexible because rules can be added 

or deleted without affecting the other rules and without 

changing the control strategy. They also seem to describe 

naturally human knQwledge about what to do in a given 

situation. The basic rule-based systems do have many 

limitations also. For example, there is no ability of 

self-learning and no access to the reasoning behind the rules. 

As the knowledge base increases and the number of rules becomes 

large. problems of inefficiency may arise. Also, it may be 

difficult to detect truly conflicting productions, where, for 

example, the same antecedent calls for opposite consequents. 

This is related to the problem of monotonicity in reasoning. A 

reasoning system is called monotonic if the number of 

statements known to be true strictly increases over time of 

system usage. This means that a deduction, or new statement, 

does not cause an existing statement to become invalid. 

Moreover, in the process of arriving at a solution statement 

there is no need to keep track of all statements used to arrive 

at the solution. Most real systems require nonmonotonic 
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reasoning and the basic production system must be modified to 

satisfy this need. Nonmonotonic logic is one of a class of 

techniques proposed for handling problems with uncertainty. 

Other techniques in that class include probabilistic reasoning, 

fuzzy logic and belief spaces. All these are sophisticated 

methods of knowledge representation as well as of inferencing, 

and they will not be expanded here. They are important in the 

development of expert systems designed to function in the 

presence of incomplete information, or dynamic 

databases (see e.g., Rich, 1983). 

Numerical Algorithm 

ISA 

ISPART 

Constrained NLP Code 

ISA 

Developer Language 

Argonne VMCON 

Labs 

ISA Method 

Good SQP 

Software 

Source 

(time-varying) 

Line Search 

FORTRAN 

ISA 

High Level 

Language 

Figure 3. Part of a Semantic Network 

Semantic Nets. A usual node-and-link graph may become more 

useful as a representation tool by introducing and labeling on 

the graph the semantics of the intended representation, i . e. 

the meaning embodied in the symbols and the symbol arrangements 

allowed by the syntax of the representation. A semantic net is 

a node-and-link representation with a simple syntax: nodes are 

objects and directed links are relations between pairs of 
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objects. Meanings must be included in the net so that objects 

and relations are readily explained. 

A fragment of a semantic net is given in Figure 3, where 

some information about the code VMCON is represented. Note how 

various attributes of the object "VMCON" are shown: VMCON is a 

constrained nonlinear programming (numerical) algorithm, it 

uses the optimization method of sequential quadratic 

programming, it is written in FORTRAN language and it has been 

developed at the Argonne National Laboratory. fhe 

node-and-link representation is given graphically only for 

il~ustrative purposes. In actuality a list processing 

representation would be used in the computer. 

each node (object) would be an atom and each link 

property, giving the following LISP description: 

Thus in LISP 

(relation) a 

CNLP Code 

VMCON 

Argonne Labs 

FORTRAN 

Line Search 

Property 

«ISA Numerical algorithm» 

( (ISA Code CNLP) 

(Language FORTRAN) 

(Method SQP) 

(Developer Argonne Labs» 

«ISA Good Software Source» 

«ISA High Level Language» 

«ISPART CNLP Code» 

Semantic nets were originally developed for natural 

language understanding. In order to draw inferences, nodes 

were identified as known facts and an activation procedure 

spread out from each node through the links. Where activation 

procedures met, a matching was confirmed, hence the method was 

known as intersection search. More elaborate search procedures 

can be used which maintain the matching idea. 

Developing good semantic nets requires skill in order to 

avoid inconsistencies. Special measures must be taken to 

distinguish between nodes representing 

an instance (i.e. a single object). 

intended for quantifiable relations 

a class of objects and 

Large nets which are 

may be partitioned in 
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hierarchical levels each of which is associated with a variable 

or a small group of variables. This allows explicit 

representation of quantifiers such as V and3. This greatly 

expands the utility of semantic 

1979; Winston, 1984). 

nets (Rich, 1983; Findler, 

Semantic nets are an example of representing complex 

structured knowledge in a declarative manner. Declarative 

methods of representation rely more on describing the facts and 

less on describing manipulations among them. Typical 

relationships in declarative structured representations are the 

ISA and I5PART relationships which give a partial ordering on 

the knowledge domain. Object attributes and associated values 

are given in a collective manner in a so-called slot-and-filler 

structure. Properties of a class may be also inherited 

instances thus making transmission of descriptions easy. 

nonmonotonic reasoning, when values for objects are 

to 

In 

not 

available, default values may be included. This is important 

to know, since default values may be inherited and propagated, 

just as known values. 

Frames. When humans face a new situation, instead of trying to 

analyze it from scratch, they often attempt to fit it to a 

stereotype of previous experiences. In a similar way, special 

structures of knowledge may be stored in the memory of a 

computer. A new situation may be analyzed by selecting an 

appropriate stored structure, fill the details from the current 

situation and proceed with the analysis having the knowledge 

coded in this particular structure. This type ot" 

slot-and-filler representation is called a frame. So frames 

are semantic nets (usually complicated) with internal 

predetermined structure which describe a sterotyped object (or 

event) . 

Consider the example in Figure 4, where we want to report 

the results of testing constrained nonlinear programming codes 

(CNLP) . The figure shows a semantic net where several frames 

are connected together. Each frame has a number of slots. How 

the slots are filled may be described with attached procedures. 
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Class inheritance is maintained through the net. For example, 

reporting the results of testing a CNLP problem with a 

Solution 

rl 1 1 Results 1 Test Problem I 
No. of Variables Success/Failure~ 

ISA 

No. of Eq. Constraints ~ Computer Type 

No. ot" Ineq. Constraints,... CPU Time .J') 

No. of Simple Bounds No. of Function Ca 11 s ,... 
'-' 

Starting Point No. of Gradient Evaluations ,... 
'"' 

Termination Tolerance 
~ 

Applied 

4 
r1 CNLP Code 1 

Cost to Purchase 

Availability ~ 
'-' 

Language 

Software developer ,... 

ISA 

-t SQP I 
Line Search Merit Function ,... 

QP Subproblem Sol'n Method _ 

Line Search Solution Method 1"\ 

I GRG I 
Unconstrained Solution Method ,.. 

~ 

Active Set Strategy 
~ 

Restoration Step Method 
'" ~ 

Figure 4. Frames connected in a net reporting 
results of a numerical CNLP code testing. 

generalized reduced gradient method (GRG) requires 18 pieces of 

information, i . e. 18 slots to be filled, by following 

inheritance two levels up. 
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Frames are useful representations when the data can be 

structured in an organized albeit complicated manner, so that 

data items can be expected in a natural way. They can be used 

for inference in several ways. First, one may note that when a 

program invokes a particular frame there will be an automatic 

inference about the existence of objects within the frame. For 

example, in Figure 4 above, if the frame SQP is invoked, one is 

told immediately that a one-dimensional minimization of a merit 

function must be performed. Next, one may note that a frame 

representation gives a typical instance of the object (or 

event) that it represents. In the process of invoking a frame, 

the program tries to match the particular situation to the 

frame's slots. When a discrepancy is identified, an 

interesting aspect of the situation may be revealed. For 

example, in Figure 4 above, if the current situation describes 

the solution of a problem with a GRG method and a restoration 

step is not present, this may mean that the constraints are 

linear or that the code is incomplete. 

A frame must be invoked in order to be used. Matching of a 

particular stored frame to a particular current situation can 

be a trial-and-error process. When an attempt for matching is 

made based on partial evidence on applicability, we say that a 

frame is instantiated. When a frame is instantiated, the 

program attempts to fill the slots of the frame with values 

from the current situation. If not enough values can be found, 

the instantiated frame may be abandoned and a new one selected 

for instantiation. Information about previous attempts on 

matching can be used to expedite a new selection, for 

exploiting links between frames. For discussion on 

example 

this as 

well as other 

(1975). 

aspects of frame representation, see Minsky 

This concludes the discussion on knowledge representation. 

fhe next section describes the basic nature of knowledge-based 

systems. 
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KNUWLEDGE-BASED SYSTEMS 

Traditional computing can be viewed as a data processing 

system employing a precise mapping of input data onto output 

data. Computing in artificial intelligence attempts to include 

some new features such as symbolic representation, 

inference and informed (heuristic) search. 

symbolic 

For a 

knowledge-based system one utilizes these AI features but 

places substantial emphasis on some very specific performance 

requirements. A knowledge-based system should act 

characteristically as an "expert" in a specific knowledge 

domain. Expertise here is thought primarily as the ability to 

solve a complicated but specialized problem efficiently and 

correctly most of the time, employing "personal" knowledge that 

is the result of experience. The emphasis on experience is not 

meant to diminish the importance of "text-book" knowledge, but 

rather to point out that human experts tend to employ shortcuts 

and heuristics that they have learned through long exposure to 

the domain. Therefore, a second characteristic of a 

knowledge-based system is that the problem-solving strategies 

tend to be domain-specific rather than general weak search 

methods. A third characteristic of such a system is the 

existence of metaknowledge, i.e. the ability to understand its 

own knowledge, reason about its own inferencing and explain how 

a conclusion is reached. 

As of yet, there is no theory of expert systems or much 

more precise definition than what was presented above. The 

research approach has been experiential, through paradigms of 

specific programs that have been developed. Descriptions of 

these early programs with an attempt at generalization can be 

found in Hayes-Roth, Waterman and Lenat (1983), Davis and Lenat 

(1982), and Buchanan and Shortliffe (1984). In summary, 

knowledge-based or expert systems are computer programs which 

attempt to behave as human experts would, and which draw their 

power from exploiting specific knowledge of the problem domain 

rather than from general inferencing mechanisms. 
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Ideal Expert System. Any expert system should have certain 

components in order to perform its expected tasks. Since no 

present implementation appears to have all the desired 

components, we will refer to an ideal expert system as shown in 

Figure 5 (adapted from Hayes-Roth et al., 1983) • These 

components are described below. 

User Interface. This is a language processor providing the 

communication between the user and the system. The user 

supplies commands, questions or answers (information) in a more 

or less natural language, and the processor parses 

interprets them to the system. The parsing is relatively 

User Expert 

User Interface 
(Language Processor) 

Knowledge 

Acquisition 

Plan 

Agenda 

Solution 

Figure 5. 

Facility 
(.1ustifier) 

Inference Mechanism 

Interpreter 

Scheduler 

Facts 

(Context) 

Consistency Enforcer 

Rules 

Ideal knowledge-based system schematic 
(adapted from Hayes-Roth et al., 1983) 

and 
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with an 

usually 

AI language. 

presented by 

The system 

generating 

messages in canned text, much like in traditional interactive 

programming. fhe information input may also use special 

editors utilizing graphics or structures. 

Knowledge Base. This is a large database which contains two 

types of data. fhe first is a passive type of data, sometimes 

called context, which records all facts known to be applicable 

for the current problem facing the system. This includes not 

only facts existing already or introduced by the user, but also 

facts inferred during the solution process of the current 

problem. The second type of data is an active one; it 

comprises of a rule representation of knowledge. This 

representation is the most favored one for expert systems. 

Inference Mechanism. This is the control strategy which uses 

the rules to manipulate the facts in the context and infer new 

ones. It is essentially a problem-solving strategy. There are 

typically three SUbcomponents, interpreter, scheduler and 

consistency enforcer, which will be discussed below in 

conjunction with the blackboard components. 

Blackboard. During a problem-solving session the system makes 

a sequence of decisions and generates various hypotheses which 

are modified as progress towards the solution is realized. The 

blackboard is a recording component, in the form of a shared 

data structure, that keeps track of intermediate decisions and 

hypotheses. The plan elements on the blackboard describe the 

general strategy adopted for solving the current problem. In 

large complicated problems an expert system may be able to work 

only through a problem decomposition. Subproblems are solved 

separately and the union of partial solutions is the complete 

solution. A plan may be a decomposition strategy. When a 

problem is not decomposable but only weak links exist among the 

subproblems (it is so-called nearly decomposable), a plan may 

record links, or potential links, among these subproblems and 

offer ways to reconcile them at the solution state. Another 

way to view decomposition is by examining the amount of 

information that changes as the system proceeds through the 

state-space. It may not be necessary to recompute the entire 
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new state, if only part of the 

altered from the old state to the 

state description has been 

new one. The question is how 

to decompose a state description in order to determine what 

will alter and what not during a subsequent state change. This 

is sometimes referred to as the frame problem. Plan elements 

a 

as 

of 

may address also a decomposition of this sort. An agenda is 

list of tasks, or hypotheses, that the system considers 

candidates for execution. Attached is also a list 

justifications for each agenda item which explain why the item 

to is on the agenda. There may also be an overall rating 

prioritize the tasks. For example, an agenda may contain 

triggering rules in the knowledge base. The solution elements 

record the candidate hypotheses and decisions towards solution 

that have been generated and the links among them. In some 

systems this may be considered as the blackboard of the system. 

In a typical cycle of the system, the most promising task 

or hypothesis from the agenda (a rule in a rule-based system) 

is chosen by the scheduler of the inference mechanism. This 

agenda task is then executed by the interpreter of the 

inference mechanism. The interpreter validates the task by 

proper matching of the task's requirements (e.g. rule 

conditions, variable values) with the knowledge base and the 

other elements on the blackboard. Typically the execution of a 

task will generate new tasks and/or indicate changes in the 

blackboard elements. For each new task the interpreter will 

examine if it is already in the agenda and insert it if it is 

not present. For a new task which was in the agenda, the 

interpreter will check its list of justifications and add the 

new evidence, if necessary. The new task will also receive a 

(possibly updated) rating. The consistency enforcer is 

required when nonmonotonic reasoning is present, which is 

usually the case. Solution elements may be ascribed likelihood 

numbers, usually appropriate for diagnostic tasks. When 

logical deductions are solution elements, then a truth-value 

relationship checking is required. Enforcement of consistency 

is required continuously also for reasons of efficiency, 

to avoid inconsistent solutions as early as possible. 

i.e. 
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Explanation Facility. This important part of the system 

attempts to explain to the user the reasons for the actions 

taken by the system. It may answer questions about how a 

particular conclusion was reached, how another alternative was 

rejected. or why some information is requested from the user. 

This represents an attempt at emulating the justification that 

a human expert may offer about his actions. For an a priori 

justification (why is a fact necessary), the justifier can do a 

forward-chaining to identify a rule which failed because of 

inability to verify a premise, while no other rules were 

applicable. Thus it justifies to the user the need for the 

requested information. For an a posteriori justification (why 

a conclusion is reached), the justifier can do a similar 

backward-chaining along previous blackboard elements to 

the conclusion to the hypotheses or data that led to it. 

the justifier is a bookkeeper of the inferences used by 

system. 

trace 

Thus 

the 

Knowledqe Acquisition. This part of a knowledge-based system 

is a difficult and often controversial one. The difficulties 

stem from the very nature of 

present state of the art. 

"inserted" in the system is 

expert systems and from their 

The knowledge domain to be 

very specialized with its own 

terminology, idiomatic procedures and rules. Specialized 

knowledge domains are typically unintelligible to the 

non-experts. At the same time, current expert system programs 

require a good deal of knowledge about themselves in order to 

introduce the specialized domains in the databases and other 

components in an appropriate way. Developers of expert systems 

address this issue by introducing the job classification of a 

"knowledge engineer". This is a person familiar with the AI 

system who acts as an intermediary between the system and the 

human expert. It is immediately evident that this manner of 

knowledge transfer is at best very lengthy. Automated ways for 

satisfactory direct interaction between expert and program are 

still largely speculatory. 

There are three 

acquisition: transfer 

initial data errors 

main tasks involved in knowledge 

of data into the system, avoidance of 

and inconsistencies, and finetuning of 
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entered data to achieve desired performance. Special 

knowledge-base editors - the equivalent to text editors - are 

being developed to assist in the data transfer by automating 

some bookkeeping, correcting typographic and syntactic errors 

and attempting to enforce semantic consistency. The 

explanation facility described earlier can be used to test the 

system extensively and detect weaknesses and inconsistencies in 

the knowledge base. In any case, the knowledge acquisition 

facility is a critical area where more developments are needed 

before widespread use of such systems becomes feasible. For 

further discussion on this see Hayes-Roth et al., 1983. 

This concludes the discussion on the components of an 

ideal expert system. It should be emphasized again that 

existing systems have parts of these components but no system 

appears to exist which has all the above components fully 

developed. A computer program can be 

expert system if it contains at least 

inference mechanism components, 

interface. 

and 

seen as a legitimate 

the knowledge base and 

some reasonable user 

Theoretically, a properly constructed expert system can be 

used for several different applications (within a problem 

class) provided the knowledge base is changed to reflect the 

facts and rules of the specific domain. Often it is necessary 

to reprogram at least partially the inference mechanism, 

particularly the scheduler, to define domain-specific 

triggering and firing sequences for the rules. A system with 

empty knowledge base (and partially empty inference mechanism) 

is often referred to as a system shell. Description and 

evaluation of existing system shells can be found in Hayes-Roth 

et al. (1983) and in Buchanan and Shortliffe (1984). Design 

applications which contain also shell descriptions are given in 

Gero (1985a). Much of current development effort goes to 

improving commercial-grade system shells that reduce the need 

for mediation from a "knowledge engineer" and can be applied 

without excessive effort to similar knowledge domains. 

Domain Classes. Experience 

developed to date shows that 

from systems that have been 

there can be wide differences in 
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the way they operate. It appears that many of these 

differences are related to the different problem types that the 

system is built to address. We can classify the problem 

domains to the following few types. Within each class the 

relevant tasks that the system should perform are also briefly 

mentioned. 

Diagnostic Systems. The problem is to find the fault(s) in a 

system based on given sampled data (information). For example, 

the system can be a malfunctioning machine or an ill living 

organism. A diagnostic expert system typically will reason 

backwards starting with data about the symptoms and working 

towards the potential faults that cause the symptoms. Often 

this leads to many triggering rules whose right sides match the 

current goal, e.g. several faults may have overlapping symptoms 

masking one fault by another. A system for diagnosis of, say, 

human disease must employ search procedures that will examine 

all possible faults. Thus, such systems will tend to spend a 

lot of their effort on search. In cases with less severe 

consequences a single fault assumption might be appropriate. 

An additional characteristic of diagnostic problems is the 

uncertainty in the data that must be interpreted. The data may 

be themselves noisy and the data-sampling device (e.g. sensors) 

may itself be subject to error. Thus, reasoning must be 

usually tied to probabilities. Furthermore, apart from noisy 

data there may also exist data which are erroneous, difficult 

or impossible to sample, or expensive to acquire. This means 

that there may be contradictions which must be resolved, while 

decisions must be made about believable data with partial 

information. The reasoning chain behind a conclusion may be 

long. So diagnostic systems, to be credible, must be able to 

explain exactly how conclusions were reached, what evidence was 

used and what hypotheses were assumed true. Thus, the 

uncertainty in the data is properly traced. 

Designing and Planning Systems. Solving a designing or a 

planning problem may be viewed in a similar manner. A set of 

planning goals or designing specifications is considered as 

given - let us call them design goals. Achieving these goals 

requires making decisions, and resultant actions, without 
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violating problem constraints and using the smallest amount of 

resources possible. The result of these decisions is a plan or 

a design. A designing expert system will tend to reason 

forward since the condition-side of applicable rules will be 

specified and the main difficulty will be in picking the 

correct rule to apply. Moreover, in a typical design situation 

it is not necessary to find all possible solutions, or the best 

one, but only a sufficiently good one. So a search may 

quickly become a depth-first strategy which builds up an 

increasingly complete configuration, or plan. Thus most of the 

effort in such a system is expended in rule matching rather 

than search. 

Uncertainty exist here also, in the sense that a plan or 

design will operate in the future which is never certain. Yet 

in the present context designing problems are substantially 

more deterministic than diagnostic ones mostly because the 

goals are relatively well-defined. The major difficulty comes 

from the size and complexity of the problem to be solved. The 

consequences of design decisions may become evident only at a 

later stage of the process, so the system must be able to make 

tentative decisions and have contingency plans available. This 

means again the need for an explanation facility which will 

trace a result back to the decision that originated it. 

Another ability required for solving large, complex problems is 

the isolation of important considerations from details, so that 

the system does not get overwhelmed when following a path. 

Sometimes the reduction of the problem to several 

(interdependent) subproblems to be solved separately is 

effective in dealing with size and complexity. Again, however, 

accounting for the interactions among subproblems may be a 

challenging task to perform. 

There are two other problem classes that expert systems 

address, which can be viewed as special cases of the previous 

ones. Monitoring systems are diagnostic systems with a 

continuous interpretation of sampled signals. They should 

identify an anomaly and activate an alarm. Here, diagnosis of 

alarm conditions must be performed in real time. Prediction 

systems are required to forecast future events from past and 



www.manaraa.com

7~ 

present knowledge. This of course assumes incomplete 

information and absense of deterministic models. These systems 

are similar to planning ones (they can be components of a 

planning system) but they emphasize the dynamic, or 

time-dependent, nature of the state-space. 

The classification presented above is not well-defined and 

it is based on observed trends in existing systems. It is very 

important for the development of commercial-grade shell systems 

to be able to understand better unifying characteristics, 

principles and methods for at least some classes of problem 

domains. 

KNOWLEDGE-BASED OPTIMAL DESIGN 

Optimization techniques have been recognized as useful 

design tools since about the early 1950's. Although it may be 

true that some significant advances of the last decade are just 

now reaching the wider public, one could easily argue that 

design optimization remains largely underused in the design 

practice. Most design practitioners recognize that what they 

do is in fact optimization, yet they do not adopt the use of 

formal tools with very few exceptions. Though several 

explanations may be offered, it is undeniable that applying 

optimization techniques to realistic design problems is a 

complicated and difficult task requiring expertise in both 

optimization and the design problem domain. In what follows we 

are primarily concerned with optimal design problems formulated 

as nonlinear programming ones. Most of the issues discussed 

apply equally well to other models, such as variational ones. 

So the term "optimization techniques" will imply mathematical 

programming techniques without real loss in generality. 

The difficulties in solving an optimization problem may be 

broadly separated to those related to modeling and those 

related to the optimizing procedure itself. By model here we 

mean the formalism: minimize f(x), subject to h(x)=O and 

g(x)iO, where f, hand g are the vectors of the objective 

function, equality and inequality constraints respectively. 

The vector of design variables x takes values in a 
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finite-dimensional Euclidean subspace. The most important 

phase in an optimization study is development of the model. 

The influence of the model is so great, that in all but the 

simplest problems, one or more model revisions are required 

before satisfactory results are obtained. Development of a 

good model requires engineering knowledge about the specific 

problem and mathematical knowledge about its properties and 

possible methods of solution. Typical questions in the 

modeling phase are: 

o Is the model consistent, bounded, feasible? 

o Are there any useful transformations? Which? 

o What should be done about discrete variables? 

o Are variables and constraints scaled? 

o Are there redundant constraints? Possible degeneracies? 

o What is the mathematical form (linear, quadratic, 

convex, monotonic, etc,)? 

o How many times will the problem be solved? 

o Is parametric or sensitivity analysis necessary? 

Note that questions such as the aforementioned are generally 

handled by the analyst manually, rather than automatically 

(with partial exceptions,e.g. scaling) because of the 

sophistication required in their study. The knowledge to 

handle these questions generally exists although it is rather 

scattered and not well codified. Answering 

the model 

these 

and 

questions 

result in will often require analysis of 

reductions and simplifications. 

The next important phase is the development of a solution 

strategy. Now typical questions that arise are: 

o What numerical method should be selected? 

o What submethod (e.g., line search, unconstrained), 

within the overall method, should be selected? 

o How should the user-defined program parameters (e.g., 

step size accuracy, penalties, termination) be 

selected? 

o What criteria for accepting a solution should be used? 

o Is it qlobal or local solution? 

o Which are the active constraints? 

o What should be done, if solution errors are encountered? 
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these questions are handled manually, 

automation is higher than in the 

necessary knowledge is also better 

All these simply point out the well-known problem in 

engineering optimization, namely that the analyst must be an 

expert both in the technology of the model and in the 

mathematics of the optimization techniques. One of the hopes 

in applying AI here, is to reduce this burden to more 

attractive proportions, thereby encouraging wider and more 

correct use of optimization. We will now proceed to examine in 

more detail the types of difficulties which may be addressed 

effectively with knowledge-based systems. 

Modeling Phase. The design optimization model is based on one 

or more a~lysis models which allow the mathematical 

description of the problem functions (objective and 

constraints). So all the inherent limitations of analysis are 

preserit in the classical optimization model. These limitations 

include a way of thinking about what constitutes a mathematical 

model. rhus, relations among design quantities which do not 

have a customary functional form tend to be ignored or handled 

separately. 

Consider, for example, the situation where a constraint 

may be soft (i.e. its mild violations are tolerated) only in 

certain regions of the design space or under a particular 

combination of design circumstances (e.g, a specific set of 

other constraints being active). A soft simple bound 

constraint may be deleted from the constraint set and added as 

a penalty term in the objective (see e.g., Gill, et al., 1985). 

Now, however, this transformation should be done only if the 

algorithm generates points in the "soft" region. The model can 

be modified to account for this with a bit of programming 

effort. Some discontinuities may be introduced also. Another 

similar issue comes from the observation that constraints with 

small sensitivity coefficients should preferably be kept out of 

the active set, to avoid dealing with small Lagrange 

multipliers. If they can be classified as "soft", they could 
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be removed from the active set 

penalty transformation. This, 

additional programming logic. 

with or without using the 

of course, would require 

Further, suppose that some parameters (i.e. quantities 

considered fixed for the particular optimization statement 

not variables) change values in a way similar to the one above 

for the soft constraint. If a parameter changes with the 

design variables, we may attempt to map this function and 

introduce it in the model. But the function may be discrete 

with large differences in values, making curve-fitting 

inadequate. Again, with some reprogramming (perhaps table 

interpolation) the situation can be addressed, although 

discontinuities may be also introduced. 

In both of the above cases our knowledge is generally 

precise, but incorporating it in a traditional model brings 

complexities and possible errors. So another way of modeling 

may be more useful. In AI jargon, we need a different 

knowledge representation. One possibility is to put this 

knowledge in an IF-THEN production format and collect such 

rules in a production system. As iterations proceed, the 

context of the knowledge base is updated and rules are fired to 

cause the required model changes. Even discontinuities may be 

addressed with proper rule matching. We will describe later a 

production system that was 

strategies. fhe important 

developed to generalize active set 

point here is to recognize that a 

production system, even a very simple one, is a legitimate 

mathematical model, being another form of knowledge 

representation. 

Techniques for assisting the construction of optimization 

models have received attention in problem areas where there is 

uniformity of structure, particularly linear and integer 

programming (Williams, 1985a and 1985b) and some network 

problems. Special programs, often called matrix generators or 

modeling languages, are employed to automate data organization 

(e.g. index relations) and assist in debugging. Some limited 

model transformations can be also handled. This is possible 

basically because of the linearity in the model. In nonlinear 

problems essentially none of these techniques can be extended. 
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Nonlinear programming (NLP) codes have been notorious for 

their unfriendliness to the user. Only in the last few years 

interactive programming has been introduced in several codes 

and efforts have been made to assist the user in model 

preparation. An example is the system EMP (Schittkowski, 

1~85b) which, although it is not a "real" expert system, has 

many long-awaited features for the modeling stage. The 

objective function can be given in several optional formats, 

e.q., L1 , L2 or maximum norm of individual functions, sums of 

functions, general function. Constraints can be separated to 

linear, nonlinear and simple bounds. This aims primarily at 

efficient solution strategies. Since EMP uses different 

solution procedures for different NLP problem classes, it is 

necessary to have different data formats. An interesting 

feature of EMP appears to be a frame-like structure of the 

model knowledge base so that the user is asked to supply the 

facts (data) applicable to the current NLP problem class. This 

type of interactive knowledge input appears in other new codes 

usually revisions of older ones. Such an example is the 

program GINO (Liebman et al., 1986) • These program 

developments exhibit elementary intelligence and are very 

useful in that they focus attention on the representation of 

knowledge, organization of a knowledge base with easy updating 

capabilities, and realization of the limitations of traditional 

programming environments. 

A quite different application of expert systems to 

modeling comes from the use of symbolic mathematical 

processors, such as REDUCE (Hearn, 1983) and MACSYMA (MACSYMA 

Group, 1977). Application of the expert system MACSYMA to 

linear programming was reported by Anderson and Wand (1980) and 

Rajaram (1980). Application of REDUCE to design optimization 

was reported by Li and Papalambros (1985b) and Li (1985), with 

emphasis on modeling. It is advocated there that a modeling 

preprocessor for nonlinear programming can become the 

equivalent of a word processor in text editing. The motivation 

for the particular program comes from application of global 

monotonicity analysis (see e.g., Papalambros and Wilde, 1979; 

Li and Papalambros, 1985a). REDUCE is a LISP-based language 
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allowing the 

preprocessor 

briefly below. 

definition of LISP-type procedures. The 

called MODLAN (MODel ANalyzer) is described 

fhis is given only as an example of what can be 

immediately created using existing AI software. 

The input to MODLAN is the model of an optimization 

problem, the expressions of the objetive and constraint 

functions and a few dimensioning numbers. The output can be 

extracted at several intermediate levels of model changes. 

Thus, MODLAN can assist in solving problems where the optimal 

active set can be identified globally and complexity is not 

serious (see "Knowledge-Sased Algorithms" below). 

MODLAN is a collection of procedures called interactively. 

Currently there are 16 procedures developed. They are grouped 

as follows: 

(i) Input and display: INSTRC, INPUTT, SHOMDL, DERIV; 

(ii) Model manipulation: REDUND, VAREX, ELIMI, BEACT, RENUMB; 

(iii) Intermediate or final file output: INTERM, PRODU1, 

PRODU2, PRODU3; 

(iv) Optimal solution: MINSUB, MINRUN, SECOND. 

A brief description of each procedure is given below. 

INSTRC gives a brief explanation to the usage of commands in 

MODLAN. INPUTT starts a model analysis session with options to 

work on either the original file or one of the intermediate 

case t-iles. SHOMDL shows the current model in explicit 

algebraic form so that the user can inspect it visually and 

consider further manipulations. DERIV gives explicit 

expressions for any partial derivatives required by the user. 

if equality constraints are present, this procedure will give 

the constrained derivatives (reduced gradient). REDUND 

declares a constraint as redundant and will cause its deletion 

at the next revision performed by RENUMB. VAREX declares that 

variable with index i will take the same value as variable with 

index j so it will be replaced by jth variable. ELIMI 

eliminates a variable from the model by means of an equality or 

active inequality constraint, if the variable in the equation 

is solvable in closed-form. In the next model revision both 

the variable and the constraint will be discarded. BEACT 

declares an inequality constraint as globally active, so it 
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will join the active set. 

proper arrangement of the 

A message is sent to RENUNB for 

constraint sequencing. RENUMB 

rearranges the sequencing of variables and constraints in 

accordance to various reductions that were performed by the 

procedures mentioned above. INTERM produces an intermediate 

file in the same format as the input file for further 

processing by MODLAN. This provides the user a chance of 

interrupting the execution while investigating the problem. 

PRODUI (1=1,2,3) produces a user's program in FORTRAN 

describing the optimization problem in the format requested by 

three specific NLP codes, with the option that gradient 

expressions are also produced. MINSUB produces a FORTRAN 

program running with Powell's hybrid method (Powell 1970) in 

MINPACK (More, Garbow, and Hillstrom, 1980) and the interfacing 

program USEMIN.O to solve the stationary point of an 

unconstrained or equality constrained problem from the first 

order optimality conditions. MINRUN applies several commands 

of the host operating system while staying in REDUCE. SECOND 

checks the second order 

stationary point. 

optimality conditions at the solved 

Symbolic manipulations can be used in the development of 

analysis models which can subsequently form 

optimization model. Such applications exist 

modeling (e.g., Krishnaswami and Bhatti, 

the basis for an 

in dynamic 

1985) and 

system 

finite 

element analysis. 

for generating 

Special modeling procedures can be developed 

NLP models and solution elements with a 

well-defined structure. An example of such application is in 

re-analysis problems in structural optimization (Hartmann, 

1985a). For linear discrete systems, a series approximation 

procedure can be expanded to finite element formulations. A 

rule-based symbolic differentiation of the finite element 

matrices with respect to the design variables aids the 

optimization process. 

PROLOG. 

The system is written in a version of 

So far in our discussion on modeling we concentrated on 

model development and some model transformations. There is a 

host of other issues related to modeling where a rule-based 

system would be a very desirable assistant. It is particularly 
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lmportant to have the ability to start with a tentative model, 

proceed to selecting a tentative solution method, examine 

(through a rule-based system) what modeling features affect the 

method, and iterate on the model formulation trying to meet the 

goals that will improve solution efficiency and quality. 

Issues that are suitable to be addressed by rules are: scaling, 

elimination or not of equality constraints, smoothing of 

problem functions, and advice on how to handle discrete 

variables. One can easily start formulating rules based on 

existing textbook information (e.g., Gill, Murray and Wright, 

1981). 

Solution Phase. Assuming that the modeling questions have been 

tentatively settled, solution of the model is undertaken. In 

this phase, knowledge-based systems even basic production 

ones - can assist in three main areas: 

(i) Selection of the appropriate optimization technique, 

including component options within the technique; 

( i i ) Consultation on the proper use of the selected 

method in the context of the specific model; 

(iii) Diagnostics, interpretation of results and suggested 

remedies in the case of failure. 

We will now examine briefly these three areas. 

Selection of the appropriate optimization technique is 

probably the area that has received most attention, even in the 

simplest interactive optimization systems. This is due not 

only to the large number of techniques and variations that 

exist but also to the fact that some methods are in fact much 

better than others, at least within model classes. From the AI 

viewpoint this is a particularly interesting area because 

experts in the field do not generally appear to agree on method 

evaluation. This is not so much because of arguments about the 

theoretical algorithmic performance (when it can be proved 

analytically), but because of differences in interpreting 

observed performance and in prioritizing evaluation criteria. 

The scope of the issue is well-illustrated by Lootsma (1984, 

1985). An expert system for selecting a technique should 

coordinate knowledge about the model at hand and about the 
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available techniques. The model knowledge should go beyond 

simple classification of the problem class (e.g. quadratic, 

"mildly" nonlinear, etc., or availability of analytical 

derivatives). fhe system should also perform the following: 

o Assess the computational cost of function evaluations 

(possibly by pre-testing) and use the information not 

only for primary method selection but also in decisions 

such as type and accuracy of line searches. 

o Suggest and implement various scaling tasks associated 

with the specific method. 

o Check for nearly dependent constraints and suggest and 

implement countermeasures. 

o Interview the user about the intended use of the problem 

solution, assess the user's evaluation criteria and then 

sel~ct a method through matching with the knowledge base 

rules. 

o Assess the appropriateness of evaluating derivatives 

symbolically (e.g. with REDUCE) or numerically. If a 

numerical choice is made, several decisions must be made 

about proper finite differencing formulas, step size 

etc. 

o Assess the density of model matrices versus problem 

size and decide if special techniques should be 

employed. 

This list is only indicative. The point here is that there is 

a fairly large amount of data that can be programmed and 

utilized automatically, if the ability to exercise judgement is 

available in the program. This is where intelligent 

programming becomes different from traditional interactive 

programming. 

As mentioned earlier, attempts at automating method 

selection have been made. For example, the cited system EMP 

will use an SQP method for a general NLP model under normal 

situations. If failure due to several reasons (e.g., poor 

starting point or multiplier estimates) is detected, the model 

is treated first by a variant of the ellipsoid method until 

local convergence 

undesirable point 

becomes apparent or movement 

is realized. Another example 

away from an 

of a simple 
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system which however employs 

given by Hartmann (1985b). 

a real expert system shell is 

The system is implemented on a 

commercial program (INSIGHT, 

achieve two goals: rapid 

1985) and uses production rules to 

problem classification and rapid 

preliminary method selection. 

area, consultation on the proper use The second 

selected method, is relatively easy to implement but, to 

of a 

this 

author's knowledge, hardly any effort has been expended to this 

end. The context (facts) of the specific model has immediate 

influence on the implementation of the method. The typical 

data that need consultation to be supplied are the often 

notorious "program parameters". These take, almost always, 

values that are given heuristically from empirical evidence. 

Such parameters include tolerances for a variety of termination 

criteria, tolerances for accepting constraints as active or 

violated, values for what is taken as "zero" and so on. Some 

program parameters are often transparent to the non-expert user 

- and rightly so, under normal programming circumstances. Yet 

they may be important to the success of the algorithm, and 

implementation of expert rules about their finetuning could be 

very beneficial. Once again, the emphasis here is at a uniform 

way of using context information (current model) in a domain of 

expertise (application of selected techniques). 

The third area, diagnostics and interpretation of results, 

is an obvious one and most code developers will offer some 

diagnostic data at the end of a run together with run 

statistics. These data are generally completely inadequate for 

a user who is not already an expert. Reference to code manuals 

usually yield little more understanding. There is much 

development that could be done without using intelligent 

programming techniques. However, we may give some example 

issues where a knowledge based system would be appropriate. 

First, recall that the nature of nonlinear programming 

expertise to date is such that a good code may terminate at a 

point indicating failure although the point is optimal, or 

indicating success at a non-optimal point. There is a variety 

of reasons that cause this situation. Deciding if an answer by 

a code is correct, is usually a result of judging different 



www.manaraa.com

795 

types of evidence, some of it computable and some of it not. A 

"smart" program must generate the evidence, assess it, reach a 

conclusion and explain to the user how this conclusion was 

reached. Apart from the usual termination criteria, other 

semi-heuristic information may be used: (i) sufficient decrease 

in the value of the gradient (or reduced gradient) of the 

objective function from the starting to the terminating point; 

(ii) verification of expected local convergence behavior (if 

better than linear) in the last few iterations; (iii) 

estimation of condition numbers for second order matrices; (iv) 

similar (or same) results with different program parameters; 

(v) comparable results with different model parameters; (vi) 

same results with different starting points. Some of these 

data may become costly to acquire so the system should consult 

with the user before proceeding to collect more evidence. 

Second, consider a situation where failure has occurred. 

Causes of failure and possible remedies should be explored and 

tested. For example, in Gill et al. (1981>, the following list 

(and suggestions for action) of failure causes is given: 

overflow 

decrease 

in user-defined problem functions, 

in the descent function (failure 

insufficient 

in step-length 

procedure, programming errors, poor scaling, too strict 

termination criteria, inaccuracy in finite difference 

approximation), consistent lack of progress, excessive number 

of iterations, lack of expected convergence rate, inability to 

maintain descent. Remedies for such failures are usually 

increasing the complexity of computation and they should be 

used only when needed. Thus, part of the diagnostic 

intelligence can be a strategy where relatively simple solution 

procedures are tried first and more powerful (and therefore 

usually more complicated and expensive) solution procedures are 

called if needed. This may be more cost-effective in the long 

run. Also, the diagnostic effort is smaller for simpler 

solution techniques. 

The above arguments on the utility of expert systems both 

in the modeling and in the solution phase of an optimization 

procedure are certainly not profound and they have been 

elaborated before (e.g., Papalambros, 1984). The knowledge to 
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implement suc~ systems is available. The main difficulty is 

the coordination of experts. Une may speculate that relatively 

small simple systems will be developed in the near future. An 

expert system in the above sense will require joint effort of a 

major software group with good grounding in numerical analysis, 

with an AI group that is willing to work in this possibly 

lackluster knowledge domain. However, it is the belief of this 

author that eventually all numerical analysis software of 

commercial quality will employ some form of expert system to 

assist in their use. 

Knowledge-Based Algorithms. We now proceed to examine another 

approach of using expert system ideas in optimal design. As we 

will see, this implies a somewhat radical view of what may 

constitute an "optimization algorithm". 

Active set strategies can provide us with an illustration 

of an interesting aspect of NLP solution methods. The 

decisions implied by a typical iteration xk+l=xk+aksk are based 

primarily on information about the current point and they 

utilize limite~ memory, as for example the successively better 

approximation to the true Hessian in quasi-Newton type methods. 

Most active set strategies use current iteration information to 

make decisions and may also employ limited memory to prevent 

the same constraint entering the active set too many times. 

Global active set strategies are partially possible by using 

monotonicity principles (e.g., Azarm and Papalambros, 1984a) . 

Here "global" means information that applies to all points in 

the design space, therefore usable in all iterations, not just 

the current one. This is an example observation that during 

the solution of a design optimization problem, different forms 

of knowledge are used: 

iteration only, 

iterations. 

to all 

knowledge applicable to the current 

iterations or to the sequence of 

In real design problems, particularly when recognizing the 

inability or undesirability of very meticulous models, there is 

a subtler interaction between model and iterations. In a 

little-noticed article, Thompson and Hunt (1974) point out that 

many structural optimization formulations "lead inevitably to 
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designs which exhibit the notorious failure characteristics 

often associated with the buckling of thin elastic shells". 

The rationale behind this assertion is easily recognized by the 

thoughtful analyst. Optimization models with simple objective 

functions, often monotonic with respect to several design 

variables, tend to 

constraints at the 

demand simUltaneous activity of several 

deliberately optimum. 

made to fail simultaneously 

apparently unrelated may 

unexpected results. This 

This means designs 

in several 

have nonlinear 

coupling does 

modes. Failures 

coupling 

not appear 

with 

in 

traditional, less efficient designs. Such situations should be 

accounted for without unduly complicating the model. The 

bounds on constraints can be made tighter, say with higher 

safety factors, but only if certain combinations of active 

constraints occur. Otherwise the design would be overly 

conservative. This then is an example of global information 

which will influence local decisions. 

We can recognize three forms of knowledge applicable 

during the design optimization process. 

(i) Global Knowledge pertains to facts independent of a 

particular design point and equally true for all 

points in the design space. Most such knowledge is 

a result of analysis or experience. 

(ii) Local Knowledge pertains to facts applicable to a 

particular design point. Such knowledge is mostly a 

result of computation. 

(iii) Evolutionary Knowledge pertains to facts observed 

from a sequence of design points generated by a 

particular algorithm. Again most such knowledge is 

acquired computationally. 

To cite some more examples, we may say that activity rules 

resulting from global monotonicity analysis, would represent 

global knowledge. Specific values of functions, gradients or 

multipliers at a point, would be local knowledge. A descent 

property of an algorithm, or constraint activity history such 

as identification of zig-zagging, would be evolutionary 

knowledge. 
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The idea of an "expert" active set strategy in the above 

sense was first proposed by Azarm and Papalambros (1984) and 

was implemented in a production system using only global 

knowledge by Li and Papalambros (1985a). A combined 

local-global active set strategy was recently developed (Li, 

198~) and implemented for linear programming and also for a 

reduced gradient-based nonlinear programming algorithm. This 

latter algorithm, called KBRG (~nowledge-~ased ~educed 

~radient), is briefly outlined below. Note that many of the 

rules are motivated from 

(e.g., Papalambros and 

and Li 1983). 

experiences 

Wi Ide, 1979; 

in monotonicity analysis 

Wilde, 1985; Papalambros 

A local strategy has the advantage of easy generation of 

the required data for decision making, but there are several 

disadvantages. In the general NLP case, the addition and 

deletion rules are completely heuristic and this may be cause 

for severe inefficiencies. Also, global convergence is 

theoretically possible only if the global optimum is found on 

each active set surface (i.e. a global solution is required for 

each equality constrained subproblem). A global strategy has 

the advantage of utilizing only knowledge known to be true at 

the optimum so no heuristics are required. The major 

disadvantage is that such global knowledge is both difficult to 

get and rarely complete enough for reaching a single decision. 

A compromise between the two should appear desirable. This is 

possible both in linear and in nonlinear programming (Li, 

198~) . 

The basic idea behind a combined local-global active set 

strategy is as follow: any available global knowledge about 

constraint activity is processed first; when that knowledge is 

not sufficient for reaching conclusive decisions, then local 

knowledge is introduced as required, so that decision-making in 

each iteration is complete. All forms of activity knowledge 

are implemented in the "if-then" rule form. This is done to 

maintain algorithmic flexibility, as well as to enhance 

efficiency of data processing. The current system 

implementation is not strictly an expert one, since no 

elaborate inference mechanism is required at this stage and no 
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AI language is used (the program is all written in FORTRAN). 

However, it does have elements of a knowledge-based system and 

can be viewed as such. 

In practice, global knowledge is organized in several rule 

forms which are applied to the constraints of a specific 

problem in order to generate working sets. The rule types are 

applicable also to the combined strategy and are summarized 

below. From an operational 

principles in Li (1985) several 

restatement of monotonicity 

rule forms have been found of 

practical use. These rules pertain to combinations of active 

and inactive constraints that are permissible and allow 

essentially a problem-reduction approach to the true active set 

identification. They are not included here for lack of space. 

The algorithm KBRG uses an equality constrained 

minimization procedure (of the reduced gradient family) to 

search on the working set and an active set strategy to update 

the working set. 

The major steps are as follows: 

1. Initialize and input global knowledge, k=O; 

2. At x k ' update the working set by local and/or global 

strategy (utilizing the rule format); 

3. Solve the equality constrained subproblem with a descent 

reduced gradient procedure (here BFGS is used); 

if constraint violation occurs, set k=k+1 and go to 2; 

if a solution to the subproblem is feasible to the original 

problem, go to 4; 

4. Check convergence criteria and multiplier estimates, if 

satisfied, terminate; 

otherwise, set k=k+1 and go to 2. 

Step 2 is where the rules for global and local 

are implemented. Typical global information tells 

activity 

the user 

(and the program) if there is current available data in each 

rule type, the variable with respect to which they were 

introduced (bounding arguments) and which constraints are 

involved. The knowledge representation, given in FORTRAN, is 

very awkward for the user by AI standards. A rule search 

procedure retrieves the global knowledge from the database and 

builds up the working active set. If the global rules have 
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ties, these are resolved by local information (local dominance 

strategy). Thus the addition part of the strategy uses global 

and local information. The deletion part uses multiplier 

estimates at check points for optimality (Karush-Kuhn-Tucker 

conditions to be satisfied). The constraint with the "most 

negative" multiplier is deleted provided the global rules are 

not violated. Global rule violation is also accounted for 

during the line search. 

Further details, test results and discussion on this 

algorithm can be found in the cited reference (Li, 1985). 

The combination of knowledge sources as 

creates a departure from traditional NLP 

utilize only local knowledge. A theoretical 

was done in 

algorithms 

problem of 

KBRG 

which 

what 

happens with convergence properties of the pure local strategy 

remains unsolved. However, all active set strategies for NLP 

are heuristic, so KBRG is not theoretically inferior. A 

practical consequence of introducing rule information based on 

expectation (as the one provided from experience) rather than 

rigorous knowledge (as the one provided by global monotonicity 

analysis), may bias the algorithm, more that what would be 

desirable, towards known and uninteresting solutions. 

A NOTE ON AI LANGUAGES 

Developing a knowledge-based system of any realistic size 

would require a special language, such as PROLOG or LISP. It 

is beyond the present scope to discuss the~e languages, or 

other variants in the AI practice. For an introduction to 

these tools, see e.g., O'Shea and Eisenstadt (1984), Hayes-Roth 

et al. (1983), Winston and Horn (1981). Connecting AI 

object-oriented programs with usual high level number 

processing languages is a challenge that must be addressed 

before systems of some practical complexity can be built. This 

is necessary in order to utilize the mass of existing 

engineering and mathematical software. 
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CONCLUSION 

As promised in the introduction, the use of 

knowledge-based systems in optimal design was found to be still 

more speculation than reality. However, some first concrete 

steps are being taken and such systems will become increasingly 

available. The discussion on knowledge representation should 

stimulate ideas about how to organize optimization knowledge in 

a more rational way. In fact the most immediate benefit of 

trying to build a rule-based system either in the modeling or 

in the solution phase is the explicit and 

codification of available knowledge in the field. 

systematic 

Finally, 

symbolic processing and knowledge-based algorithms are examples 

of systems that can extend modeling capabilities beyond the 

traditional mathematical programming formulation. 
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1. INTRODUCTION 
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The insertion of CAD technology in optimal design is 
strongly related to the more general problem of integration. 

The evolution of computer hardware and software is 
now giving to the analyst an opportunity to integrate the 
design and analysis tasks which are necessary to solve 
engineering problems. With such an integrated tool a company 
should be able to produce very quickly and at a lower 
cost, the best manufactured goods required by the community. 

In this paper we will consider optimization as a part 
of the analysis task, but with the peculiarity that it is 
performed to improve the design of new products. 

Initially, the main purpose of the analysis task was 
only to certificate products. Later, it was also to get a 
better understanding of their behavior and indirectly, to 
produce subsequent better designs.Nowadays, the analysis 
task in its optimization phase is able to give a direct 
feedback on the design. This fact give rise to a need for 
more integrated systems and more reliable tools for 
numerical simulations [1]. 

2. COMPARISON BETWEEN CAD SYSTEMS AND ANALYSIS PROGRAMS 

Generally CAD technology mainly deals with the aspects 
of geometric definition of objects, the first objective 
being the manufacturing of these objects. Consequently, the 
most visible and spectacular characteristic of CAD systems 
is concerned with the graphical capabilities of such 
systems. 

On the other hand, analysis programs generally contain 
a very poor graphical interface, because they are more 
concerned with numerical results of specific simulations, 
which often do not require a geometrical definition of the 
object, but a description of its behavior. 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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Another characteristic of CAD systems is that they 
include very powerfull and very well designed user 
interfaces. The user interface is the part of the program 
which deals with all the communication aspects between user 
and program in general it covers all the aspects of 
handling input and output data. This is the second 
difference between analysis programs and CAD systems: the 
latter include user friendly interface and are able to run 
interactively. On the other hand, analysis programs are 
generally difficult to use, input data are not easy to enter 
and output are mainly generated on listings. 

The third difference between the two systems is 
concerned with data organization or data base. In CAD 
systems very sophisticated and efficient data management 
systems does exist while in the analysis programs more 
effort was devoted to the development of the algorithms. In 
the first CAD systems, the algorithmic part was quite 
reduced. Also it must be noticed that CAD systems generally 
come from the industrial environment while analysis programs 
come from the university community. For the first, the major 
constraints are efficiency, ease of use and good 
presentation, while for the latter the problems of choice of 
method and of algorithmic solution were the main concern of 
the developers. 

But now the situation is evolving very quickly, because 
surface representation and solid modeling both require 
tremendous mathematical and algorithmic capabilities to be 
included in CAD systems. On the other hand analysis 
programs, and specially finite elements programs, are now 
completly mature and stable, the size of the problems 
increased very strongly and the profile of the users changed 
in such a way that they want to use black box systems for a 
large quantity of applications. Efficiency of data base 
management system and high quality of user interface are new 
requirements for analysis programs. 

In conclusion the two aspects of design need the same 
type of tools. The demand for integration and for uniform 
computer handling, with as uniform and homogeneous command 
language as possible, must be satisfied. The increasing size 
of the applications and the complexity of the processed 
models also require an extensive use of graphical 
capabilities in the analysis step. 

For these reasons, the following presentation will be 
divided in two parts : 

graphical aspects, problem of viewing, 
modeling aspects, some mathematical models of an object 

must travel from CAD world to Analysis world and must be 
adequatly transformed to meet the specific requirements of 
each step of the design process. 
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3. VIEWING: GRAPHICAL ASPECTS 

3.1 Information display 

The main feature arguing for the use of graphical 
displays is their effectiveness in communicating 
information. The power of the graphical displays lies not 
only in the speed with which they can generate images, but 
also in their flexibility and their capability to present 
the same data in a variety of ways [2,3]. 

This section discusses the techniques that can lead to 
a more effective display of informations; it is divided in 
two parts: first a short analysis of the properties of 
images in general, and then a presentation of the principal 
tools which are necessary to obtain an appropriate 
representation of three-dimensionnal objects on 
two-dimensionnal devices. 

3.1.1. The properties of the image 

Many works have been done on the aspect of psychology 
of perception. Some analyses give interesting results but 
they didn't got strong impact on the current developments in 
computer graphics because it is not possible at this time to 
deduce precise rules in order to effectively help the design 
of user interfaces. 

On the other hand a pioneer and very usefull work has 
been done by Bertin on graphic design [4]. Bertin analyzes 
graphics as a medium of communication. He tries to define 
the characteristics of the image and to use them in order to 
obtain better graphics. His field of activities is mainly 
concerned with geographic and business environment, but the 
rules can be easily extrapolated to similar types of 
graphics in the technical world. 

Basic elements of the image: 

There are basically two different styles of drawings. 
The first is obtained by the technique of draftsmen. A 
picture consists only of lines drawn from point to point. 
The line is the simplest element of the drawing and any 
other thing that appears on the sketch is considered as an 
assembly of lines. Hardwares associated to this type of 
drawing include the vector displays and the pen plotters. 

The second style is obtained with the technique of the 
painters which use a brush and fill areas in order to 
produce a picture. So the basic element of the picture is 
the area. The smallest area that can be displayed on the 
screen is called a PIXEL, short for picture element. The 
pixel surface depends of the resolution of the screen. 
Hardwares associated to this style include raster scan 
displays, similar to ordinary television sets, and 
electrostatic plotters. 
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It should be noticed that, with line drawing based 
systems, it is also possible to produce dots (very short 
lines) and to fill areas (with dots or by hatching 
techniques). On the other hand, with areas filling based 
systems, it is possible to draw lines, developing some 
linear interpolation schemes. 

As a consequence, both systems can be used in any 
situation , but for a particular application, one system can 
be better suited than the other or can be more grateful for 
the user. The limiting case of both line and area systems is 
the point. For convenience we will say that any picture is 
composed of points, lines and areas. Below, we examine what 
are the attributes of these basic elements. 

Bertin's eight variables of the image 

It is possible to assign eight attributes or variables 
to the three entities defined above [4]. The first two 
characteristics of points, lines or areas are related to 
their location on the sheet. Two variables are necessary to 
define the position: X and Y coordinates.With some low cost 
devices, the only possibility to build an image is to define 
a collection of points (black or white pixels). No other 
attribute is available to define the image. 

Two new variables can be used to represent the third 
dimension: size or value. Size is obtained by increasing the 
thickness of a line or the dimension of a point. Value 
refers to the possibilities of half toning if they are 
available: for areas, it consists in varying the number of 
white dots on a black background. This is generally achieved 
by defining patterns with different numbers of black and 
white dots on monochromatic devices. These two attributes 
(size and value) are ordered, it means that the visibility 
increases with the size or with the value and consequently 
that the human brain intuitively associates a higher value 
to a higher visibility. A good example of this behavior can 
be found in the representation of oceans in cartography. The 
increasing depth of the sea is associated with darker blue, 
the small depth with light blue. Another property of these 
two variables is that size is quantitative while value is 
only qualitative. So, in order to evaluate the magnitude 
with the value variable, an additionnal scale of magnitudes 
must be associated to the picture. The use of the size 
variable is very common both in geographic and technical 
environment. Indeed, a set of variables of different 
possible values located in precise points of a map will 
generally be represented by points (circle or any symbol) of 
variable size (ex: country map with representation of 
cities) . 
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The last four variables are: texture, form, orientation 
and color. They are defined as "separation" variables 
because their unique goal is to separate different 
constitutive elements of the picture. They can be 
implemented on points, lines and areas, but their ability to 
meet the criterion of separability will vary considerably 
according to the support. For areas and lines, the color 
variable induces the best separability. A well known and 
spectacular example is the artificial coloring of satellite 
photographs. The only problem occuring with color is the 
difficulty and the cost of documents reproduction. For 
points, the orientation variable is more suited (field 
velocities, etc ... ). The form variable is mainly used in 
business graphics to represent different types of points 
lying on curves. 

3.1.2. The production of pictures 

The 
display 
requires 
scene to 

most important characteristic of a computer graphic 
environment is its two dimensionnality which 

the transformation from the three-dimensionnal 
a two-dimensionnal image. 

As a consequence two problems are to be solved: 
-first: to correctly position the object in space and 
to project it on a plane. This is the general problem of 
geometrical transformations [2]. 
-second : to get more realism or to simply obtain a good 
visualization of the object. It can be achieved by detecting 
the visible parts of the object that must be displayed on 
the screen or reproduced on the paper sheet. Other 
techniques such as shading can be used to improve the visual 
rendering. 

Geometrical transformations: 

The homogeneous coordinates introduced by Maxwell in 
geometry and by Roberts in graphics allow to define .a 
general transformation matrix able to handle and combine all 
the geometrical transformations. The principle of 
homogeneous coordinates is very simple, it consists in 
adding to the cartesian coordinates a supplementary 
coordinate that can scale the preceding ones. In a two 
dimensional space the x and y coordinates will be replaced 
by the three homogeneous coordinates hx, hy, and h, in such 
a way that 

x=hx/h y=hy/h 

With such a definition, cartesian coordinates (.25,.5) 
of a point can be defined in an homogeneous form either by 
(.25,.5,1) , or by (1,2,4) , etc .. In homogeneous form, the 
definition of a point is not univoque. 
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The principal advantage of this formulation is that all 
the rigid body motions can be defined as a matrix product. 
In fact, the transformation matrix can include rotations, 
translations and differencial scaling, this last one being 
able to perform symmetry operations. As all the operators 
are defined as matrix products, they can be combined to form 
more complex operators. 

Note that with such a technique the spatial position 
of a part of an object can be updated without changing any 
coordinate of the object, by simply updating the 
transformation matrix attached to this object. If objects 
have to be displayed and if the terminal has some processing 
and storage capacity, moreover if we assume that the 
terminal has already stored the coordinates of the points, 
then it is sufficient to send the transformation matrix in 
order to modify the position of the object.The consequence 
is a very economic way to define and execute 
transformations. 

Moreover this matrix can contain all the planar 
projections. Let us assume that coordinates are defined as 
line matrices, initially [P], and [P'] after transformation, 
and that the matrix product is defined as follows: 

[ P' ] = [ P ] [ T ], 

where [T] is the transformation matrix. 

With this definition, removing one column of the matrix 
suppresses one dimension from the space and produce in a 
quite natural and very simple way, the orthographic 
projections in Y-Z, X-Z and X-Y planes, according to the 
position of the removed column. 

Combinations'of rotations and projections leads to 
axonometric projections (isometry, dimetry and trimetry). 
Oblique projections (cabinet or cavalier) are defined as a 
shear operator, while central projections are defined 
by introducing the inverse of the distance between observer 
and image plane in the fourth column of the matrix. This 
last projection give more realistic aspect and is quite good 
to simulate a camera image of the object. 

Visible surfaces detection 

According to Lucas [5], there are two types of 
algorithms to solve the problem of hidden parts removal. 

With vector display hardwares, the purpose of the 
algorithms is to eliminate the hidden lines of the objects, 
while with raster scan based hardwares, it is more 
convenient to select a method of visible surface detection. 
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Many papers were published on this subject, and it is 
quite obvious that for each particular class of objects, it 
is possible to find a new algorithm that proves to be more 
efficient than the others. In fact it can take into account 
the peculiarities of the object in order to better use the 
internal coherence of the image [5,6]. 

Any comparison between algorithms is difficult because 
their performances are very sensitive with respect to the 
programming technique. Anyway, today, the subject is mature 
enough and we will very briefly present four families of 
algorithms as in [5]. 

The outline drawing algorithms are very close to the 
classical representations used by engineers, they give high 
quality images but remain quite abstract for non 
professional people. They include the classical Galimberti -
Montanari algorithm which performs the comparison of all the 
edges of the object with all the faces. In its original form 
it assumes that the object is a solid defined as a 
polyhedron. This algorithm leads to an exact solution of the 
problem. It is quite expensive, well adapted to pen plotters 
and give high quality results. 

The second family of algorithms or Warnock algorithm is 
based on a " divide and conquer " strategy. The whole screen 
is analyzed in order to know which types of polygon are 
present on the surface. If the situation is too complex the 
screen is subdivided in four parts and the process is 
repeated. The goal of the algorithm is to find a simple 
situation within the analyzed window : no polygon in the 
window, or one polygon, or one surrounding polygon 
eliminating those which are behind. When the resolution of 
the screen is reached some decision must be taken. As a 
consequence the quality of the image will depend on the 
resolution of the device and it is not so accurate as with 
the first method. 

The next algorithms are based on filling area 
technique. Watkins algorithm is quite similar to the 
preceding one but it works on a single scan line. A cut of 
the 3-D scene is performed and the algorithm must detect the 
segments that can be displayed. If no segment or only one is 
present on a portion of the scan line, the situation is 
simple enough and the segment can be displayed with its 
corresponding color. Otherwise, the portion of scan line is 
divided in two parts and the process goes further. It is 
possible to save computation time using coherence property 
between two adjacent scan lines. This algorithm was the 
first implemented on hardware, it gives nice results but it 
is quite difficult to program. 
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At last, the Newell and Sancha algorithm is working as 
a painter does. Ordering all the polygons from background to 
foreground and painting them in this order can give the 
correct result. The only difficulty is to choose a criterion 
to sort the polygons. If the sizes of the different polygons 
are important and if the polygons are not convex, the 
so defined algorithm will fail. Refinements are to be 
included to solve conflicting situations. Easy to program 
and very fast, the simple sort of polygons is often used 
with finite element models and give generally good results 
because finite elements are small convex polygons. 

3.1.3 To improve visual rendering 

Two approaches are followed for improvement of visual 
rendering, they correspond to different disciplines. 

In the first case, emphasis is laid on a better quality 
of the image, the challenge is to obtain a "true 
photograph". Improvement of quality is obtained by adding 
more texture, using shading techniques, and taking into 
account transparency and light reflection. 

The other approach, mainly represented by flight 
simulators design, consists in trying to get real time 
visualization. In the simplest case, it is sufficient to 
move objects in rigid body motions. A more difficult problem 
covers the field of animation of deformable objects. Current 
applications concern vibration modes or static modes 
simulation in mechanics. This type of animation requires a 
lot of resources, powerful processor and large data storage, 
because the description of each configuration needs a large 
amount of paremeters (currently a finite element model 
contains more than ten thousand degrees of freedom). 
Simplified forms of representation have to be found. 
Presently, with the hardware available today, wireframe 
models of complex structures are easily animated, especially 
when the relevant edges of the model are extracted to 
simplify the representation. 

3.2. Other aspects of graphical techniques 

3.2.1. Design of the user interface 

The user interface is the part of the program which 
handles interactions between the program and the user. It is 
now common to present user friendly interfaces: that means 
that user can very easily drive programs with the help of 
easy to use devices: mouses, tablets, etc., and with the 
help of well designed command languages including menus, 
etc .. 

Ergonomy is the speciality dealing with the facilities 
to pilot an application. It includes many aspects of 
workstations design: physical aspects and software aspects. 
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A careful summary of the aspects of user interface 
design can be found in [3], from a software point of view. 
The author points out four principal components of the user 
interface: 

- user's model, 
- command language, 
- information display and 
- feedback. 

Information display characteristics has been presented 
in section 3.1. Nevertheless, other components also have a 
strong impact on the quality of the program. Specially, in 
optimization problems, the user's model which is the model 
the user has in mind to understand what he can ask to the 
program, will hardly influence the results of computations. 
For example, if well designed, a sensitivity analysis is an 
excellent tool to understand the behavior of the 
mathematical model and hence to get a better design. 

Command language design is also important, because the 
user must manage several programs: Cad program, analysis 
programs, optimizer, etc ... It should be more efficient for 
him to work with homogeneous and consistent command 
languages. This remark justifies a posteriori the search for 
an integration of all the programs used in the same company 
or at least in the same office. In this way integration will 
also facilitate communication and, as we hope, avoid 
misundertandings and errors. 

Finally, the feedback exhibits the reaction of the 
program to the commands. A carefull design of this part will 
improve the efficiency of interactions, reduce the cost of 
process and decrease the response time. A compromise 
between, on one hand, hardware and developement cost and on 
the other hand, CPU time and velocity of interaction, has to 
be found. 

3.2.2. Data base management aspects 

The data base management system has to ensure the 
integrity and the recoverability of data throughout the full 
process of design and analysis. Efficient data management is 
essential, due to the quantity and the complexity of data 
that must be created, modified, processed and updated. 

Conventional systems are generally unsuitable because 
in CAD environment the number of items is too high and the 
size of data that must be stored is too enormous. Another 
difficulty is that heterogeneous systems are often linked 
together. As a consequence, some bridges are to be build to 
ensure communication between systems. 
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In the restricted context of graphics, some 
standardization is also necessary to be able to transmit 
pictures or informations between different types of devices 
and programs. Some effort has been done and yielded concrete 
results. The most important norm in graphics is GKS, for 
Graphics Kernel System. This norm describes specifications 
for programming, designing graphic software and building 
files called metafiles whose characteristics allow their 
transfer from one workstation to any other, or from one 
computer center to another. 

This standard and other ones are coming from computer 
graphic community, but other standard exist in the context 
of CAD. In certain opportunities they can also play the role 
of picture carriers. As they are able to understand and 
reproduce full geometrical models, they are not necessarily 
the best suited and the. most economic vectors for 
communicating simple pictures. 

Graphics standardization is important in the context of 
office automation and electronic publication, because 
graphical documents should be inserted in reports or should 
be available to produce presentation documents such as 
slides, videotapes, etc .. 

4. MODELING 

The purpose of modeling is to create some 
representation of an object in order to manufacture it or to 
execute some simulation of its behavior. In fact we should 
distingish between mathematical model and numerical model. 
Here we are more concerned with the numerical model, but the 
mathematical model is always present behind the numerical 
model. Sometimes, mathematical and numerical models are very 
close to each other, sometimes, they are very different due 
to the discretization, or due to the different 
approximations introduced in the numerical model. 

The same object will have several representations. 
Indeed, for the same object, we need a pure geometrical 
model and, in the present case, we also need a special model 
for manufacturing the object and a quite different model for 
analyzing it. The relevant attributes are different 
depending on the utilization of the model, but it is 
important that the fundamental definition of geometry should 
be identical. So it will be necessary to distinguish between 
universal parameters defining the geometry and specific 
parameters which are only useful for a given application. 
Anybody must have the ability to access the general or 
common parameter. Specific parameters will only be accessed 
by people which are concerned with their use. 
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4.1. Design models 

This section mainly deals with the following subject : 
what are the different types of geometric models used in the 
design environnement and how to build these models ? 

4.1.1. Traditional system 

The first modeling techniques come from descriptive 
geometry techniques. Those techniques were extensively 
developed in the past century and are now well known. The 
theoretical base can be found in Monge geometry. In the 
industrial period this system led to the technical drafting 
techniques. 

The basic elements of the model are generally circular 
arcs and lines. The draftsman must specify all the 
dimensions of the objects in each of the orthographic 
projections. 

The three classical projections are most often 
sufficient to completely describe the object, but in some 
cases it is usefull or necessary to add some informations on 
details or on sections. 

In the first CAD systems 
automated with some interesting 
automatically build symmetrical 
details. So the process was 
compared to the manual work. 

this technique was simply 
improvements: possibility to 
parts or to reproduce some 
faster and more accurate, 

It is important to notice that, even with its 
weaknesses, this system proved to be very reliable and most 
of the objects of our actual environment were designed in 
this context. 

4.1.2. Principal families of models 

Generally, engineering activities are concerned with 
three types of models. For these models the basic 
constitutive elements are lines or truss members, surfaces 
or shells and solids or polyhedra. 

Each of these families exhibits special properties and 
needs specific techniques for design and analysis. In fact 
the first steps in CAD were achieved with models composed of 
one dimensional elements, as well in analysis with the 
so called "matrix structural analysis", as in design with 
the wireframe models. The first optimization models were 
also concerned with 1-D elements as in the famous 5 bars, 72 
bars trusses,etc.. Later, the finite element method 
introduced the concept of polygons with flat membrane 
elements, followed by plate elements as Clough-Tocher 
elements. 
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At the same time people mainly involved in car bodies 
and aircraft design found out the technique of sculptured 
surfaces. This tendency was emphasized when Coons, Bezier, 
Gordon, Ferguson and other pioneers replaced the lofting and 
clay modeling techniques traditionally used in the design of 
multicurved objects with mathematical techniques, defining 
curves and surfaces representable in computers. Very complex 
structures can be defined with this type of representation. 

Finally with the increase of computer power and the 
introduction of super computers, full 3-D solid models are 
now accessible and their analysis is particularly important 
in mechanical engineering because most of the mechanical 
components are intrinsically 3-D objects. 

Examples of these types of models are easy to find in 
the engineering environnement: towers, lattice masts, 
bridges, bulding frameworks, etc. are examples of 
one-dimensional elements, car bodies, ship's hulls, 
aircrafts, turbine blades etc. are examples of surfaces, and 
any mechanical component such as crankshaft is an example of 
solid. 

4.1.3. Solid model construction 

There are six major categories of methods for 
constructing solid models wireframe representations, 
boundary representations, constructive solid geometry, also 
called building block approach, sweep representations, 
instances or parametrized shapes and cell decomposition 
(including spatial occupancy enumeration) [7,8]. 

I) Wireframe representations 

This technique is a generalization of the traditional 
method for producing drawings. Extended in three dimensions 
the drafting techniques allow to define objects by showing 
all their edges. The most achieved systems called 2.5-D 
systems allow to define directly the object in 3-D. However 
the description of an object is limited to the same points, 
line segments and curve elements as in the 2D case, but the 
possibility to use three-dimensional translations and 
rotations supplies a greater illusion of solidity. 

The weaknesses of these models are well known 
- possibility of creating non sense objects ; 
- ambiguity of the models ; 
- no guarantee of uniqueness ; 

lack of visual coherence (silhouettes are not 
included in the model) ; 
- long and tedious construction of the model ; 
- impossibility to perform volumetric analysis. 

be very 
generally 

model are 
polyhedra, 

In general this type of representation can 
effective in 2-D problems but becomes 
impracticable in complex 3-D problems. Wireframe 
not well suited to represent other shapes than 
such as cylinders, etc .. 
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II) Sweep representations 

These models follow a very simple and natural scheme. 
The basic idea is the following : to produce a curve, it is 
sufficient to define a point and to move it along a 
trajectory. It consists in the parametric definition of a 
curve, where the parameter can be assimilated to the time 
variable. 

Generalizing this technique it is possible to move some 
curve along a trajectory to produce a surface and to move a 
surface in order to produce a volume. 

The trajectory can be a line, an arc or another 
This technique is particularly interesting to 
axisymmetric objects and it is used in CAD systems as 
as in finite element analysis. 

curve. 
define 

well 

The main quality of this technique is its efficiency 
and its conciseness, but in some cases, it is not obvious to 
check the validity of the model. Many of the present CAD 
systems offer sweep representations capabilities. 

III) Instances or parametrized shapes 

It is a very common and useful way to define objects. 
Indeed mechanical parts can completely be described with a 
small number of parameters. These parameters correspond to 
all the dimensions of the object. So it is possible to 
select the dimensions that may vary and to choose them as 
parameters. The definition of the object may include all 
the necessary tests to check the validity of the definition. 
This method is very efficient to define families of objects. 
A related technique, called group technology, was developed 
in concert with CAM techniques in order to promote 
standardization in part design and production. 

This type of model is unquestionably concise, it is 
easy to validate and use and it theoretically allows to 
produce any type of shape. In practice, modeling systems 
based on this only type of representation are highly 
specialized and require a very large repertoire of generic 
primitives to deal with more general application. 

Finally, let us notice that the parameters of a 
primitive or some of them can be identical to the design 
variables used in optimization. In this model the definition 
of design variable should be straightforward. 
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IV) Cell decomposition 

This technique is regularly used in structural 
analysis. It is the basis for finite element modeling. 

Any solid can be divided into a set of cells or 
elements whose union or sum supplies a representation of the 
solid itself. The advantage of this method is that any 
solid can be represented or approximated by a sufficient 
number of cells of very simple shapes. There are many ways 
of decomposing a solid, none is unique but all are 
unambiguous. In principle, it is possible to represent any 
object, using a reduced library of simple primitives 
(tetrahedra and/or hexahedra). 

Simple shapes will be chosen in order to introduce 
simple mathematical models in analysis programs or to get 
simple algorithms for representation in CAD. The 
decomposition of the surface of a body in simple polygons 
(i.e. triangles) allows to use simple and fast algorithms 
for the representation. Two drawbacks may appear with this 
kind of technique. First it is not always obvious to 
decompose the object (it is the function of mesh 
generators). Second, an important amount of data is 
necessary to describe the object and any change in the model 
implies a rerun of the mesh generation process. 

Spatial occupancy enumeration is a special case of cell 
decomposition, where cells are cubical in shape and located 
in a fixed spatial grid. With decreasing size of the cells, 
the representation approaches a solid as a set of contiguous 
points in space. One way to represent a solid is simply by 
listing the coordinates of the centers of cells. As the grid 
is fixed, the coordinates can be integer numbers, and the 
cell size defines the maximum resolution of the model. 

In this kind of model, it is ~asy to access a given 
point and the spatial uniqueness is assured. But there is no 
explicit relation between the differerit parts of an object, 
and a large amount of data storage is required. Quadtree (in 
2 dimensions) and octree (in 3-D) techniques provide a way 
of using more efficiently the spatial occupancy enumeration. 

Octree technique of representation of 3-D objects is 
based on the recursive subdivision of a cube into 8 equal 
cubes. Each node of the tree represent a cube of the space. 
If any subcube of the cube is empty or full, it does not 
need further subdivision, otherwise, it is subdivided into 
eight cubes which are examined. The process is stopped 
either when all the cubes are totally full or empty, or when 
the assigned resolution is reached. In this case the 
partially full or empty cubes will be declared full or empty 
according to a convention. The leaf nodes of the tree have 
a standard size and position related to powers of 2. 
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All computations on these models are based on integer 
arithmetic. Algorithms that translate, rotate and scale 
octree models, that combine them using Boolean operators and 
that compute geometric properties are now available. Octree 
representations are also used as intermediate steps to 
produce finite elements meshes from other types of 
representations. 

V) constructive solid geometry 

constructive Solid Geometry (CSG) is a term used for 
modeling methods that definite complex solids as 
compositions of simpler ones (primitives). 

Most of the concepts of CSG, were first introduced by 
Voelcker, Requicha and others on the Production Automation 
Project at the University of Rochester. 

CSG can be viewed as a generalization of cell 
decomposition. In the latter case individual cells are 
combined using a gluing operation which is a limited form of 
the union operator. Boolean operators (union, intersection 
and difference) are used to realize the composition. 

CSG representations of objects are ordered binary trees 
whose leaves or terminal nodes are primitives or geometrical 
transformations (rigid body motions or scaling) and whose 
internal nodes are boolean operators. 

VI) Boundary representation 

In boundary representation (B-rep.), the object is 
described by the surrounding surfaces of the solid. It is 
always present both in the design part and in the analysis 
part, to achieve visualization. The polygonal scheme is a 
particular simplified form of B-rep. In the analysis step, 
the B-rep. model is also necessary for representation 
purposes. Another reason to build a B-rep. model in the 
analysis step, is that the design variables used in the 
shape optimization step, are controlling the outside 
surface. There is no particular difficulty to transform any 
model into a B-rep. model exept for the wireframe model. 
This transformation is easy to perform in 2-D but it is 
quite difficult to perform in 3-D, because the meaning of 
the lines is not unique, as they may represent edges or 
planes, or silhouette lines. Some usefull work has be done 
by Markowky and Wesley with the purpose of transforming old 
drafting into complete volume models [9,10]. The interest of 
their work can also be to check the validity of wireframe 
models. 
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Some caution must be taken during the transformation 
into B-rep .. An interesting approach is to first define an 
object in CSG, and then to build the associated finite 
element model. Let us notice that this transformation 
requires us to discretize the geometric model in some way 
because some F.E. models may involve only linear or bilinear 
surfaces. So the B-rep. model extracted from the F.E. model 
does not match anymore with the B-rep. extracted from the 
original model. This example shows the necessity to always 
refer to the original geometrical model. 

4.1.4. Sculptured surfaces technique 

A very complete and useful survey of the principles 
involved in this technique can be found in [11,12]. The 
different characteristics of the methods can be summarized 
as follows with the simple example of a circular arc whose 
radius is equal to the unity and whose center is at the 
origin of axes. 

The first characteristic of the methods is to avoid the 
following implicit form: 

because, to compute points, it needs to solve non linear 
equation. 

The explicit form will also be discarded because it is 
axis dependent and doesn't allow multi-valued fonctions: 

The best suited form is the parametrized form; for a 
circular arc, it may be written 

x = cos t, Y = sin t 

where t is the parameter. 

It would be preferable to use polynomials form to get 
more flexibility and more general treatment. In the case of 
the circular arc we can obtain a polynomial form, but it is 
no longer an exact solution. An example of approximation is 
given in [3] with a third degree polynomial 

x (t) = 0.43 t 3 1.466 t 2 + 0.036 t + 1 

y (t) = - 0.43 t 3 0.177 t 2 + 1.607 t 

Let us notice that if we want to return to an exact form, it 
is possible to use the rational parametric definition. 
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Using the homogeneous coordinates (hx, 
presented in section 3.1.2, it is possible to 
circular arc with polynomials: 

hx = 1 - t2 

hy = 2 t 

h = 1 + t2 

hy, h) 
define a 

It is easy to see that x and y lie on the circular arc. 

Let us notice that third degree polynomials will be 
very suitable, because they correspond to the lowest degree 
curves defined in space that can include twist. Moreover it 
has been pointed out that most of the practical situations 
can be accurately represented with third degree polynomials. 

Till now we used algebraic forms, but in the field of 
design, the coefficients of polynomials are very difficult 
to handle. Consequently, it is preferable to use geometrical 
representations of curves for design purposes. In the case 
of a linear segment, the difference is obvious: 

algebraic form: 

x = a + bt 

y = c + dt 

geometrical form: 

x = xl ( 1 - t) + x 2 

y = Y1 (1 - t) + Y2 

w~ere (Xl' Y1) and (x2 , Y2) define the end points of the 
ll.ne. 

The advantage of this presentation is that the 
coefficients have a physical meaning and that they can be 
directly defined in the model. Secondly, the limited 
segments can be directly computed using the last definition, 
because all the lines are bounded in design problems. 
Generally, the domain of variation of the parameter t is 
comprised between 0 and 1. Knots control or nodes control 
also help to ensure versatility. 

The preceding rule is also used in F.E in the so called 
isoparametric elements, where the same blending functions, 
also called shape functions, are used for both geometric 
definitions and displacement fields approximations. 
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Many types of controls by nodes can be imagined. The 
first one also used in finite element method is the Lagrange 
interpolation technique where each node lies on the curve. 
But it is well known that if the spacing of nodes is not 
uniform or if the number of nodes increases, the degree 
becomes too bigh and the representation has a tendancy to 
amplify, rather than to smooth any small irregularity in the 
shape outlined by a set of control points. So other types of 
controls are introduced to obtain a variation diminishing 
property. The first and most famous was introduced by 
Bezier. In this case the curve only passes through the first 
and the last from a given set of points. The main features 
of the Bezier curves are : 

- the curve passes through the first and the last 
points; 

the end derivatives are controled by the end 
segments; 
- the curve is warranted 
of the control points 
property). 

to lie within the convex 
that define it (convex 

hull 
hull 

Thanks to the preceding property the Bezier curve never 
wildly oscillates away from its defining points and the 
behavior of the curve is very similar to that of the control 
polygon. 

The only drawback from this definition is that the 
control is global. The more points we have to define the 
curve, the higher the degree of the polynomial.A definition 
by piecing curves together naturally follows from the 
preceding considerations. The most common spline techniques 
provide this convenience at the expense of local control. 
The B-Spline formulation avoids this problem by using a set 
of blending functions that only have local support. 

B-Spline technique which is a generalization of Bezier 
technique, provides the advantages of both of them: local 
or global control, continuity of curves and variation 
diminishing property. 

This type of curve definition is also essential in 
optimization because the design variables used in shape 
optimization, are the parameters which control the shape of 
the curve and so, those two types of variables are 
identical. The properties of blending functions are 
essential for design, but they are even more essential for 
optimization, because they have proved to be the best design 
variables. 

The case of surfaces is fundamentally identical. The 
same parametric forms are used, but two sets of blending 
functions with 2 parameters are now to be defined. Some 
techniques similar to those used for curves definition will 
be applied. According to the rule chosen for mixing the 
generating curves, several families of surfaces may be 
defined. The most important methods are cartesian products 
and transfinite surfaces (analogous to the eight modes 
serendipity element of Irons). 
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4.1.5. Conversions between models 

The problem of conversion between models is the major 
difficulty to be solved in order to achieve a full 
integration of the different steps of design, analysis and 
optimization [13]. The basic idea of this section is that 
more than one model are needed in the different steps of 
design, because some models are more adequate for the 
construction step, or for the manufacturing step, or for one 
or another type of analysis. So it is mandatory to be able 
to convert one model into another, saving the basic 
charateristics of the object in a reference, or absolute 
description. 

From the remarks outlined above, it is now obvious that 
some models are primary models, i.e. models build only for 
the purpose of construct a representation: sweep method, CSG 
method, wireframe method. Other are terminal models, such as 
F.E decomposition and B-rep. 

4.2. The analysis models 

The most important analysis models are: 
AI F.E.A, we saw that this model is a special case of 

cell decomposition. 

BI BEM, boundary element methods or integral 
methods: they are particularly well suited for B-rep .. In 
those methods, we only have to subdivide the external 
surface, or the boundary of the model. The resulting model 
is similar to the polygonal scheme used for graphical 
purpose, but it must include special refinement in singular 
points, if it is to be used for analysis purposes. 

CI Finite difference schemes are build on a fixed 
spatial grid. Some analogy can be found with quadtree or 
octree subdivision method. 

DI Fourier decomposition does not match exactly the 
preceding definitions although it is generally classed among 
F.E methods. This type of method allows to analyse pure 
geometrically axisymmetric structures when submitted to non 
symmetric loads or boundary conditions. The geometrical 
model of this type of structure is particularly well suited 
to sweep representation. The finite element model should be 
extracted from CAD system before the sweeping process. But 
to visualize the (non axisymmetric) results, a complete 3-D 
model must be build and the results must be combined and 
"plugged" on the 3-D model. This example exhibits very well 
the need for an integration of the different CAD tools, 
because in this case some typical CAD primitives are 
necessary after analysis of the model. 
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4.3. Communication between CAD and Analysis 

4.3.1. Concept of parametrized model. 

How to connect design to optimization? As reported by 
many authors, the design variables must be defined at the 
design level and by designers, they must be present in the 
analysis program and in the optimization process exactly 
with the same definition as in the design phase. 

Consequently, it is necessary to clearly identify these 
design variables and to examine if they must be present in 
the analysis model or not. This statement is valid as well 
for size optimization as for discrete or shape optimization. 

In the two first cases, the concept of design variable 
is quite clear because the sections of bars and/or 
the thicknesses of membranes are typically entered in the 
finite analysis program as data independent of the 
modelization, which is essentialy related to the mesh 
definition. This assertion is true for most finite element 
programs. 

In shape optimization however the situation is quite 
different because no explicit variable is present in the 
input data to define the shape of the model. Typically, in 
the finite element method, the geometry is only defined by 
the nodes positions. So, in the first shape optimization 
test, it was tried to optimize the position of nodes which 
led to dramatic consequences on the results. 

Two reasons explain these unacceptable results: first 
it is not convenient to work on the F.E. geometry, because 
it is only an approximation of the exact geometry. Second, 
the nodes coordinates are too sensitive to small variations 
and there is no natural mean to smooth the solution. 

Now it is obvious that the nodal positions of the 
finite element mesh must be entered as dependent variables 
with respect to the master variables controlling the shape 
in a more global form. The knots of Bezier or B-Spline will 
give a very suitable definition of the design variables and 
of the parameters controlling the behavior of the F.E. mesh. 
Consequently, the nodes of the F.E. model cannot be 
independent variables, but the geometry of the mesh must be 
parametrized in terms of knots, which is not usually the 
case in the classical F.E. programs. 

Using the same technique as for isoparametric finite 
elements, it is quite easy to define the design elements 
governing the mesh in a certain region of the model. The 
boundaries of these design elements should be defined 
exactly in terms of boundaries of CAD models. These design 
models are assumed to describe exactly the shape of the 
object. However the finite elements of the mesh contained in 
one design element will always approximate the exact shape 
because the blending functions of finite elements are 
generally low degree polynomials.At this stage it is obvious 
that some mesh generator capability is indispensable to 
build the model [14]. 
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4.3.2. Parametrized and procedural models 

When written in a procedural form, the data of a 
program are formulated in a special language exactly as we 
write a program. The so called "procedure" does not only 
include data or variables, but also primitives and 
tests.Data are replaced by the statements of the procedure. 
It is assumed that the program actuating as an interpreter 
is able to handle these statements. 

As an example CSG method acts as a procedure, because 
indicating the Boolean operators and the geometrical 
transformations, the model is not described explicitly but 
through different actions to be performed ; so, the program 
has to execute the statements and maybe to process a 
boundary evaluation. 

In the same way a finite element model can be defined 
by indicating boundaries, master nodes and the rules to be 
applied to interpolate the nodes in order to build the F.E. 
mesh. As mentioned above, the program has to evaluate the 
model before to compute results. 

This method will be more expensive but it ensures more 
flexibility to correctly manage the step of optimization, 
independently of the particular problems. 

Using this system and applying the finite difference 
scheme, the optimization should be completely independent of 
the F.E.A. programs. 

This means that parts of mesh generation capabilities 
should be also present in the optimizer. 

4.3.3. The actual model of communication 

The IGES (Initial Graphics Exchange Specification) 
standardized format is a norm proposed by sellers and 
Federal government agencies to help in the communications 
between CAD systems. This standard allows different systems 
to speak the same language. With this tool engineers from 
different disciplines can readily exchange data in a quick 
and accurate way. The technical communication between 
different departments (or even different companies) is 
improved [15,16]. 

The new version of IGES now covers the finite element 
modeling data, including definition of nodes and connecting 
elements, along with material properties. More applications 
including solid models, piping, and sculptured surfaces are 
also covered. 

However, it is not the unique language for interfacing 
dissimilar systems. Like IGES, commercial programs are 
neutral file translators that function as an intermediate 
step between systems. 
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In fact IGES can be better viewed as a geometrical 
model specification. On the other side GKS metafile will be 
a pure graphical specification. But the difference between 
the two is not always very clear. We can also imagine GKS 
metafile as a low level norm, while IGES is a high level 
one. 

5. CONCLUSIONS 

The application of CAD technology in optimization 
exhibits three main aspects. 

The first one deals with interactive computer graphics. 
It is present in CAD systems as well as in analysis 
programs. It is concerned by geometric transformations in 
3-D space, by hidden-line and hidden-surface removal and by 
general graphic rendering of objects and results. 

The second aspect is related to modeling. 
the fundamental problem is the conversion 
The geometric models from CAD systems have to 
in order to be used by the analysis and 
programs. 

In this case 
of models. 

be converted 
optimization 

The third aspect is the problem of the identification 
and of the use of the design variables from the early step 
of design to the final step of optimization. The design 
variables are expected to be the parameters of each program 
which must deal with them. This aspect must be carefully 
taken into account by developers in the field of shape 
optimization. 
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COMPUTER AIDED OPTIMAL DESIGN OF ELASTIC STRUCTURES 

Part I 

Integration of Optimization Concepts within 
CAD and FEM Technologies 

Abstract This Section concentrates on two major objectives that are 
currently pursued at the research level, and that should soon be ready 
for implementation in practical Computer Aided Engineering systems. The 
first objective is to develop a general approach to shape optimal 
design of elastic structures discretized by the Finite Element Method 
(FEM). The key idea is to employ geometric modeling concepts typical of 
the Computer Aided Design (CAD) technology, in order to produce 
sensitivity analysis results. These sensitivity data can then be used 
by an optimizer to generate an improved design. 

The second goal is to implement an interactive redesign system that 
integrates optimization methods within a flexible and efficient 
computational tool, easy to use by design engineers. This interactive 
module is intended to create the missing link between FEM and CAD 
technologies and therefore it should constitute one of the key elements 
in the complex chain needed to computerize the design cycle. 

The approach followed can be summarized as follows. First the behavior 
of the structure is analyzed by using the finite element method. 
Subsequently a sensitivity analysis is performed to evaluate the first 
derivatives of the structural response quantities. These derivatives 
are used by an efficient optimizer, which selects an improved design. A 
reanalysis of the modified design is next performed after updating the 
finite element mesh. This iterative process is repeated until 
convergence to an acceptable optimum design has been achieved, which 
usually requires less than 10 FEM analyses. 

The long term objective is to create a coherent interactive system that 
makes the best possible use of the respective capabilities of the 
engineer and the computer. 
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INTRODUCTION 

The last decade has been a period of considerable extension in the role 

of computer-based structural design. This can be seen both from the 

development of Computer Aided Design (CAD) systems for mechanical 

appl ications, and from the wide acceptance of the Finite Element Method 

(FEM) as the prevailing engineering analysis tool. Unfortunately, because 

there still exists a considerable gap between the CAD and FEM technologies, 

the design cycle is not yet fully computerized. 

Much of the development of CAD systems has emphasized man-machine 

communication through interactive computer graphics and the use of data

base technology for the storage of information relevant to design. The 

realizations of CAD in Mechanics are still essentially limited to the 

production of digitalized conventional drawings and their transmission to 

other users. The design aspect itself is not largely covered, except 

perhaps in the case of elementary or specialized components. The design of 

complex mechanical systems remains highly dependent upon structural 

analysis methods. Yet these methods, either conventional or computerized, 

are not much integrated in the CAD chain, and the redesign steps following 

these analyses are usually not automated. Although today CAD systems are 

being extended to interface various analysis programs, the reverse is not 

true, and the actions of the design engineer, based on the structural 

analysis results, are usually not reflected in the CAD data base. 

The finite element method (FEM) is now the most widely accepted 

computational tool in engineering analysis. Many FEM systems, however, only 

permits analyzing a given structure, without providing any information 

about how to improve the design. Typically the analysis is performed by a 

large system of the NASTRAN type. After examining the analysis results the 

design engineer introduces what he considers are suitable changes to the 

structure in order to obtain a satisfactory design. This use of FEM 

analysis represents a rather limited application of the power of the 

computer. 

Considerable research efforts are still needed to integrate CAD and FEM 

technologies. The integration scheme that we propose to develop is based on 

the introduction of an optimization loop that would fully computerize the 
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design cycle. Indeed the ultimate purpose of any designer is to obtain an 

"optimum" design by gradually bringing suitable modifications to the 

structure. In the past, these redesign steps were mainly based upon insight 

and experience. With the recent advances in CAD and FEM technologies, more 

rational approaches have been introduced. Computer resources are now 

routinely utilized to process simultaneously the many data required to 

improve a design without violating constraints. However the design changes 

still rely on the designer skills, which are Obviously limited to very few 

modifications at each redesign step. In fact, when more than two design 

variables are considered, it becomes difficult for the human mind to guess 

appropriate new values on the basis of the analysis results. This 

dimensionality barrier can be broken by resorting to optimization 

techniques, which permits the designer to deal with problems involving many 

design variables and constraints. To this end the design goals must be 

expressed into a mathematical optimization problem. Such an optimization 

problem consists in minimizing an objective function, which represents some 

cost associated with the structural system, subject to inequality 

constraints which insure the design feasibi 1 ity. Provided that the FEM 

system is capable of generating sensitivity analysis results, furnishing 

the required gradient information, a numerical optimization method can be 

employed iteratively to select the best possible design. 

A general sensitivity analysis capability built in a FEM system and its 

CAD type pre-processor is the key to fully computerize the design cycle. 

However the few commercially available FEM systems providing a sensitivity 

analysis module can only address sizing problems (e.g. determining optimal 

thicknesses of structural components). Shape optimal design is still in a 

state where fundamental research is- needed and, therefore, it constitutes 

the driving topic in this Chapter. The integration of shape optimization 

concepts within FEM and CAD frameworks should help bridging the gap between 

these two technologies. To be successful the proposed integration of 

software should lead to a system easy to use. From a practical point of 

view, the computational tool should indeed be employed by design engineers 

possessing only a superficial knowledge of the theoretical bases of each 

technique. 

In the sequel we shall try to define what should be the foundations of 

a powerful Computer Aided Design tool in the true sense of the wording: 
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this interactive tool must assist any design engineer in creating an 

"optimal" design, i.e. a minimum cost design that satisfies many various 

requirements. Two main directions of research will be discussed. On one 

hand a true integration of CAD and FEM technologies is proposed, that is 

based on the introduction of shape optimization concepts. This part 

involves fundamental investigation of new ideas: creation of a suitable 

design-oriented structural model, generation of the corresponding finite 

element mesh, and implementation of a general sensitivity analysis 

capability. On the other hand an interactive optimization module will be 

described. Such a module, similar to conventional pre-and post processing 

FEM systems, can help the user in preparing the design model and in 

interpreting the optimization results through extensive use of graphics 

displays. Innovative visual ization features must be devised in order to 

express the characteristics of the optimum design problems in a meaningful 

way. 

DESIGN ORIENTED STRUCTURAL MODEL 

Professor Lucien Schmit, the father of modern structural optimization 

methods, has emphasized for many years the need to distinguish between the 

analysis model and the design model (see e.g. Ref. [1]). Quoting him, "it 

should be recognized that analysis modeling and design modeling involve two 

distinct but interrelated sets of judgement decisions" [2]. This sentence 

summarizes well the inherent differences between CAD (design model) and FEM 

(analysis model) systems, as well as the necessity to integrate these two 

technologies. 

Because optimal sizing problems have previously been largely covered 

(see e.g. Ref. [3,4]), this paper is focused on shape optimal design 

problems. When dealing with such problems, the design variables must be 

selected very carefully. The coordinates of the boundary nodes of the 

finite element model is a straightforward choice (a common practice in 

early work on shape optimization, e.g. Ref. [5]». This choice exhibits 

however many severe drawbacks. The set of design variables is very large 

and the cost and difficulty of the minimization process increase. It has a 

tendency to generate unrealistic designs due to the independent node 
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movement and additional constraints avoiding such designs are difficult to 

cope with. Moreover an automatic mesh generator is necessary to maintain 

the mesh integrity throughout the optimization process. One obvious remedy 

is to avoid a one-to-one correspondence between the finite element model 

and the design variables. 

One of the ways to achieve this goal is to use the "design element" 

concept. In this approach the structure is decomposed into a few 

subregions of simple geometry. These subregions are described in a compact 

way by using a 1 imited number of control nodes (or master nodes). Each 

region consists of several finite elements. During the optimization process 

the geometry of conveniently selected subregions is allowed to change: 

these regions are called design elements. The movements of the 

corresponding control nodes are the design variables. The concept was 

initially introduced in Ref.[6] where two-dimensional isoparametric finite 

element interpolation functions were used to describe the design element 

boundary. Recently blending functions commonly used in computer graphics 

for interactive generation of curves and surfaces (Bezier, B-splines) have 

been proposed to describe the boundaries [7,8]. This is also the approach 

followed in the present paper. The shape variables are thus the positions 

of the master nodes which control two families of curves, whose cartesian 

product defines the design element. 

This formulation lends itself well to shape optimal design problems. 

The blending functions provide a large flexibility for the geometric 

description. With the B-spline formulation, boundary regularity 

requirements are automatically taken into account. In addition a few design 

elements are generally sufficient to fully describe the regions that are 

modified during the optimization process. A direct benefit is that the 

optimization problem involves a reasonable number of design variables. A 

second important advantage lies in the ability to control the validity of 

the finite element mesh. Indeed it is relatively straightforward to 

generate a suitable finite element mesh and to maintain its integrity 

throughout the optimization process. The design element can be 

mathematically defined as the cartesian product of two families of curves. 

This provides an analytical interpolation scheme, which permits determining 

the coordinates of any point (finite element node) inside the design 

element or on its boundaries. A regular mesh is initially constructed in 
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the curvilinear coordinate system of the design element. Next coordinate 

transformations are applied to obtain the mesh in the real design element. 

To help fix ideas let us consider the design problem shown in Fig. 1. 

It corresponds to a quarter of a plate under a central force. The goal is 

to determine the shape of the side BC which minimizes the weight of the 

structure, with an upper bound on the displacement at node A. The geometric 

model of the quarter plate is made up of a subregion around the side BC 

with changing geometry (design element) and a subregion containing the rest 

of the structure with fixed geometry. The side BC, which represents the 

moving boundary of the design element, is described by a B-spline of order 

4 with 6 control nodes. The design element boundary in the other direction 

is represented by a B-spline of order 2 with 2 control nodes (linear). The 

design element is defined as the cartesian product of these two families of 

curves and has thus 12 control nodes. As illustrated in Fig. 1. these 

control nodes belong to one of three different categories: fixed nodes, 

moving nodes and internal nodes. 

A. FIXED CONTROL NODE 
o MOVING CONTROL NODE 

-- MOVE DI RECTION 

/ 
/ 

./ 

/ 

.A 
/ 

/ 

Fig. 1 Concept of Design Model 

/ 
/ 

p/ 

The unknowns of the problem are the positions of the 4 moving control 

nodes. These positions are determined by the distances from their 
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respective fixed reference poles. Hence these 4 distances are the design 
variables of the optimization problem. Making use of the problem symmetry 

only two independent variables remain. The only design constraint is the 

displacement of the node A in the direction of the applied load. For 

practical reasons, this constraint can be replaced by an equivalent 

constraint on either the horizontal or the vertical displacement of node A, 

which are equal because of symmetry. In addition side constraints are 

specified for the design variables, preventing unreasonable large 

displacements of the moving control nodes. This leads to the following 

optimization problem statement: 

s.t. 

min W (x"x2 ) 

uA (x, ,x2 ) " u 

structural weight 

displacement constraint 
( , ) 

side constraints 

Before calling an optimization algorithm, a sensitivity analysis must be 

performed in order to evaluate the first derivatives of the weight Wand 

the displacement u with respect to the design variables x, and x2. 

In the foregoing geometric representation the FEM mesh can be directly 

derived from the coordinates of the control nodes. This feature leads to 

the distinction between a design model and an analysis model. The design 

model is made up of the small number of design elements, whose geometry is . 
determined by the control node positions, and of the fixed subregions. By 

entering a relatively small number of design elements, it is possible to 

create a compact design model that describes well the structure to be 

optimized. The analysis model is the finite element model, characterized 

by the node coordinates of the mesh, the types and material properties of 

the elements, the applied loads and boundary conditions, etc. The analysis 

model can directly be derived from the design model at any stage of the 

iterative optimization process, because of the adopted internal parametric 

representation. This feature considerably facilitates the task of 

implementing sensitivity analysis. 
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GENERAL SENSITIVITY ANALYSIS CAPABILITY 

The purpose of sensitivity analysis is to evaluate the derivatives 

needed to solve structural optimization problems. The general strategy 

employed to get these derivatives is now well established (see e.g. [8]). 

Roughly speaking the equation solver in the FEM system must be modified to 

accommodate additional loading cases, often called pseudo-loads. The 

pseudo-loads depend upon the first derivatives of the stiffness matrix and 

consistent load vector with respect to the design variables. In the case of 

shape optimal design, the parametric modeling scheme described above 

provides an elegant way to perform the sensitivity analysis on the basis of 

finite difference techniques, following the so-called semi-analytical 

approach (see e.g. Ref. [6]). However it should be noted that an analytical 

formulation of the sensitivity derivatives can also be established [8]. 

The finite difference approach is introduced by perturbating each 

design variable by a small amount and regenerating the mesh for the 

modified structure. This first step is quite easy to accomplish, because 

the finite element mesh can be analytically derived from the geometric 

design model. Each element stiffness matrix must then be computed again as 

many times as the number of design variables. After assembling the 

regenerated element stiffness matrices, the global stiffness matrix of the 

perturbated structure is obtained. The pseudo-loads are then calculated as 

the difference between two vectors which result from the multiplication of 

the original displacement solution with respectively, the original 

assembled stiffness matrix, and the assembled stiffness matrix of the 

perturbated structure. The displacement derivatives can now be obtained by 

solving the equilibrium equations with these pseudo-loads as additional 

loading cases. The derivative of the structural weight can be approximated 

by the same finite difference technique. Finally the element stress 

derivatives are computed as follows. Using the original mesh and the 

displacement solution of the original structure, the stresses are evaluated 

at the Gauss points. This procedure can be repeated using the perturbated 

geometry and the approximated displacement solution for this modified 

structure. The first will give the exact values for the Gauss point 

stresses in the original structure, while the latter provides a good 

approximation for the values of the Gauss point stresses in the perturbated 
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structure. The foregoing developments provides thus a means to compute the 

derivatives of the structural weight, of the displacements, and of the 

stresses by finite differencing. 

The implementation of the foregoing technique is described in detail in 

Ref. [9] • It has been i ni t i ally restricted to two-dimensiona 1 e 1 ast ic 

structures in plane stress or plane strain, modeled with isoparametric 

eight-node elements. However it is important to emphasize that the same 

concepts can be employed to deal with more comp1 icated design problems 

(e.g. sol id models) or more sophisticated finite elements (e.g. three

dimensional structure involving plates and shells). In fact the finite 

difference approach presented in Ref. [9] is largely independent of the 

types of finite elements used in the analysis model, and therefore it could 

be readily implemented in any large scale general purpose FEM system. This 

is equally true for the fully analytical approach to shape sensitivity 

proposed in Ref. [8], also restricted to simple two-dimensional problems. 

However it would be an enormous task to generalize it to all the element 

types usually found in practical FEM systems. 

The integrated CAD/FEM system of the future should be able to optimize 

virtually any structural design problem, provided that an appropriate data 

base is devised with optimization concepts in mind. This data base must 

contain all the information regarding the design oriented structural model, 

with a clear subdivision of data between design variables (to be modified 

in order to improve the design), and prescribed parameters (never affected 

by the optimization procedure). The FEM system should be capable of 

generating an analysis model from the analytic design model contained in 

the data base. A quite general sensitivity analYSis capability is then easy 

to implement: a loop on the design variables permits creating a new 

analysis model for each small perturbation brought to the design model. The 

finite element matrices are computed for each perturbed model and their 

sensitivities to changes in the design variables can be approximated by a 

finite difference technique. 

Although conceptually simple, the finite difference approach reveals 

very promising because of its generality and ease of implementation. It 

should be recognized, however, that coupling geometric modeling concepts 

and finite differencing suffers from some limitations. An obvious 
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disadvantage is that the derivatives are not exact. However modern 

optimizers such as CONLIN (Section II) do not seem very sensitive to this 

potential lack of accuracy. A more serious drawback is that the method is 

computationally expensive. In the present stage of the study no special 

efforts were spent to increase the efficiency of the algorithm in this 

respect, as the primary concern was to check the validity of the approach. 

Further work is therefore planned to analyze how the CPU time is 

distributed over the different steps and to increase the computational 

efficiency. Major improvements could be gained by using advanced 

computational geometry techniques to speed up the derivation of the FEM 

mesh from the parametric design model. 

As previously mentioned analytical derivatives for the shape optimal 

design problem can also be obtained, but in a very complex way, which is 

dependent on the type of finite element used. Introducing this analytical 

method in general purpose finite element packages, containing a vast 

library of element types, would require a huge development effort. In many 

cases it is obvious that the analytical method is much more efficient than 

the finite difference technique, simply because it does not require to 

generate again new element matrices. For sizing variables, the first 

derivatives of the stiffness matrices are easy to get explicitly. For shape 

design variables the analytical approach becomes much more difficult to 

implement, however it remains more efficient. Therefore a question that 

naturally arises is why would we employ an approximate and computationally 

expensive approach whi le we know that an exact and efficient method is 

available. Finally it is important to rea 1 i ze that the effort needed to 

develop an analytical sensitivity analysis could be spread over a few 

years. A reasonable approach would be to initially implement the finite 

difference scheme, and then to gradually replace it with analytical 

derivatives, starting with simple elements and design variables, and 

pursuing with more complex situations. 

NUMERICAL OPTIMIZATION METHOD 

The CONLIN optimizer described in Section II has been adopted to solve 

the numerical optimization problem. It is a specially well suited optimizer 
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for structural optimization, based on a convex approximation scheme. The 

initial optimization problem is transformed in CONLIN into a sequence of 

explicit subproblems, which are solved in the dual space. The efficiency of 

this dual formulation is due to the fact that the dimensionality of the 

dual space is relatively low and depends on the number of active 

constraints at each design iteration. CONLIN advantages, which make it 

especially well suited to structural synthesis tasks, include: 

• it does not demand a high level of accuracy for the sensitivity 

analysis results, because it is based on conservative approximation 

concepts allowing them to be obtained from finite difference 

techniques; 

• it has an inherent tendency to produce a sequence of steadily improving 

feasible designs and usually generates the optimal design within less 

than 10 FEM analyses; 

• it has a built-in constraint relaxation capability that allows the user 

to start from any infeasible initial design, and even to find a 

solution to infeasible problems (in the form of minimal relaxation); 

• each CONLIN iteration is accomplished very rapidly, even for relatively 

large scale problems; this is an important feature within an 

interactive environment. 

To illustrate the idea of optimizing a structural shape, let us return 

to problem (1), corresponding to the quarter plate example of Fig. 1. The 

design space corresponding to the first subproblem created by CONLIN is 

displayed in Fig. 2.a. The two axes represent the design variables xl and 

x2 . In this specific case the CONLIN optimizer generates a linear 

approximation of the structural weight, while the displacement constraint 

is linearized with respect to the reciprocals of the design variables. This 

procedure yields the following explicit approximate problem: 

min 

s.t. 

W = 0.48 xl + 0.52 x2 

0.65/Xl + 0.16/X2 ~ 

0.05 ~ xl ~ 1.32 

0.03 ~ x2 ~ 1.28 

linear approximation 

reciprocal approximation (2) 

side constraints 
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Fl Restart F2 Add objective function contour F3 Mark optimum 
F4 Reset window F5 Get coordinates F6 Identify constraint 
F7 Side constraints 

Figure 2a. Optimization Problem 

FINITE ELEMENT MODEL 

F1 FE model 
(with all nodes) 

F2 FE model 
(wi th ctr nodes) 

F3 FE model 
(elements only) 

F4 FE Editor 

F5 Return 

Figure 2b. Improved Shape 
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Hence the contours of the weight objective function are parallel 

straight lines while the constraint surface is drawn as a curve. Clearly 

the optimum lies at the point where this curve is tangent to a constant 

* * weight line (xl = 0.99 and x2 = 0.47). This optimum point corresponds to 

a new design of the structure, i.e., the positions of the control points 

have been changed by the optimizer, leading to an improved shape of the 

side BC (see Fig. 2.b). From the modified design model, the finite element 

mesh is updated, the structure is reanalyzed, and the optimizer called 

again in order to still improve the design. This process is repeated until 

convergence is achieved to an optimal shape. The iteration history of the 

optimization process is summarized in Fig. 2.c. One can observe the quick 

convergence of the CONLIN optimizer. 

INTERACTIVE DESIGN OPTIMIZATION MODULE 

This Section deals with a general system for computer aided optimal 

design. Such a system should be distributed over various types of machines: 

main frame for FEM and design sensitivity analyses; engineering workstation 

for interactive optimization; PC for small problems arising in the 

prel iminary design phase. The finite element analysis of a structure, as 

well as the associated sensitivity analysis, are time consuming tasks, 

which should be typically performed during the night in batch mode on a 

powerful computer. The tas~ of redesigning on the basis of these results is 

typically an interactive job performed during the day on a graphics 

workstation. The designer has then the choice to accept the new design and 

send it back to the finite element optimization code for a new iteration, 

or to intervene in the optimization process and make some data adjustments. 

For example it is sometimes desirable to modify the design model, or to 

introduce additional geometric constraints such as tangency requirements. 

It is also quite interesting to examine intermediate analysis results and 

stop or correct the optimization procedure. Note however that performing 

several successive iterations should still be permitted, in order, for 

instance, to conclude an optimization process. 

This scheme requires thus an interactive engineering design system, 

capable of displaying all the relevant information concerning the modified 
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design. This interactive system can be viewed as a post-processing module, 

called when the design optimization process has been interrupted after a 

finite element analysis is completed (including the sensitivity analysis). 

The system should also contain pre-processing capabilities to allow the 

user to define the design and analysis data, and then to make adjustments 

as the optimization process continues. The optimizer should be contained 

both in the structural analysis module (for fully automatic redesign), and 

in its pre- and post-processing module (for interactive optimization). It 

is important to realize that a typical structural optimization job requires 

between 5 and 10 iterations. The 2 or 3 first iterations should be 

accomplished one by one, in a semi-interactive mode. In this way the 

designer can verify the results produced by the optimizer before starting a 

new finite element analysis. He has the opportunity to take some corrective 

actions (e.g. introduction of additional constraints) and to tune some 

control parameters (e.g. truncation factors related to constraint 

deletion) . After these few interactive runs and restarts, the design 

problem is usually well posed and the automatic iterative mode can be 

switched on. This leads to a splitting of the tasks corresponding to the 

flow chart in Fig. 3. 

BATCH JOBS INTERACTIVE JOBS 

Extended 
F.E.M. Pre- and Post-

OPTIMIZER --
I 

Processor 
I (with OPTIMIZER) 

I I ___ L __ J 

2 

1 Conventional Optimization Loop 
2 Interactive Optimization Loop 

Fig. 3 Interactive Optimization System 

r---i C.A.D·I 
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As reliable optimization algorithms, such as CONLIN, are now available 

to solve shape optimal design problems, substantial development efforts 

must be devoted to implementing an appropriate user interface. The ultimate 

goal is to devise suitable tools for a designer to effectively incorporate 

optimization concepts into the real design cycle. Indeed an important 

aspect of finite element analysis and optimization capabilities should be 

their ability to really help the user in accelerating the design process. 

The interactive engineering design system of the future should be able to 

produce extensive graphical outputs, displaying in an expressive way 

meaningful results. These graphics display capabilities should be organized 

to be easy to use interactively. Industrial applications namely reveal that 

it is not generally possible to optimize a structure in one single computer 

job. Frequently it is necessary to improve the structural model, to modify 

the set of retained behavior constraints (because some constraints, 

initially not critical, become critical), or to relax some constraints if 

their maximum values are too severe and no feasible solution can be found. 

At the present stage of the development efforts, the computer program 

largely functions as a post-processor. Is is envisaged that the pre

processing functions will be implemented in the near future. The system 

contains most of the conventional graphics displays usually found in pre

and post-processing programs: representation of finite element mesh, 

applied loads and boundary conditions; undeformed and deformed geometry 

plots; color-coding of elements based on specific stress components. In 

addition innovative graphics capabi 1 ities were implemented in connection 

with the new optimization concepts. The optimizer results can be 

immediately verified with the design model plot or analysis model plot of 

the modified geometry. The module can also produce evolution plots, 

representing the values of the objective function, design variables and 

constraints in terms of the number of iterations. Visualization of slices 

in the design space is possible: the user selects two significant design 

variables and the program plots the corresponding 2-D design space 

(contours of objective function, constraint surfaces defining the feasible 

domain, location of optimum design, etc •.. ). These graphics displays are 

made on the basis of the convex linearization scheme, which constitutes an 

excellent explicit approximation. 

The CONLIN optimizer can be supplied with the sensitivity data, and 

then called from the interactive optimization module. Note that this 
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feature could be implemented because the CONLIN method is very fast, and it 

is simple enough to lead to a relatively small, well organized computer 

code. The foregoing functions allow the user to see the new shape generated 

after each iteration and they represent therefore a very valuable tool to 

verify the validity of the results produced by the optimizer. In addition, 

the user can interact with the system, by modifying the positions of some 

control nodes and examining the effect on the design model, as well as on 

the analysis model. This is exactly the way the batch program calculates 

the sensitivities through a finite difference scheme. It is also possible 

to produce simultaneously a plot of the design model and a plot of the 

design subspace. The user selects on the design model the design variables 

to form the design subspace. He has the opportunity of highlighting a 

behavior constraint both in the design model plot and in the design space 

plot. He can have the lower and upper limits on the design variables 

displayed both in the two plots. 

APPLICATION: Optimization of a Hole in a Biaxial Stress Field 

The foregoing optimization concepts have been implemented in a finite 

element system made up of two parts. The first module is used in batch mode 

to perform the structural analysis and its associated sensitivity analysis. 

The second one is an interactive optimum design system that uses the 

sensitivity coefficients produced by the first. This interactive module 

contains innovative graphics display capabilities that should considerably 

facilitate the task of a designer willing to optimize a structural shape. 

The purpose of this section it to demonstrate the effectiveness of the 

concepts presented in this paper". As previously mentioned these concepts 

are quite general and could be readily introduced into any large scale FEM 

system for the analysis and sensitivity analysis, and its CAD-type 

preprocessor for the creation of the geometric design model. However the 

current implementation is restricted to two-dimensional structures in plane 

stress or plane strain modeled with isoparametric eight-node elements. The 

example given below is not meant to represent a practical application. 

Rather it has been devised to illustrate the various functions of our 

interactive shape optimization system. 

The second illustrative problem is concerned with the minimization of 

stress concentrations in a structural component. This example has been used 
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as key test-case to evaluate the CONLIN optimizer when supplied with finite 

difference gradients, because an analytical solution is available. The 

plate with hole displayed in Fig. 4.a is loaded with a combined tension in 

two perpendicular directions. For this initial configuration, stress 

concentrations will occur at the boundary of the hole. The problem is to 

determine the shape of the hole for which the tangential stresses around 

the hole are uniform. It can be proven that the shape of the hole with this 

property is elliptic, with the ratio of the axes being equal to the ratio 

of the applied tensile stresses [11]. The problem can be formulated under 

the following equivalent form: minimize the weight of the plate while 

constraining the maximum value of the tangential stress. Since the 

tangential stress is not available in the current version of the program, 

the Von Mises stress was used instead. It is believed that the Von Mises 

stress around the hole is close in value to the tangential stress since the 

radial stress is zero on a free boundary. 

What follows is a description of how one would solve this problem 

using an interactive engineering design system, such as the one described 

in this paper. The first step which is required is the model description, 

using the design element concept. Since only the shape of the hole is to be 

changed, an adequate representation of the structure is to use one design 

element around the hole with one changing border, and one subregion 

containing the rest of the plate with fixed geometry. As the design 

elements are defined by their boundary curves, it is now up to the user to 

specify which type of curves he wants to employ and to locate the governing 

points. In this example the design element boundaries are 2 periodic B

splines of order 13 defined by 16 poles. So there are totally 32 control 

nodes, the 16 determining the inner contour are moving and the 16 poles 

shaping the outer contour are fixed. The design model as displayed by the 

program is shown in Fig. 4.b. This model description leads to a shape 

optimization problem, with the 16 distances between the moving control 

nodes and their respective fixed reference poles as design variables. 

Employing the double symmetry of the problem, this number can be reduced to 

only 5 design variables. The design model display of Fig. 4.b allows a 

clear visualization of these design variables as well as their associated 

side constraints. 

The next step is to generate the analysis model from the design model 

description. As explained before, a mesh of isoparametric quadrilateral 
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elements can be generated automatically inside each design element; the 

mesh inside the fixed subregion must be defined by the user. The 

interactive design system can display the mesh, as well as other basic 

information such as numbering, loads, support points, control nodes (Fig. 

4.c). The user can then anticipate what will be done during the sensitivity 

analysiS, by moving those control nodes which are design variables and 

examine the effect on the finite element model, that is the mesh 

deformation (see Fig. 4.d). The design constraints can be specified in 

terms of the analysiS model. Using the mesh symmetry, the Von Mises stress 

in 12 of the 24 elements bordering the hole is constrained. Note that the 

mesh is not double symmetric, the reason being that in the case of periodic 

B-spl ines there is no simple way to impose the coordinates of the point 

corresponding to the initial value of the parameter describing the curve. 

At this point the user is ready to submit the created data to the 

finite element optimization code for the finite element analysis and the 

sensitivity analysis of the initial design (one iteration). Upon completion 

of this job, the analysis results (displacements and stresses) can be 

visual ized by the interactive system. From the Von Mises plot (Fig. 5.a) 

one can observe the important stress concentration associated with the 

i ni t i a 1 design. Si nce the imposed stress 1 i mit (260 N/mm2) is 1 arge ly 

exceeded, the initial design is seriously infeasible. 

Using the interactive shape optimization capabi 1 ity of the system, 

supplied with the calculated sensitivity results, the new shape can be 

computed and immediately verified with the design model plot and the 

analysis model plot.This is a critical point in the optimization procedure. 

If the modified shape is acceptable, the optimization process should be 

continued and the new analysis model can be submitted to the 

FEM-sensitivity program for another iteration. If the new shape is 

undesirable, the user can intervene through the system in the optimization 

by modifying constraints or parameters associated with the CONLIN 

optimizer. In particular, for this case, since it was seen that the initial 

design is seriously infeasible, no useful solution for the optimization was 

found unless the relaxation capability of CONLIN was activated. This 

requires the user to add acceptable increments to the constraint bounds, 

and so, to act on the CONLIN results. 



www.manaraa.com

854 

SHAPE OPTIMIZATION 

F1 Optimize 

F2 Return to initial 
geometry 

F3 Evolution plots 
",/ "-

F4 Initial + optimal ( '\ 

shape "-
"- ./ 

F5 Return 

Figure 6a. Initial and Final Shapes 

F1 Restart 

F2 Add objective 
function contour 

F3 Mark optimum 

F4 Reset window 

F5 Get coordinates 

Figure 6c. Design Space 



www.manaraa.com

F1 OBJECTIVE FUNCTION 

F2 DESIGNVARIABLE 

F3 CONSTRAINTS 

F4 RETURN 

F1 OBJECTIVE FUNCTION 

F2 DESIGNVARIABLE 

F3 CONSTRAINTS 

F4 RETURN 

855 

Weight 

13.10 

12.92 

12. BO +----<f----+---+--+---+--+----+-----

o 2 3 4 5 6 7 

Iteration no. 

Designvariable 5 

547.9 

438.3 

328.7 

219.1 

109.6 

07 .9 

0 2 3 4 5 6 7 
Iteration no. 

Figure 6b. Iteration History (CONLIN) 



www.manaraa.com

856 

For this example with relaxation applied during the first optimization 

stage, the new shape is acceptable and additional iterations could be done. 

At each iteration, simi lar interactive handl ing can be done, though the 

user is mostly concerned with the display of the successive shapes. As the 

number of iterations increased, it became interesting to view the progress 

of the optimization process with the evolution plots of the objective 

function, design variables and constraints. After 7 iterations it was 

decided to stop the optimization process since satisfactory convergence was 

obtained to the optimal ell iptic shape with axis ratio 0.5 . As shown in 

Fig. 6.a, the user can have both the initial and the optimal shape 

displayed simultaneously to assess the boundary changes. The stress plot 

(Fig. 5.b) reveals the constancy of the Von Mises stresses at the edge of 

this optimized hole: the constant stress lines run nearly parallel to the 

edge of the hole. 

The user can ask for a graphical representation of the iteration 

history of all quantities of interest with the evolution plots. Fig. S.b 

shows respectively the weight and design variable 5 in terms of the number 

of iterations; the user can assure himself of proper convergence with this 

graphical capability. From the weight evolution plot it can be seen that 

only at the first iteration relaxation had to be applied: it resulted in a 

feasible design, as are all the subsequent designs. This can be verified in 

the design space plot corresponding to the final design (Fig. 6.c), which 

shows a non-empty feasible region. 

CONCLUDING REMARKS 

The new concepts outl ined above have proven to yield computationally 

efficient numerical methods, and therefore it is reasonable to expect their 

practical implementation into commercially avai lable programs within the 

next decade. Nevertheless the research accompl ished to date is 

encouraging. It demonstrates that the design cycle can be effectively 

computerized by implementing optimization capabilities into an interactive 

post-processor of the FEM analysis. As previously mentioned the proposed 

approach is quite general and it could be readily introduced into a large 

scale FEM system for the analysis and sensitivity analysis, and its pre-
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and post-processing module for the creation of the geometric design model. 

However, in order to achieve this goal, several important topics related to 

Computer Aided Optimal Design need to be examined: accuracy of the 

sensitivity analysis; interactive optimization and innovative use of 

computer graphics; control of validity of analysis model; and generality of 

design model. 

The two-dimensional pre-and post processor module described in Ref. 

[10], represents a first step to implement shape optimization concepts into 

the real design cycle. It is the interactive component in the logical 

division of the optimization task between a finite element optimization 

code, producing the analysis results in batch mode (including 

sensitivities), and an interactive design system, helping the designer to 

control the optimization process. At the present stage of the development 

effort the interactive module is mainly functioning as a post-processor. It 

is capable of interactive shape optimization by calling the CONLIN 

optimizer, and it exhibits some innovative visualization techniques that 

seem to constitute appropriate tools to facilitate the task of the 

designer. Future work should be directed toward the development of a pre

processing module, allowing for an efficient and user-friendly introduction 

of the analysis and design optimization data. Additional study should also 

be accomplished to devise a well organized data base for storing all the 

information involved in the shape optimization process. It is envisioned 

that a gradual extension of the module will be accomplished as new analysis 

and optimization capabilities become available. The ultimate goal is to 

provide the user with many visualization features for rapidly introducing 

input data and interpreting results related to complex three-dimensional 

structures. 

Although conceptually simple, the finite difference approach presented 

in this paper reveals very promising because of its generality and ease of 

implementation. Analytical derivatives for the shape optimal design 

problem can also be obtained, but in a very complex way, which is dependent 

on the type of finite element used. Introducing this analytical method in 

general purpose finite element packages, containing a vast library of 

element types, would require a huge development effort. The finite 

difference approach is on the contrary highly general, in that the scheme 

is valid for any type of element, and can be implemented relatively easily. 
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In summary, then, although further research is still needed to fully 

automate the design process, Computer Aided Optimal Design is close to 

become a reality. 
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COMPUTER AIDED OPTIMAL DESIGN OF ELASTIC STRUCTURES 

Part II 

Convex Approximation Strategies in Structural Synthesis 

Abstract In this Section innovative numerical methods relevant to 
Computer Aided Optimal Design are reviewed, with special emphasis 
on shape optimal design of elastic structures discretized in 
finite elements. After a short description of the approach 
followed to create an appropriate geometric model, involving a 
relatively small number of design variables, attention is mainly 
directed toward the selection of an adequate optimization 
algorithm. To this aim the paper will briefly present the various 
attempts that we have successively undertaken before adopting the 
convex linearization method as the basic optimizer, not only for 
shape optimal design problems, but also for all our other 
structural synthesis capabilities. 

INTRODUCTION 

The main goal of this Section is to discuss various optimization 

algorithms that have proven to be general and efficient to deal with 

structural synthesis problems. Attention wi 11 mainly be focused on shape 

optimal design, because an abundant literature is available for the case of 

structural sizing problems (including a Book collecting the Lectures 

presented at a previous NATO Advanced Study Institute) [1]. It should 

however be clearly recognized that the optimization strategies proposed in 

this paper are quite general, and they are thus appl icable as well to 

optimal sizing problems. 

The approach followed to describe the structural geometry is now well 

estab 1 i shed and it can be summar i zed as fo 11 ows (see Sect i on I for more 

detai ls). The method is based upon an internal parametric representation 

typical of modern techniques employed in computer aided geometric design. 

The structure is decomposed into a few subregions of simple geometry. 

These subregions are described in a compact way by using a relatively small 

number of control nodes (also named master nodes). During the optimization 

process the geometry of conveniently selected subregions is allowed to 

change: these regions are called design elements. The movements of the 

corresponding control nodes are the design variables. The design element 
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boundaries are described by blending functions commonly used in Computer 
Graphics technology for interactive generation of curves (Bezier, B

splines) and surfaces (Coons patches). Such an internal parametric 

representation permits determining the coordinates of any point inside the 

design element or on its boundaries. This formulation lends itself well to 

shape optimal design problems. Only a few design elements are generally 

sufficient to fully describe the regions that are modified during the 

optimization process. In addition it is relatively straightforward to 

generate a suitable finite element mesh and to maintain its integrity 

throughout the optimization process. Finally, as explained in Section I, 

the sensitivity analysis may be formulated either in a fully analytical way 

or through finite differences at the element level. 

Being capable of properly defining a design model, we can now envision 

efficient techniques to improve the characteristics of the structure by 

modifying its shape in an optimal way. Most often such a shape optimal 

design problem consists of minimizing some objective function subject to 

constraints insuring the feasibility of the structural design. 

Mathematically the numerical optimization problem considered in this paper 

can be written in the following general form: 

minimize f(x) 

subject to the constraints: 

c.(x) ~ 0 
J 

j=1,m 

i=1,n 

(1 ) 

(2) 

(3) 

The objective function (1) is a nonlinear function of the design 

variables xi. It usually represents a structural characteristic to be 

minimized (e.g. the weight). The nonlinear inequalities (2) are the 

behavior constraints that impose limitations on structural response 

quantities (e.g. upper bounds on stresses and displacements under static 

loading cases). The design variables must also be bounded by the side 

constraints (3), where !i and xi are lower and upper limits that reflect 

manufacturing or analysis validity considerations. It should be noted that 

the side constraints (3) constitute a particular case of the more general 

constraints (2). However they are written separately in our optimization 
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problem statement. because the dual method approach described later can 

handle them more efficiently when considered apart from the behavior 

constraints. 

The nonlinear programming problem (1-3) can be solved iteratively by 

using numerical optimization techniques. Each iteration begins with a 

complete analysis of the system behavior in order to evaluate the objective 

function and constraint values along with their sensitivities to changes in 

the design variables (i .e. first derivatives). Most often the analysis 

capability is based on finite element discretization. A design iteration 

is concluded by employing the results of these behavioral and sensitivity 

analyses in a minimization algorithm which searches the n-dimensional 

design space for a new primal point that decreases the objective function 

value whi le remaining feasible (i .e. satisfying the constraints). Many 

such iterations are usually required before achieving the optimum design. 

This observation brings us to the essential difficulty in solving the 

nonlinear programming problem (1-3). which lies in the implicit character 

of the constraint functions c.(x). In other words these functions are not 
J 

expl icitly known in terms of the design variables. For each new design. 

they can only be evaluated numerically through a finite element analysis. 

The iterative nature of the optimization process implies that many 

structural reanalyses must usually be accomplished before finding an 

acceptable solution. Those repeated finite element analyses can lead to a 

prohibitive computational cost when dealing with large scale problems. 

One widely used approach to shape optimal design problems is to join 

together by brute force. a general purpose optimizer and a finite element 

package having the required sensitivity analysis capabilities. During the 

initial development phase of our research efforts. this straightforward. 

though not highly efficient approach. was in fact the only possible choice. 

So. in a first step. direct nonlinear programming methods were compared to 

conventional linearization techniques using the Simplex algorithm. The 

numerical experiments conducted for that purpose have demonstrated, as it 

could be expected. that direct approaches like gradient projection or 

feasible direction methods are inadequate for shape optimization problems 

in view of the large number of iterations required for convergence. On the 

other hand recursive linear programming techniques, even though they 

necessitate difficult adjustments of move limits. prove to be 
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computationally efficient. It was therefore decided to pursue the idea of 

sequential linearization, and to improve it by implementing more suitable 

approximation concepts similar to those used for sizing problems. The basic 

approach consists in replacing the primary optimization problem with a 

sequence of explicit approximate subproblems having a simple algebraic 

structure. Each subproblem is generated through Taylor series expansion of 

the objective function and constraints in terms of intermediate 

linearization variables. It was found that the efficiency of this approach 

is very sensitive to the mode of expansion employed for bui lding the 

approximate subproblems: (1) first or second order expansion of the 

objective function in terms of the design variables; (2) first order 

expansion (i .e. linearization) of the constraints in terms of the design 

variables or their reciprocals. 

Linearization of the constraints with respect to reciprocal variables 

is a well recognized technique to solve optimal sizing problems. Although 

this linearization scheme cannot be physically justified for optimum shape 

problems, surprisingly, it leads to remarkably good results. It seems, 

therefore, that reciprocal variables provide a miraculous tool to solve 

structural synthesis problems. To some extent, a mathematical justification 

can be found in a new and rather general optimization method, called the 

convex linearization method (CONLIN). The key idea in the CONLIN algorithm 

is to perform the 1 inearization process with respect to mixed variables, 

either direct or reciprocal, independently for each function involved in 

the optimization problem. A convex, separable subproblem is therefore 

generated, that can be efficiently solved by a dual method formulation. 

Because it uses conservative approximations CONLIN has an inherent tendency 

to generate a sequence of steadily improving feasible designs. 

Various examples of applications to optimum shape problems are offered 

in Section III to demonstrate the efficiency of this new algorithm. 

However, in order to give some flavor of its power, let us consider the 

widely used "plate with hole" example shown in Fig. 1. A complete 

description of the problem was given in Section I. The iteration history 

data provided by a general purpose optimizer (based on feasible directions) 

are compared to the results generated by the new CONLIN optimizer. It can 

be seen that, when using the "black box" approach, convergence is not yet 

achieved after 20 iterations. Moreover it should be noted that each 
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iteration involves several structural analyses in order to determine a 

suitable step length along the selected feasible direction (line search 

process) . Although this 1 ine search is implemented in a very efficient 

way, 53 structural reanalyses are needed to accomplish the 20 iterations 

shown in Fig. 1. The corresponding computational time is larger than 7 

hours CPU on a VAX 11/780. On the other hand, when the convex linearization 

method is employed, only four structural analyses are sufficient to get an 

optimal design. Note that the theoretical ell ipse is recovered by the 

numerical optimization algorithm. 

VOLUME 
7.5 

7.0 

6.5 

a 

CONLIN 

5 10 15 

NUMBER OF ITERATIONS (CONMIN) 

NUMBER OF ANALYSES (CONLIN) 

Fig. 1 Iteration History 

APPROXIMATION CONCEPTS IN SHAPE OPTIMAL DESIGN 

20 

The approximation concepts approach to structural synthesis is now 

widely employed to solve optimal sizing problems [2]. Such problems consist 

in minimizing the weight of thin-walled structures modeled by bar and 

membrane elements. Because the geometry is fixed, the design variables 

reduce to the transverse sizes of the structural members (i.e. bar cross

sections and membrane thicknesses). This approach consists basically of the 

following steps: 

• a finite element analysis is performed for the initial trial design; 
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• from the results of the current structural analysis, an approximate 

optimization problem is generated; this step implies that sensitivity 

analysis capabilities be available in the finite element code; the 

approximate subproblem is created by linearizing the behavior con

straints in terms of the reciprocals of the design variables while the 

objective function keeps its exact linear form in terms of the direct 

sizing variables; 

• because the subproblem is fully explicit, convex and separable, it can 

be efficiently solved by resorting to its dual formulation (when 

expressed in the reciprocal design variables, the objective function is 

strictly convex and the linearized constraints are linear); 

• the solution of the approximate subproblem is adopted as a new starting 

point in the design space and the optimization process is continued 

until convergence is achieved. 

From extensive numerical experiments it can be argued that the 

approximation concepts approach converges to an optimum design in usually 

less than ten iterations (i.e. finite element analyses). These remarkable 

convergence properties are generally attributed to the fact that the 

behavior constraints have a tendency to be much less nonlinear in the space 

of the reciprocal variables. The convex linearization method described 

later in this paper permits providing a more rigorous explanation. 

When dealing with shape optimal design problems, the foregoing 

considerations on the intuitive choice of reciprocal variables or other 

intermediate linearization variables are no longer valid. There is indeed 

no reason why the constraints should be more shallow with respect to the 

reciprocals of nodal coordinates. Furthermore, a 1 though the structural 

weight keeps a simple explicit form, it is no longer a linear function of 

the shape design variables. For those reasons various approximation 

schemes have been successively experimented: 

• first order expansion (i.e. linearization) of the objective function 

and constraint functions with respect to the direct variables; 

• second order expansion of the objective function and linearization of 

the constraint functions with respect to the direct variables; 
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• second order expansion of the objective function with respect to the 

direct variables and linearization of the constraint functions with 

respect to the reciprocal variables; 

• linearization of the objective function with respect to the direct 

variables and linearization of the constraint functions with respect to 

the reciprocal variables. 

The numerical experiments reported in Ref. [3] show that the 

convergence properties of the optimization process mainly depend upon the 

quality of the constraint approximation. When the constraint approximation 

is too rough, divergence or osci llation frequently occur. It can also 

happen that the solution of an approximate problem becomes non feasible. In 

such a case many subsequent iterations are usually required in order to 

recover a feasible design. Because it has been found that no major benefit 

can be gained from using a second order expansion of the objective 

function, this paper will only consider the first and the last modes of 

approximation listed above. 

The sequential 1 inear programming approach proceeds by replacing the 

primary nonlinear problem (1-3) with a sequence of linear subproblems. Each 

subproblem is generated by linearizing the objective function and the 

constraint functions with respect to the shape design variables Xi: 

f(X) 

~ .(x) 
J 

= (4) 

(5) 

where xO denotes the current design point, that is, the point in the design 

space where the objective function and the constraints are linearized. The 

resulting approximate problem can be written in the following compact way: 

minimize L f .x. 
1 1 

subject to L d .. x. ~ d. (6) 
lJ 1 J 

x. ~ x. ~ x. -, 1 , 
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where fi's represent the first derivatives of the objective function (i.e. 

the components of Vf(XO), and the d .. 's denote the first derivatives of 
, J ° 

the constraint functions [i.e. the components of Vc.(x )]. The upper 
J 

bounds a. collect the constant terms in the linearized constraints. 
J 

Because this expl icit problem is a 1 inear programming problem, it can 

be efficiently solved by using the Simplex algorithm. It is well known that 

the optimal solution point corresponding to each linear subproblem 

necessarily lies at a vertex of the design space. As a result the overall 

optimization process may either converge to a non optimal solution of the 

pr i mary prob 1 em, or it may osc ill ate i ndef in i te 1 y between two or more 

vertices. In order to avoid this undesirable behavior, the so-called 

"move-limits" strategy can be implemented. It consists of adding 

temporarily some artificial side constraints to the linearized problem, so 

that the design point will not move too far away from the current 

° linearization point x. It is however very difficult, even for an 

experienced user, to define adequate rules for setting the move limits, and 

the way they should be updated after each iteration. Therefore, even though 

some meaningful results have been obtained in the case of simple problems 

through the use of sequential linear programming [4], this approach has not 

been retained in the subsequent developments of our research efforts. 

It has now become almost certain that the best approaches to optimal 

sizing problems are those which make use of constraint linearization with 

respect to the reciprocal design variables [2]. There is a intuitive 

explanation for the success of these methods, in that stresses and 

displacements are exact linear functions of the reciprocal sizing variables 

in the case of a statically determinate structure. unfortunately, for shape 

optimal design problems, there is no such physical guideline for the 

selection of intermediate 1 inearization variables. Nevertheless, as 

explained in this Section, this change of variables continues to have a 

very beneficial effect on the convergence properties of the shape 

optimization process. 

The approach now considered consists of keeping the linear 

approximation (4) of the weight objective function in terms of the original 
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design variables, while linearizing the behavior constraints with respect 

to the reciprocals of the design variables: 

The approximate behavior constraints take on the following form: 

c . (z) 
J 

(7 ) 

where zO denotes the current design point in the space of the reciprocal 

variables. This technique generates at each iteration an approximate 

problem of the following form: 

minimize L f.x. 
1 1 

subject to L c . .Ix. ~ c. (8) 
i lJ 1 J 

x. ~ x. ~ X. 
-1 1 1 

where the c .. coefficients denote the first derivatives of the constraint 
lJ 

functions with respect to the reciprocal variables [i.e., the components of 
o Vc.(x )]. Note that: 

J 

(9) 

This explicit subproblem is therefore generated from the primary 

problem (1-3) by 1 inearizing the objective function with respect to the 

direct variables xi' and by linearizing the behavior constraints with 

respect to the reciprocal variables zi' 

When restated in terms of the reciprocal variables zi' the problem 

involves only linear constraints, and therefore it can be solved by using a 

gradient projection algorithm. All the numerical experiments conducted with 

this strategy tend to exhibit convergence properties similar to those 

previously obtained for optimal sizing problems: less than ten finite 

element analyses are usually sufficient to achieve stable convergence of 

the optimization process without having to resort to artificial move 

limits. 
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It can be recognized that the explicit problem (8) is convex and 

separable, and therefore it lends itself well to solution by a dual method 

approach. In fact this problem has exactly the same expl icit form as the 

subprob 1 em used in the approx i mat i on concepts approach to opt i rna 1 s i zing 

problems. It becomes thus possible to resort to the previously developed 

DUAL1 or DUAL2 optimizers, that have proven to be remarkably efficient [2]. 

The dual method approach, initially introduced in Ref. [5]. has lead 

to a reconci 1 iation of optimal ity criteria techniques and mathematical 

programming methods [6]. Let us here summarize the principles of the dual 

formulation. The solution of the primal problem (8) can be obtained by the 

following "Min-Max" two-phase procedure: 

maximize 

subject to 

1 (.\) 

.\. ~ 0 
J 

where the dual function 1(.\) results from minimizing the Lagrangian over 

the acceptable primal variables: 

1(.\) min 
~i~xi~xi 

(If.x. + I.\.(Ic . .Ix. - c.)) 
ill j J i lJ 1 J 

( 10) 

The separability of the primal problem implies that the minimum of the 

sum on the n individual functions can be expressed as the sum of the 

minimum of the n functions. On the other hand the convexity of the problem 

makes sure that each single-variable minimization problem 

min L.(X.) = f.x. + (I c .. .\.)/x. 
" , 1 J 1J J 1 

( 11 ) 

has a unique solution: 
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if r c .. A. , f.x. 2 x. = x. , -, 
j 'J J ,-, 

if r CijAj ~ fiXi 
2 x. = xi , 

j 

x. = [(r CijAj)/fi]~ otherwise (12) , 
J 

The last relationship is identical to the energy expression used in 

"optimality criteria" approaches to structural synthesis (see e.g. Ref. 

[11,12]). We shall come back with more details on the dual problem later 

in this paper. 

Additional Linear Constraints 

For various reasons the design variables may also be subjected to 

strictly linear constraints of the form (6). Such requirements often 

reflect manufacturing or "rule of thumb" considerations, such as a linear 

progressivity rule for the thicknesses of contiguous structural members in 

a sizing problem (e.g. increase in the number of layers in a laminated 

composite plate). In shape optimal design problems they may represent 

geometric considerations such as the imposition of tangential continuity 

along a moving boundary. It can also happen that the user wishes to 

1 inearize some of the behavior constraints with respect to the direct 

variables xi' rather than with respect to the reciprocal variables zi. 

When introducing such linear constraints, the explicit subproblem takes on 

a more general form, which can be viewed as a mix of the approximate 

problems (6) and (8): 

minimize L f.x. , , 

subject to 

(13) 

This problem can no longer be directly solved by using a primal 

projection method. Formulated either in terms of the direct variables xi or 

in terms of the reciprocal variables zi' it always involves nonlinear 
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constraints. A possible strategy would be to restate the explicit 

constraints (13) in terms of the reciprocal variables, and to linearize 

them just as the behavior constraints (2). The resulting subproblem then 

keeps the same form as in the original approximation concepts approach (see 

Eq. 8), and it is thus amenable to solution by gradient projection or by 

dual algorithms. However it would be unfortunate, if not ridiculous, to 

treat approximately the only constraints that have a simple explicit form 

in the problem statement. 

Simultaneously with our research efforts in shape optimal design, we 

were faced with another project aimed at improving the dual method approach 

to solve difficult optimal sizing problems that precisely involved many 

linear constraints of the form (13). The purpose was to handle these linear 

con-straints in an exact manner. The initial research effort has been 

focused on exploiting again the separable nature of the explicit subproblem 

to be solved, and to resort to a specially devised dual method approach. 

Unfortunately, as shown in Ref. [9], this research was not successful. 

Because the required convexity properties are not satisfied, the dual 

problem happens to be non differentiable, and therefore difficult to solve 

by conventional maximization algorithms. 

With the addition of the linear constraints (13) the Lagrangian problem 

appearing in Eq. (10) becomes: 

minimize 

~i~xi~Xi 

0:: f.x. + }) •. 0:: c . .Ix. 
1 1 . J . lJ 1 

J 1 

Cj } + I Aj(I dijxi - aj }} 
j i 

Because this problem is still separable, it can again be replaced with 

n one-dimensional minimization problems of the form: 

min L.(x.) = a.x. + b./x. 
1 1 1 1 1 1 

(14 ) 

s.t. ~i ~ xi ' xi 
where the coefficients 

a. = I d .. A. + f. 
1 j lJ J 1 

and 
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depend only upon the dual variables A .. 
J 

It is important to point out that nothing is known regarding the sign 

of the coefficients a i and bi (they may be positive or negative, because 

the constraint derivatives c .. and d .. are arbitrary). As a result various 
lJ lJ 

situations emerge when solving the Lagrangian problem. 

Case 1: a. > 0 and b. > 0 
1 1 

The problem solution is obtained by stating that the first derivative of 

Li(x i ) must vanish (the second derivative is positive since bi > 0). 

Because the side constraints must be satisfied, it comes: 

~ if 2 
~ 

/ _ 2 x. = (b/a i ) x. bi ai~ xi 1 -1 
(15 ) 

if b/a i ~ 
2 x. = x. x. 

1 -1 -1 
(16 ) 

x. if b/a i ~ 
_ 2 

x. = x. 
1 1 1 

(17) 

Case 2: a i > 0 and bi ~ 0 

Since Li (xi) > 0 for all values of xi' Li (xi) is monotonically increasing, 

so that the solution of the minimization problem lies at: 

Case 3: a i < 0 and bi ~ 0 

Now L~ (xi) < 0 for a 11 va 1 ues of x .. 
1 

decreasing, and the minimum occurs at: 

x. = x. 
1 1 

The function Li (xi) is concave and it has a maximum at 

is monotonically 



www.manaraa.com

873 

Therefore the minimum is obtained by comparing the values Li(~i) and 

Li(xi ): 

x. = x. if Li (~i) < Li (xi) (18 ) , -, 

x. = x. if Li (~i) > L. (x.) ( 19) , , , , 

x. = x. or x. if Li (~i) = L. (x.) (20) , -, , , , 

This latter case introduces a major difficulty: equation (20) 

demonstrates that the dual function is likely to be ill-conditioned. The 

dual problem, in fact, happens to be non-differentiable. Indeed, let us 

assume that at some particular dual point, xi = ~i because condition (18) 
is just satisfied: 

where € is a small positive number. By slightly perturbating the dual 

variables the coefficients a i and bi will be modified, and so, the solution 

of the minimum problem (14) might jump suddenly to x. = x., because , , 
condition (19) is now satisfied. Such a jump causes discontinuities in the 

first derivatives of the dual function, which are given by the primal 

constraint values. As shown in Ref. [9], these discontinuities occur along 

hyperplanes in the dual space given by 

r c .. A. = x.x. ( f. + rd .. A . ) 
J ' J J -" , j , J J 

For a given primal variable Xi' this hyperplane subdivides the dual space 

into a region where x. = x. and another region where x. = x .. When , -, , , 
crossing this plane, the first derivatives of the dual function are 

obviously discontinuous. 

THE CONVEX LINEARIZATION METHOD 

So the research reported in Ref. [9] was not capable of dealing with 

the linear constraints (13) within the framework of the dual formulation. 
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Nevertheless this study was essential for the continuation of our 

development efforts in structural optimization, because it finally lead to 

the convex linearization method that is now employed as well for sizing as 

for shape optimal design problems. Indeed one important conclusion of Ref. 

[9] was that further research was needed to convexify the explicit 

constraints (13), for example by linearizing them partially with respect to 

the reciprocal variables. When carefully examining the dual problem, it 

can be seen that the terms responsible for non differentiability are those 

which correspond to negative coefficients in the linear constraints (13). 

Hence, to obtain a sound dual formulation, it is sufficient to replace 

those negative terms with positive approximate ones. 

The convex linearization method (CONLIN) is based on generalizing this 

idea to all the functions describing the mathematical programming problem 

to be solved. In problem (8) the objective function is linearized with 

respect to the direct variables xi while the constraints are linearized 

with respect to the reciprocal variables zi. In CONLIN each function 

defining the optimum design problem is linearized with respect to a 

properly selected mix of variables so that a convex and separable 

subproblem is generated. The selection of direct and reciprocal variables 

is made on the basis of the signs of the first partial derivatives. It is 

easily proven that, considering any differentiable function g(x), the 

following linearization scheme yields a convex approximation (hence the 

appellation "convex linearization") [10]: 

where gi denote the first derivatives of g(x) with respect to the original 

variables x.. The symbol I (I) means "summation over the terms for which , 
g~ is positive (negative)"; -One of the most interesting features of the , 
convex linearization scheme is that it also leads to the most conservative 

approximation amongst all the possible combinations of mixed 

direct/reciprocal variables. This property was initially demonstrated in 

Ref. [11], where conservative approximation was employed to handle 

difficult buckling constraints. 

The CONLIN algorithm proceeds by applying the foregoing convex 

linearization scheme to the objective function and to all the constraint 
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functions, including the linear constraints (13). The resulting explicit 

approximations take on a simpler form if the design variables are 

normalized so that they become equal to unity at the current point xO where 

the problem is linearized [the factor (x.O)2 disappears in Eq. 9). The 
1 

following subproblem is then generated: 

minimize I f.x. 
+ 1 1 

If.lx. _ 1 1 
(21) 

subject to 

(22) 

(23) 

where f. and u .. denote the first derivatives of the objective and 
1 1J ° 

constraint functions, respectively, evaluated at the current point x . 

These derivatives must be taken with respect to the same set of variables 

for each function. In other words the user must input the function 

derivatives with respect to either xi or zi' or any suitable mix of 

direct/reciprocal variables, but the choice of variables has to be unique 

(CONLIN will select by itself the mixed variables depending upon the sign 

of the function derivatives). The behavior constraints cj and the linear 

constraints d. [see Eqs. (2) and (13)] have been collected in a single set 
J 

of constraints u.. Note that the upper bounds U. have been modified to 
J J 

contain the zero order contributions in the Taylor series expansion. 

Therefore, in CONLIN, the initial problem is transformed into a 

sequence of explicit subproblems having a simple algebraic structure. 

Furthermore this subproblem is convex and separable. These remarkable 

properties make it attractive to solve the subproblem by using dual 

algorithms. In the dual approach, the constrained primal minimization 

problem is replaced by maximizing a quasi-unconstrained dual function 

depending only on the Lagrangian multipliers associated with the linearized 

constraints. These multipliers are the dual variables subject to simple 

non-negativity constraints. The efficiency of this dual formulation is due 

to the fact that maximization is performed in the dual space, whose 

dimensionality is relatively low and depends on the number of active 

constraint at each design iteration. The CONLIN approach can be viewed as 

a generalization of well established approaches to pure sizing structural 

optimization problems, namely "approximation concepts" and "optimality 
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criteria" techniques [6], and as such it is capable of addressing a broader 

class of problems with considerable facility of use. collected in a single 

set of constraints uj . Note that the upper bounds uj have been modified 

to contain the zero order contributions in the Taylor series expansion. 

The Lagrangian problem has the same form as in Eq. (14), with the 

coefficients a i and b. given in terms of the dual variables by: 
1 

a. L u . . A. + f. ~ 0 
1 lJ J 1 + 

b. -L u . . A. ~ 0 
1 lJ J 

However there exists a fundamental difference with respect to the 

previously discussed case: the coefficients a i and bi are now always non

negative. Therefore the Lagrangian problem (14) has necessarily a unique 

solution given by the primal-dual relationships (15-17). Cases 2 through 4 

will never have to be taken into account. As a result the dual problem 

max .r (A) = L f.x. (A) - L f.lx. (A) + LA. [ L u .. x. (A) - L u . .Ix. (A) - u.] 
+ 1 1 - 1 1 j J + lJ 1 - lJ 1 J 

s.t. A ~ 0 
j 

is well conditioned. The dual function does no longer suffer with a lack 

of C1 continuity. 

As previously mentioned the convex linearization scheme yields 

expl icit approximations that are locally conservative (i.e. they tend to 

overestimate the values of the true functions). In other words, the 

approximate feasible domain corresponding to the explicit subproblem 

(21-23) is generally located inside the true feasible domain corresponding 

to the primary problem (1-3). As a result the CONLIN optimizer has 

tendency to generate a sequence of design points that "funnel down the 

middle" of the feasible region. Despite the use of a dual solution scheme, 

a primal philosophy is maintained, that is, the method often produces a 

sequence of steadily improving feasible designs. This represents an 

attractive property from an engineering point of view, since the designer 

may stop the optimization process at any stage, and still get an acceptable 

non critical design, better than its initial estimate. 
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CONSTRAINT RELAXATION TECHNIQUES 

Although conservativeness is most of the time a desirable property, it 

is not when the initial starting point is seriously infeasible. In such a 

case is can happen that the approximate feasible domain be empty, so that 

the CONLIN method can no longer be applied. To cope with this difficulty, 

it is convenient to work in an expanded design space, by increasing the 

upper bounds assigned to the constraints. Denoting, Vj the maximal 

increments that the user accepts to add to the bound U., and introducing 
J 

an additional "relaxation" variable r, the following explicit subproblem 

must now be solved by the CONLIN optimizer: 

minimize 

subject to u.(x) ~ u. + v.(1-1/r) 
J J J 

x. ~ x. ~ x. -, , , 

r ~ 

where f(x) and u.(x) are the convex approximations of f(x) and u.(x) appear 
J J 

ing in the subproblem statement. Note that convexity and separability are 

maintained with regard to the added variable r. 

Clearly if the relaxation variable r hits its lower bound (r=1), 

nothing is changed in the problem statement, which will usually happen when 

the starting pOint xO is feasible of nearly feasible. On the other hand, 

if the starting point xO is serious infeasible, the algorithm will find a 

value of r greater than unity, which means that the approximate feasible 

domain is artificially enlarged. If the shape optimal design problem to be 

treated has a solution, this relaxation technique will usually be activated 

only once or twice. The subsequent iterations will then yield a unit 

relaxation variable. However if the feasible domain corresponding to the 

primary problem (1-3) is empty (for example because some of the 

requirements are incompatible), the optimization process will converge to 

the best possible design point. An infeasible design will probably be 
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generated, however, it should correspond to a good compromise between the 

conflicting requirements. Note that the user can act on the CONLIN results 

by entering appropriate values for each increment v.. For example if the 
J 

kth constraint must be exactly satisfied because it corresponds to a 

particularly severe requirement, it is sufficient to input vk = 0. 

Other types of constraint relaxation techniques are worth being 

studied. For example a distinct relaxation variable can be added to the 

system for each constraint, as suggested in Ref. [12]. The one-variable 

relaxation technique proposed above is however numerically more attractive, 

because it can be introduced, external to the optimizer, through the 

addition of only one variable. To solve the modified explicit problem it is 

sufficient to increase the number of variables by one, and to input the 

following derivative information: 

- ° f.=f(x) 
1 

-v. 
J 

for = n + 1 

Another possibility is to go inside the dual optimizer, and to 

expl icitly introduce the effect of the relaxation variable in the convex 

linearization method. From the primal problem (21-23), it is easily seen 

that the Lagrangian problem has the form: 

min - ° rf(x) + (r v.A.)/r 
J J J 

From this minimum condition, r is given in terms of the dual variables 

by the relation: 

- ° ~ r f(xO) r [(r v.A.)/f(x )] if V.A. ~ 
J J J J J J 

r = if r V.A. ~ f(xO) 
J J J 

As implemented herein, relaxation is uniformly applied to all the 

constraints (with the weighing factors v.). 
J 

Its purpose is merely to 
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balance the effect of conservativeness in the convex approximation scheme. 
For this uniform relaxation to be effective, it is implicitly assumed that 

the feasible domain corresponding to the primary problem is non empty. If 

this is not the case, for example because two or more constraints are 

really in conflict, uniform relaxation is not a satisfactory technique. 

More sophisticated relaxation techniques are then needed, aimed at finding 

a minimal relaxation for an infeasible domain (see e.g. [13]). 

The convex linearization method applied in this paper to shape optimal 

design problems has proven to be a highly efficient and reliable 

optimization tool. The CONLIN algorithm offers many attractive features 

that make it ideal for most of our research projects. CONLIN is especially 

adapted to structural synthesis problems and it has the ability of solving 

fairly large scale optimization problems (hundreds of design variables and 

constraints). The computational time needed is moderate, which is useful 

for an interactive use. It has a built-in constraint relaxation capability 

that allows the user to start from any infeasible initial design, and even 

to find a solution to infeasible problems (in the form of minimal 

relaxation). 

Because of its many advantages, the CONLIN algorithm now forms the 

bas is of a 11 the opt i mi zat ion capabi 1 it i es to be used in our research 

projects. At each successive iteration point, the CONLIN method only 

requires evaluation of the objective and constraint functions and their 

first derivatives with respect to the design variables. This information is 

provided by the finite element analysis and sensitivity analysis results. 

The CONLIN optimizer then selects by itself an appropriate approximation 

scheme on the basis of the sign of the derivatives. CONLIN benefits from 

many interesting features that make it specially well suited to structural 

synthesis problems: 

• the CONLIN approach is very general, requiring only values and 

derivatives of the functions describing the optimization problem to be 

solved; it permits therefore straight interfacing to the finite element 

software; 



www.manaraa.com

880 

• because it is based on conservative approximation concepts, CONLIN does 

not demand a high level of accuracy for the sensitivity analysis 

results, which can thus be obtained through a simple finite difference 

technique; 

• CONLIN usually generates a nearly optimal design within less than ten 

finite element analyses; 

• CONLIN has an inherent tendency to produce a sequence of steadi ly 

improving feasible designs; 

• the CONLIN method is simple enough to lead to a relatively small 

computer code, well organized to avoid high core requirement ; this 

feature is interesting for interactive optimization. 

CONLIN is not, however, the only possible choice, and many other good 

optimizers have now become commercially available. Therefore the critical 

issue is no longer which optimizer to select, but rather how to state 

properly the shape optimal design problems and how to implement 

optimization concepts in the context of an industrial environment. This 

important aspect of Computer Aided Optimal Design has been discussed in 

Section I. 

In summary, then, reliable optimization algorithm such as CONLIN have 

now become available to solve shape optimal design problems. Of course 

further research is still needed to improve the optimizers and to expand 

the class of problems they can now address (e.g. increase in number of 

design variables and constraints, efficient treatment of nonlinear 

equality constraints, discrete variables, other convex approximation 

schemes, etc ... ). However, in order to facilitate the introduction of 

optimization concepts within the design cycle, the main development efforts 

in the future will likely be devoted to devising appropriate user's 

interfaces allowing for an easy handling of the optimizer. 
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COMPUTER AIDED OPTIMAL DESIGN OF ELASTIC STRUCTURES 

Part III 

Application of Structural Synthesis Technique~ 

Abstract The structural synthesis techniques described in Sections I 
and II are applied to various optimal design problems. Three structural 
sizing problems are first presented. Minimum weight design is sought by 
assuming that the design variables are restricted to the transverse 
sizes of the structural components (i.e. cross-sectional area of rods 
and thicknesses of panels). Next shape optimal design problems are 
considered. The examples offered are concerned with two-dimensional 
structures in plane stress. They have been selected to illustrate the 
geometric modeling concepts introduced in Section I. Finally a problem 
involving a mix of sizing and shape variables is briefly presented to 
demonstrate the generality and efficiency of convex linearization 
techniques. 

The convex linearization method was initially experimented on some 

simple problems, such as the 2-bar and 10-bar trusses classical in the 

structural optimization literature, by adding linear inequality constraints 

on the bar cross-sections. The results are not reported herein, because 

they are not very significant, no comparison with other methods being 

available. In this paper three examples are offered. The first one has 

been elaborated on the famous 10-bar truss problem. The two others are 

concerned with real-life aerospace structures. 

The first example has been specially devised to make the classical 

10-bar truss problem difficult to solve by conventional methods (see Fig. 

1). The displacements at nodes 4 and 5 are limited to 2 in. and 1 in. 

respectively. Instead of assigning a maximum allowable stress limit in the 

critical member 6, the stress flow (~.e. the force) in member 6 is limited 

to 2500 lbs. 
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Table 1. Iteration history for 10-bar truss example 

Iteration Weight u4 u5 f6 
0 8393 1.898 0.8372 -40125.0 1 7290 1.635 0.7389 - 478.0 2 4856 1.980 0.8458 - 675.0 3 4221 1.968 0.972 - 2366.0 4 4095 1.994 0.9987 - 2458.0 5 4057 1.998 0.9992 - 2491.0 6 4058 1.999 0.9998 - 2498.0 7 4053 1.999 0.9999 - 2499.0 8 4050 2.000 1.000 - 2500.0 

Figure 1. 10 Bar-Truss 

Stress flow constraints are difficult to deal with. For a statically 
determinate truss, the bar forces are constant, and no change in the design 
can modify them. In the statically indeterminate case under consideration, 
stress flows are not affected by a scaling of the design variables, so 
that, if they were the only imposed constraints, the minimum weight design 
should be zero. In the design space, this means that a stress flow 
constraint is represented by a restraint surface that passes through the 
axes origin. 

The initial design (XO = 20 in. 2 for each bar) is seriously infeasible 
so that the first explicit subproblem does not admit any solution. 
Therefore, the relaxation scheme discussed in Section II is employed in the 
convex linearization method. After this first difficult iteration the 
optimization process becomes normal, 'each subsequent feasible subdomain 
being non-empty. The iteration history data are given in Table 1. Note 
that except the initial design, all other designs are feasible. 
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Composite plate 

The possibility exists in membrane elements to represent composite 

materials like fiber reinforced resins as the superposition of a number of 

layers with independent orthotropic properties. The thickness of each 

layer is then a separate design variable so that the superposition of 

results allows for the definition of the composite. This second example 

consists in weight minimization of such a composite plate. 

represented in Fig. 2 is part of a floor for an Airbus plane. 

The plate 

The tensile sollicitation is applied by imposing prescribed 

displacements on one side of the plate. The other boundary conditions 

depicted in Fig. 2 result from symmetry considerations. The structure is 

made up of 00 , +450 , -45 0 and 900 high strength graphite-epoxy laminates. 

The laminates are represented by stacking four orthotropic membrane 

elements in each quadrangular region shown in Fig. 2. The layer 

thicknesses in each basis direction (00 , +450 , -450 , 900 ) are the design 

variables. The finite element model involves 4 x 288 linear isoparameteric 

elements, and 946 degrees-of-freedom. After design variable linking 

according to the subdivision in regions of Fig. 2, it remains 39 

independent design variables. 

o 
1\ 

)( 

:J 

/ 

'1. V 

Y~~ 
.Lx 

., 
IJ 

f--"-a.= • 
*-

{:c 5 

Y f+c Lx 
" Il 

u =0 y 

constant 
thlckness 

"'0 
QJ ..a 

~ 
c. 

)( 

:::J 

® FINITE ELEMENT MODEL 

@ DESIGN VARIABLE DEFINITION 

{! 
~ ~rla.ble- 1 

14s£1;;lable - 10 
Z=;o~lable - 19 

*~ 2 3 
11 12 
20 21 

Figure 2. Ca.posite Plate 



www.manaraa.com

886 

The behavior constraints correspond to strength requirements based on 

the Tsai-Azzi failure criterion (with different tensile and compressive 

allowable stresses). This criterion is applied in the most critical 

element in each of the 39 linking regions. For manufacturing reasons 27 

linear inequality constraints are assigned to the design variable. Typical 

linear constraints are as follows (see Fig. 2): 

0 :ill -t, - 2t,0 + 9t'9 :ill 300 

0 :ill -t2 - 2t11 + 9t 20 ~ 300 

0 :ill -t3 - 2t12 + 9t 21 ~ 300 

o ~ t1 + 2t 10 + t 19 

-t2 - 2tll - t 20 ~ 0.325 

o ~ tl + 2t 10 + t 19 

These constraints are linearly dependent and very sparse, which complicate 

the solution of the optimization problem. Finally, lower and upper bounds 

are assigned to the design variables. 

It was previously shown in Section II that linear constraints make it 

cumbersome to use a dual method approach (see Eq. 11.20). The essential 

difficulty is that the expl icit subproblem leads to first-order 

discontinuities in the dual space (non-convexity). In fact, this second 

examp 1 e is at the or i gin of the deve 1 opment of the convex 1 i near i zat i on 

method presented in Section II. 

When resorting to the convex linearization method, the constraint 

relaxation technique described in Section II must be activated, because the 

first explicit subproblem is infeasible. This explains the incr'ease in 

weight after the first iteration, as indicated in Fig. 3 which plots the 

iteration-history data. 
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Figure 3. Composite Plate - Optimization History Data 

Most of the application problems given in this Section have been solved 

by using the SAMCEF finite element system, which contains built-in 

capabilities for both sizing and shape design variables [1]. However we 

would like to provide additional results for the composite plate, recently 

obtained with MSC/NASTRAN [2]. Design sensitivity analysis for composite 

structures will soon be available in MSC/NASTRAN. In addition, as part of 

a research effort, the sensitivity analysis has been coupled with the 

CONLIN optimizer [3]. The composite plate (Fig. 2) was selected as a test 

case to validate the results of the new design sensitivity capability. The 

design constraints are the failure indices using the Tsai-Azzi criterion, 

selected for different lamina in specified elements. No linear constraints 

were considered. The results are given in Table 2. 

It is worth mentioning that, after iteration 5, the failure indices of 

those elements not initially specified as critical were examined. It was 

found that some of them had exceeded the 1 imit. The fai lure indices 

corresponding to the violated elements were input as new design constraints 

and the optimization loop was restarted at this point. This capability for 

the user to intervene in the optimization process, and to monitor the 

progress, is particularly important and convenient for realistic design of 

structures. 
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Table 2: Iteration history for composite plate example 
(MSC/NASTRAN results) 

Analysis Weight 0"1 0"2 0"3 0"4 0"5 

1 Number 1 (00) 1 (45) 2(00) 2(45) 3(00) 

1 .3575 1 .1632 1 . 1421 

~ 2 .3562 .9446 .9076 
3 .3545 .9886 .9238 
4 .3541 .9948 .9160 
5 .3540 .9982 .9164 
6* .3539 .9990 .9983 1.0999 1.1053 1 .1634 
8 .3552 .9552 .9651 .9855 .9994 .9805 
9 .3552 .9585 .9690 .9854 .9999 .9796 

10 .3552 .9594 .9700 .9853 1.0000 .9757 --._----
*User Intervention 

The last example is concerned with a real-life application of 

optimization techniques to the European launcher Ariane 4. Four strap-on 

liquid boosters will be attached to a future version of the launcher in 

order to double the thrust. The Belgian company SABCA is working to design 

and build the three main structures of the booster: the forward skirt, the 

intertank skirt and the engine mount structure (see Fig. 4). From the 

beginning the interest of resorting to the optimization capabilities of the 

SAMCEF finite element system was recognized at various levels of the 

company. The main reason was the fundamental importance of obtaining a 

light weight structure: 

payload by 0.14 kg. 

kg gained on the booster permits increasing the 

It was not possible to achieve this goal by 

conventional design techniques because of unusual specifications (stiffness 

requirements, stress flow limitations). 

This application has led to many ups and downs, especially because the 

specifications were initially in conflict, so that no feasible design could 

be obtained. Due to the lack of space, attention is focused in this paper 

only on the engine mount structure. 

The finite element model shown in Fig. 5 involves 4883 degrees-of

freedom and 1008 finite elements (second-degree displacement field). The 
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Figure 5. Engine Mount Structure (finite element Model) 
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objective is to minimize the structural weight subject to the following 

behavior constraints. 

• stiffness requirements at the bold-bearing joint, as well as at the 

point where the engine load is introduced, in order to take into 

account dynamics aspects; 

• 1 imitation of the normal stress flow in the upper ring, in order to 

diffuse the load transmitted to the upper flange joint; 

• maximum allowable von Mises stresses under four loading conditions; 

• in addition, local stiffness requirements must be taken into 

consideration at various critical points (e.g. where equipments are 

supported) . 

Note that all the stiffness constraints consist in fact in assigning upper 

limits to influence coefficients. 

By using a simplified finite element model (half-cylinder), the 

optimization problem has shown that the normal stress flow limitation and 

one of the stiffness requirements were incompatible. After a while the 

responsible companies decided to reconsider these specifications and new 

stiffness constraints were imposed, which made it oossible to obtain a 

feasible design. Several runs were then performed, with more and more 

accurate definitions of the manufacturing constraints (design variable 

linking, lower and upper bounds on the thicknesses). For the last 

optimization process, which involve 35 design variables and 20 behaviour 

constraints, convergence is achieved within 7 finite element analyses. 

Finally, it is worth mentioning that, when the manufacturing process 

was started, it was found that the ootimization results could not be used 

as such because of technological requirements that did not appear at first. 

The thickness distributions had to be modified. After analyzing the new 

design, the stress flow constraints in the upper ring were seen to be 

seriously violated at the bold bearing joint level. Therefore, it was 

decided to perform an ultimate optimization run with an appropriate design 

variable linking. The final problem involves 62 design variables and seven 
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active behavior constraints out of 40; six variables reach their upper 

bounds, and one its lower bound. As shown in Fig. 6, the stress flow along 

the upper fing was properly cut to its limiting value. This additional run 

required four more structural analyses, each analysis demanding four hr CPU 

on a VAX 11/780 computer. 

APPLICATION TO §HAPE OPTIMAL.DESIGN 

In this Section two examples of application of the convex linearization 

method to shape optimal design are offered. Although the two structures 

under consideration are simple from an analysis point of view, their 

geometric description is fairly complex when considering the design 

aspects. Therefore the present paper wi 11 try to emphasi ze with these 

examples, the fundamental concept of creating a design model well suited to 

shape optimization [4]. 
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Figure 6. Stress Flow Transmitted to Flange Joint 
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Axisym.etric Disk 

The first example consists of designing a axisymmetric turbine disk. 

The meridian cross-section of the disk is made up of four parts, as 

indicated in Fig. 7a: the hub (uniform thickness), the disk itself, the 

rim and the blades. The shape optimal design problem is posed as finding 

the shape of the disk and the thickness of the hub that yield minimum 

weight while satisfying upper limits on radial and circumferential stresses 

under thermal and centrifugal loads. The thicknesses of the rim and 

attached blades are considered to be fixed to predetermined values. Note 

that by symmetry only one half of the structure needs to be studied. 

The geometric description of the design model begins with defining all 

its boundaries and selecting appropriate parametric curves. In the present 

case many parts of the boundary are required to be straight segments. Each 

segment can be considered, for example, as a particular case of a Bezier 

curve. The on 1 y curved part of the boundary will be represented by a 

B-Sp1ine with 6th order continuity (i.e. degree five). To control it, nine 

master nodes are employed, as indicated in Fig. 7.b. The second step is to 

subdivide the structure into design elements, which is quite obvious for 

this problem. As shown in Fig. 7.b, two design elements are sufficient to 

fully describe the moving boundaries, corresponding to the disk and its 

hub. The two other subregions, representing the rim and the blades, have a 

fixed geometry. Next the design variables must be selected in order to 

monitor acceptable changes in shape of the two design elements. As a 

reminder, the design variables provide the positions of the master nodes 

describing the boundary curves. Here the hub thickness and the disk shape 

have to be determined while keeping the rim and blades thickness constant. 

Therefore only nodes numbered 2 through 10 in Fig. 7.b will be permitted to 

move. Finally the fourth step consists of expressing constraints 

restricting the control node displacements. For example the structure may 

not move into the negative side of the Z-axis. Also all the design elements 

must keep reasonable geometries. 

To facilitate the introduction of these requirements, the design 

variables are defined as the distances separating each moving node from its 

corresponding reference node. In addition the move direction of each 
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Figure 7. Optimization of a Turbine Disk 

control node is kept constant. In the present case the control nodes are 

required to move in the Z direction. With this definition of the design 

variables, the geometric requirements can be easily stated and treated by 

the optimization algorithm: 

• the hub must have a uniform thickness: it is sufficient to impose 

that the displacements of nodes 9 and 10 be the same; this is a 

simple equality constraint between two variables, which can be 

el iminated before entering the optimizer (design variable 

1 ink i ng) ; 

• in order to prevent the moving nodes to penetrate the negative Z

space, the design variables are imposed to remain positive (side 

constraints). 
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Having constructed a proper design model, involving only 8 independent 

variables, an analysis model can now be created . The finite element mesh 

is shown in Fig. 7.c. An optimal design is generated in five structural 

analyses, each followed by an optimization step using the CONLIN algorithm. 

The final design is given in Fig. 7.d, together with representation of 

typical stress contours. 

the disk at iterations 

design) . 

Figure 8 represents a three-dimensional view of 

one (initial design), three, and five (final 

Figure 8. Turbine Disk - Iteration History 
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Many shape optimal design capabilities are restricted to small changes 

in the geometry. The reason is that, very often, the design model 

definition is such that the possible shape modifications depend largely 

upon the initial geometry. In other words the subdivision into design 

elements requires to have an a priori estimate of the optimum shape, 

because many of the design element boundaries are fixed in advance. In 

order to avoid this important limitation, a more flexible design model must 

be envisioned. The purpose of the following example is to illustrate how 

Coons patches can be employed to permit larger changes in the geometry. 

Design elements defined by Coons patches become essentially characterized 

by their boundaries. As a result there is no longer a need to update the 

positions of the internal master nodes. Another important consequence is 

that all the boundaries of each design element are allowed to move. 

The bracket shown in Fig. 9.a is clamped at its two lower ends to a 

rigid foundation, and acted upon by a concentrated load transmitted through 

a rigid axle. The objective is to minimize the structural weight while 

assigning maximum allowable values to the Von Mises stress. All the 

boundaries can be modified, except the internal circular hole (the radius 

of the axle is fixed). The design model is made up of the six subregions 

shown in Fig. 9.b. The corresponding analysis model (i.e. finite element 

mesh) is represented in Fig. 9.c for the initial design, and in Fig. 9.d 

for the optimal design generated by CONLIN. 

For this particular example, it is helpful to provide a somewhat 

detailed explanation of the procedure followed to create a meaningful 

optimization model. The six design elements (referred to as A-F) are 

depicted in Fig. 'O.a and the associated design variables are schematized 

in Fig. 'O.b. Design element A has to be defined through a cartesian 

product of two families of curves, so that connection to elements Band D 

is possible. The first fami ly of curves are described by cubic B-Spl ines 

with seven nodes. They represent, in particular, the external and internal 

curved boundaries (A,-A2 and A3-A4 ). The second family of curves are also 

cubic, and they define, in particular, the straight boundaries A,-A4 and 

A2-A3 . As usual, the design variables measure the distances between each 
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fixed control node (i .e. attached to the internal hole) and the 

corresponding moving control node (i .e. attached to the external unknown 

boundary). Because of its definition by cartesian product, design element A 

possesses internal master nodes, which will be moved homothetically with 

respect to the externa 1 contro 1 nodes. Note that thi s wi 11 have to be 

reflected in the definition of the corresponding design variables 

associated with elements Band D. So seven design variables fully describe 

the element. However, because a symmetrical design is sought, only four 

independent variables are retained (see Fig. 10.b). 

On the other hand, the remaining design elements B through Fare 

defined by Coons patches, which means that all their control nodes can be 

considered as design variables. For these elements, two opposed edges of 

each patch are characterized by Bezier curves, the two other opposed edges 

bei ng st ra i ght segments. Design variable linking is again employed to 

impose symmetry. Elements Band D are described each by eight control 

nodes (the curved boundaries are governed by cubic functions). However 

only four additional design variables are introduced, because the upper 

parts also belong to the previously considered element A. For the same 

reason, element C involves quadratic curves, but only one new design 

variable. Note that one single master node (denoted R1 in Fig. 10.b) 

serves as reference node to define the design variables associated with 

elements B, C and D. Finally element E and its symmetrical element Fare 

described by 14 control nodes (the boundaries are Bezier curves with 7 

control nodes). A 11 the control nodes are permi tted to move a long the 

directions shown in Fig. 10.b. These move directions are defined by 

introducing fixed reference nodes (denoted R1 through R5 ). Elements E and 

F involve 12 additional design variables, since variables 4 and 5 have been 

previously considered. 

Therefore, by taking into account the foregoing elaborated linking 

scheme, only 21 independent design variables are sufficient to properly 

characterize a design model suitable to optimization. To terminate the 

description of the model, it should be mentioned that linear constraints 

must be added to the problem statement in order to impose tangential 

continuity of the curved boundaries at the junctions between design 

elements (points denoted 4, 5 and 8 in Fig. 10 b.) For example, the 

control nodes corresponding to the design variables 3, 4 and 10 are 

assigned to reside on a straight line. 
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The optimal design produced by CONLIN in a few iterations is 

represented in Fig. 9d. It can be seen that the finite element mesh 

remains quite reasonable, despite the large modifications in shape produced 

by the optimizer. Note that the final design looks very much like a 2-bar 

truss, which brings us close to topological design. 

MIX OF SIZING AND SHAPE YARIABLE~ 

The CONLIN optimizer has successfully been applied to problems 

involving both sizing and configuration optimization of planar trusses [5]. 

Using design variable linking to preserve symmetry, the 13-bar truss shown 

in Fig. 11 is described by 7 sizing variables (cross-sectional areas) and 3 

configuration variables (node coordinates). The structural weight has to 

be minimized subject to stress limitations. The final design is given in 

Table 3 and Fig. 11. Figure 12 shows the iteration history. The 

convergence is extremely rapid with a majority of the weight change coming 

from the initial iterations. 

.: 
.: c:: 

M .,.. M 

c::i M 

0 
N 

I I 320.2 in 320.2 in I I 
Figure 11. Configuration Optimization of a 13-bar Truss 

One important goal of this investigation was to establ ish comparison 

with the Method of Moving Asymptotes (MMA) [6], which is a generalization 

of the CONLIN approach. The MMA method also relies on convex approximation 

techniques, however, it allows for the adjustment of the subproblem 

convexity through the use of "asymptotes" on the design variables. The 

addition of these asymptotes provides some control on the convergence 

properties. As can be seen in Fig. 11, both approaches furnish similar 

results. They provide significant improvement over more conventional 
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nonlinear programming techniques such as employed in Ref. [7]. In the 

particular example discussed above, the total number of structural analyses 

performed before attaining an optimal design can be reduced by a factor of 

20 (see Table 3). 

400~--------------------------, 

300 

o 2 4 6 8 10 
Iterations 

-0- CQ'\JUN 
... MMA 

Figure 12. Iteration History for 13-bar Truss 

Table 3. Thirteen Bar Truss Configuration and Sizing Problem 

CONLIN MMA Imai 
In i U a l _____ F ; 'l~ ___ _Li~l ____ . ____ Xi!l~tL ___ ._ 

Al 1.0 1.28 1.28 1.01 
A2 1.0 0.10 0.10 1.00 
A3 1.0 0.54 0.54 0.72 
A4 1.0 1. 17 1.18 0.85 
AS 1.0 0.10 0.10 0.10 
A6 1.0 0.10 0.10 0.62 
A7 1.0 0.89 0.89 0.92 
X2 240.0 320.2 319.7 458.9 
Y2 240.0 200.5 199.2 210.5 
Y4 280.0 333.0 330.4 506.0 
Weight 356.4 216.8 216.9 269.8 

Iterations 8 6 7 
C=1.00 (213 analyses) 
t=0.75 
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Take-Off in Optimua Structural Design 

H.R.E.M Hornlein 

MESSERSCHMITT-BOLKOW-BLOHM GMBH 
Helicopter and Aircraft Group 

P.O. Box 801160, 8000 Munich 80 
W. Germany 

This paper is intended for the potential developer and user of struc
tural design software. A great number of recent publications have had a 
strong influence on the development and improvement of structural design 
software. New ideas have to be studied, realized and tested to develop or 
to use a state-of-the-art program. In this report I have attempted to make 
comments on some of the basic ideas. The practical knowledge and experien
ce gained during the development of our in-house programming system, which 
is designated LAGRANGE, were taken into consideration. The features of 
about 30 internationally used program systems for structural design are 
listed in the appendix. 

1. Introduction 

How to find an optimum design? Take a few experienced, interdiscipli
nary scientists from the problem areas concerned and provide them with re
levant analysis software, a large computer, an established CAE/CAD system, 
a data base and a few computer scientists. Create some suitable optimality 
criteria and add a mathematical programming library. Now put all these 
items together, break the proj ect down into clear single steps by mile
stones and produce the necessary pressure by a close time schedule. Even
tually, after a couple of years you will be surprised to see that your 
competitors have already finished their job. 

Admittedly, this sounds silly and provocative although the 'ingre
dients' are right and necessary even when being more ser ious. Over the 
past twenty years, the problem of structural optimization has become a 
challenge for interdisciplinary cooperation among engineers, physicists 
and mathematicians. 

The early days of variant comparisons and intuitive optimality cri
teria are over. Anybody who wants to deal with up-to-date optimum design 
tools has to becane familiar with recent synthesis approaches as well as 
with established analysis procedures. 

Not only the developer has to be well acquainted with the details but 
also the user should be able to tune the software to the problem specific 
properties. The existing program systems for designing special structural 
models, and more importantly, for designing the general FE structural 
models, have a long way to go before they can be used as 'blaCk boxes'. 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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2. Tbe Optillua Design Problea 

In terms of physics, the problem of structural design is the optimiza
tion of the selected objective function, which is subject to certain re
strictions, known as constraints. The essential structural responses, 
which are used to state the objective function and the constraints, are 
given in Table 1. 

Structural responses 

• Structural weight 
• Displacements 
• Stresses 
• Strains 
• Aeroelastic efficiencies 
• Aeroelastic divergence 

• Buckling 
• Natural frequencies 
• Flutter speed 

• Transient response 

Table 1 

system equations and corresponding 

W = cTx 

Ku = P 
a = Su 
< = Bu 
Ku = P+QlI 

(K - p.Q)u = 0 
(K - p.Kg)u = 0 
(K - w2M)u = 0 
(K - w2M - p.Q)u = 0 

{ Kli + Gl + MU = F(t) 
Ali = F(II, X, t) 

linear case 
nonlinear case 

requirements 

w::; W(x)::; W 
1./::; lI(x) ::; U 
q::; aJx) ::; a 
f::; <,(x) ::; t 
q::; (J(X): = a + aTlI(x) ::; Q 

P.(Vd) => ~I ::; vix) 

p.(Pb) => .lJ, ::; Ph(x) 

OJ ::; w(x) ::; ciJ 

P.(vI) => If ::; vf(x) 

Structural responses - i.e. state variables - which are used for mo
delling the problem, are given by the system equations, which are impli
citly dependent on the design variables. System equations are set up as 
differential equations, difference equations or algebraic equations depen
ding on the type of structure - continuous or discrete - and on the im
posed constraints. FE modelling to deal with more general structures is 
now gaining ground. 

One possible classification of the problems is to divide them accor
ding to the mathematical characterizations of the system equations, see 
Table 1. A second, more common classification would be by the design 
space. Figure 1 illustrates the potential of the design space using a 
bridge as an example. 

The most difficult decision certainly is the choice of building sys
tems in this hierarchy. To date, I know of no decision criteria that can 
be automated. The layOut of elements - i.e. the topology - has been a sub
ject of research for more than 100 years, with considerable success. Among 
the most important studies are those of Maxwell 1869 [4~ and Michell 1904 
[41], whose ideas were first transformed in 1964 with the aid of large com
puters into usable algor i thms [17,33]. Or ig inally, all the wor k done in 
answer to the question, 'which nodes are connected by which elements?' was 
limited to truss structures. Recent investigations in layout theory have 
been concerned with other building systems [39,53]. The design space of 
topological variables definitely offers the largest potential in structur
al improvements and must therefore be seen as a real challenge in the fu
ture. A simple example of optimum bridge topology is confirmed by real 
life structures, see Fig. 2. 
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The layout theory is also concerned with the optimum shape of struc
tures. Shape variables or coordinates of nodes have been applied extensi
vely to FE structures for some years [9,10,19,22,50,67,75,79]. In this 
context, mathematical programming is applied mainly to FE models. Problems 
arise in the shape optimization due to adaptive mesh refinement and grid 
design. 

The lowest level in this hierarchy is given by the sizing of ele
ments. The thickness and cross-sectional variables of the elements appear 
quite simply in most constraints, so the calculation of derivatives can be 
done analytically. 

In many programming systems the treatment of composite material is al
ready possible. However, there are varying opinions as to which parameters 
should be treated as variables. On the one hand, the discrete fibre orien
tation angles can be preset, and only the thicknesses of the individual 
layers need be varied to determine the suitable fibre direction. On the 
other hand, the fibre orientation angles can also be defined as continuous 
design variables. But the latter leads to serious nonlinearities and 
therefore to multimodal constraints, resulting in feasible domains that 
are neither convex nor simply connected. 
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3. The Design Model 

The mathematical formulation of the structural optimization task is 
the general nonlinear programming problem (NLP): 

minimize 
subject to 

f(x) 
gJx) :::::: 0 
~ ~ Xi ~ Xi 

(objective function) (1) 
j E J (behavioural constraint) 
i = 1 (1) m (side constraints) 

New program systems offer the user a multitude of possibilities of mo
difying the variables, constraints, and objective functions in a suitable 
way. 

Variable linking reduces the m structural variables Xi by affine li
near transformation 

x(t) = a + At (2) 

to the m design variables ti • This allows the utilization of serial parts, 
structural symmetry, fabricational requirements, and the fixing of struc
tural variables. 

The transformation of variables, e.g. the frequently used reciprocal 
variable, changes the characteristics of the constraint functions and thus 
increases the efficiency of particular synthesis procedures. The stiffness 
and strength requirements become 'more linear' by the reciprocal variables 
and thus can be dealt with by a sequence of linearized subproblems. 

The approximation of constraints reflects the basic idea of approxima
ting the implicit, complex, nonlinear constraints locally by suitable ex
plici t functions. Linear, hyperbolic as well as hybrid formulations are 
used for the approximation [51,63]. The local approximations should be at 
least of first order. If additional characteristics such as convexity or 
even separability are fulfilled, these can be utilized by the synthesis 
formulation. Global approximations by what is known as reduced basis func
tions are also used to represent the characteristics of the state variab
les in the extended domain of the design space. 

The multi-level concept or the decomposition of the structural optimi
zation problems has been used since the early seventies and deserves par
ticular attention. Large-scale problems are split into small, nested prob
lems. The normally few global constraints, such as flutter speed or aeroe
lastic efficiencies, are formulated in terms of global variables - variab
le linking or smearing out the local design variables - and are dealt with 
in an outer loop. The many local costraints, such as stress and buckling 
failure of elements, are essentially dependent to the local variables and 
are dealt with in an inner loop. 

This forcible, intuitive decoupling of variables does, of course, not 
yield a rigorous model of analysis. The error, however, can be minimized 
by interactive mechanisms such as optimum sensitiviity analysis with res
pect to the parameters and other coupling information. This heuristic de
composition does not ensure that the true optimum is determined, but makes 
large-scale problems solvable and eventually leads very close to optimum 
designs. The success of the multi-level approach greatly depends on the 
user's physical understanding. This iterative scheme has been succeessful
ly applied to some ~ractical structures, such as wings, frame designs, 
ships, etc. [34,58,68J. 
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Vector optimization allows the simultaneous consideration of several 
requirements, known as multi objectives. Of cour se, nobody expects solu
tions that are optimal for all these requirements. Pareto optimal solu
tions are used as an orientation instead. These are designs which do not 
allow simultaneous improvement of all the objectives. In this situation, 
the user must decide on which of the requirements is to be sacrificed in 
favour of the remaining objectives. 

This situation, which is often referred to as a trade-off study, re
minds one of the interpretation of Lagrangian multipliers. In fact, there 
is a relation between the Pareto optimal solutions and the Lagrangian mul
tipliers [3]. Practically all the calculation methods are based on the 
scalarization of the multi-criteria problems and the use of the necessary 
or sufficient conditions of Pareto optimality. In terms of decision theo
ry, a scalar preference function replaces the descision maker Refs. 3,7, 
12,18,70. 

4. Tbe Design Process 

The various methods available for the formulation of the physical mo
del and the objectives can be supplemented by numerous user options of m0-

dern FE analysis tools. What is more important and interesting are the 
tools for the implementation of the actual design process. 

The active set strategies divide the constraints J into active JA and 
passive JP. During the iterative design process, a permanent change of ac
tive lA:= {j E I : gj = O} and passive constraints IP:= {j E I : gj> O} takes 
place. The 'less active' constraints have less influence on the current de
sign change and are therefore temporarily neglected. Suitable deletion of 
passive costraints accelerates the design process, but this is not easy to 
manage. Minor design changes may lead to a change from passive to active 
constraints and vice versa, which may cause an oscillation and thus a de
terioration of convergence. Near the optimum, the estimated Lagrangian 
multipliers may be used as indicators. A simple interpretation of the 
first order necessary Kuhn-Tucker conditions reveals that the active con
straints are characterized by positive Lagrangian multipliers. 

The determination of active or potentially active constraints is one 
of the main problems of all design procedures. The information of the ac
tive constraints is more or less directly used for the actual modification 
of the current design. 

The school of optimality criteria uses the following iterative ap
proach to solve the problem: 

oc I Optimality criteria 

i = J(1)m 

Where Av+l is an estimation of Lagrangian multipliers 

and ~ is a suitable recurrence relation. 

The estimation of the Lagrangian multipliers is directly derived from the 
active constraints. On closer examination, both the derivation ,of recur
rence relation ~ and the estimation of Lagrangian multiplies A represent 
nothing but the more or less tricky attempt to fulfil the necessary non
linear Kuhn- Tucker conditions [8]: 
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( 3.1) 

(3.2) 
Where L = f-ATg is the Lagrangian function and x* has to satisfy a certain 
regularity, which can also be guaranteed by what is known as constraint 
qualification. 

The school of mathematical programming uses the following iterative 
formulation: 

MPI Mathematical programming 

where sVE Rm is the search direction 

and aVE R+ is the step size 

Also here, the knowledge of the active constraints is used for the calcu
lation of the search direction s". The calculation of the step size aV is 
a relatively simple matter, which, however, requires many structural ana
lyses depending on the problem and the applied optimizer and must there
fore be carried out very efficiently. Without going into detail, a classi
fication of mathematical programming methods for solving the constraint 
problems (1) is given below: 

~ransformation methods Primal methods 

o Penalty functions - Indirect methods 
o Barrier functions o sequential linear programming (SLP) 
o Method of mutlipliers o sequential quadratic programming (SQP) 

- Direct methods 
o gradient projection method (GPM) 
o generalized reduced gradients (GRG) 
o method of feasible directions (~D) 

Dual concepts 

This comprises all methods for the solution of the dual problem: 

maximize t (A) 
subject to A ~ 0, t(A) = minimum L(X,A) 

!:5x:5i 
(4) 

Problem (4) is dual with respect to the primal problem (1) in the sense of 
an indentical solution 

f(x*) = t(A*) = L(X*,A*) 

if the relatively strict conditions 

NLP convex, differentiable with 
non-singular Hessian matrix VVxL(x*, A *) 

are fulfilled. 

(5) 

(6) 
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Compared with the numerous text books on mathematical programming 
there are only a few books on structural optimization which describe the 
complete optimization process Refs. 83,84,85,86,87,88,89,90,91,92,93,94. 

5. Monitoring, Terainiation and Interaction 

The significance of the duality theory can also be seen in the calcula
tion and monitoring of the active constraints as well as in the applica
tion of an efficient termination criterion, the "dual gap" [4]. In addi
tion, also the optimua sensitivity analysis is explained by duality. 

For initial calculation or estimation of the Lagrangian multipliers 
frequent use is made of the linearized dual problem (4). During the design 
iteration these values are updated by repeatedly checking the Lagrangian 
function for stationary condition and the complementary conditions (3). 
The active constraints are identified by the positive Langrangian multi
pliers as has already been mentioned. The quantities of the Lagrangian mul
tipliers have at least the same importance since this provides for an addi
tional termination criterion. In conjunction with (5) the well-known sad
dle point condition provides a bounding of the optimum: 

L(x·,).) !f I(x·) !f L(x,).") (7) 

Apart from the relative errors: 

I l(xV) - l(xv+1) I I I f(xv+l) I !f Ef (8.1) 
1/ XV - x·+1 1/ I I/xv+1 I/!f Ex (8.2) 

also corresponding vectors ).v,x().V):=arg {minimum L(x,).V)} and xV,).(XV):= 
x!fx!fi 

=arg {maximum L(xv,).)} may be used to calculate upper and lower bounds for 
).~O 

I(x*) respectively: 

LL := L(x().V),).:) !f I(x·) !f L(xv,).(xV)) =: Lu (9) 

The design optimality is defined with this dual gap as additional termina
tion criterion 

LL1Lu ~ desired optimality 

to realize the convergence towards non-optimum structures, e.g. FSD. 
Refs. 4,35,43,72. 

(10) 

If an optimum structure x* E DS(p) has eventually been determined with
in the respective. design space DS(p) C lR.m , potential improvements in the 
optimum I(x·) with respect to the specifications p are frequently desired. 

The assessment of a change of the parameters p is carried out by means 
of the derivatives of the optimum I(x" (p)) with respect to p. This process 
is called optimum sensitivity analysis ana is again based on the calcula
tion of the Lagrangian multipliers. 
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The Kuhn-Tucker conditions (3) of the problem: 

minimize f(p, x(p)) 
subject to gj (p, x(p)) 2: 0, j E J 

yield with a differentiable dependence on 

( 11) 

and with the active constraints JA 

t (D;.L) = 0 <=> t { gJA(P,X(P)) } = 0 <=> 

( 12) 

where the Cauchy symbol Dwas used for the derivatives. The desired deriva
tives can be calculated using the equation systems (11) and (12) [69]. 

The special case dfldp is derived directly from dfldp = aflap + Dxf· Dpx 
with the Kuhn-Tucker condition Dxf= ).TDxgJA and (12): 

(13 ) 

A simple interpretation of (13) shows why the Lagrangian multipliers are 
often referred to as the 'price' of constraints. When considering a single 
constraint g(x) 2: p <=> gJx,p) := g(x) - p 2: 0 whereas f is independend of 
p, (13) yields dfldp = Il . This information of the Lagrangian multipliers 
can be used for the int~ractive change of specifications p. Refs.59,69,76. 

6. Pros and Cons: OC - MP 

The initially parallel development of the two competing design philo
sophies - optimality criteria (OC) and mathematical programming (MP) -
have long been reduced to a common basis thanks to the equivalence of the 
primal and dual optimization problem [21,25,29,73]. For this reason, both 
concepts are used in modern programming systems. The successful applica
tion of both schools of thought has given rise to mutual acceptance. 

OC methods are oriented to the global criteria of the putative opti
mum - like a pilot flying above the clouds will consider the weather fore
cast for the potential landing sites. The OCs exploit the particular cha
racteristics of the active constraints at the optimum for fast convergen
ce, which is relatively independent of the initial design and the number 
of design variables. But they converge in general toward a non-optimum de
sign, if the active constraints of the optimum have not been anticipated 
properly - like the pilot, who will miss the runway if fog has come down 
in the meantime. 
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MP-methods, in contrast, are oriented to the local information of the 
analysis and the sensitivity analysis in the vicinity of the current de
sign - as a blind man would grope his way down to the valley using his 
cane. They converge relatively fast, even without prediction of the active 
constraints, but governed by the problem size, toward a local optimum 
still far from the actual global optimum, - in the same way the blind man 
will get stuck in the nearest hole, because the unimodality, which is the 
general assumption of any mathematical programming theory, is not fulfil
led. 

The realization of these different properties has obviously led to the 
emergence of mixed concepts. It is, therefore, advisable to carry out the 
global approach, the preliminary design, using OC methods and then con
tinue the process locally with the MP methods. The crucial question of the 
most suitable solution method is controversial and certainly not to be 
answered in general. It would be better to ask for suitable combinations 
of synthesis ideas and to investigate the interaction criteria. Refs. 
27,28,37. 

7. New Trend: GOC 

The OC algorithms are only valid for special types of constraints, but 
solve them faster than the more general MP algorithms. The success with OC 
procedures shows that in the future, MP procedures should also exploit the 
features of the structural mechanical system equations. An attempt to uni
fy the advantages of both is a recent development. The earlier intuitive 
optimality criteria were directly derived from the physical characteris
tics of the optimum design. Today, they are interpreted as the more rigor
ous mathematical criteria, the Kuhn-Tucker conditions. 

The more or less arbitrary choice of the active constraints at the op
timum causes frequent failure of the OC methods. While studying the li
terature, it is possible to find at least as many arguments against as for 
the use of the OC procedures. A more careful assessment of the active con
straints extends the OCs and makes them more reliable. As already mention
ed, the dual concepts provide estimated values for the Lagrangian multi
pliers and facilitate an iterative update of the active constraints. Thus, 
the 'more consequent' dual concept use is also often referred to as a ge
neralized optimality criteria (GOC) method. 

In this context, the promising trend of explicit constraint approxima
tion should be mentioned. A suitable approximation of the objective func
tion and the constraint functions leads to a highly efficient formulation 
of the dual problem. For a sginificant class of standard problems, the 
primal problem can be approximated fairly well by convex, separable func
tions, which leads to an attractive dual problem structure. For the se
quence of the approximated separable functions, the Lagrangian functions 
are also separable, so that for the subproblems - see (4) - only one-di
mensional minimization problems need to be solved: 

minimize_ {L(x, A) = .2 (fJx) + 2 Aj . gj,(X) )} 
,J:5x:5x 

(14 ) 

This approach has also been used successfully with discrete variables. 
Refs. 11,23,24,25,26,28,29,61,71,72. 
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8. Design sensitivity analysis 

Provision of derivatives for the objective function and constraints 
with respect to the design variables is knwon as design sensitivitiy ana
lysis (DSA). Once it is realized how 'expensive' it is to calculate gra
dients using finite differences, then it is obvious that this is an impor
tant subject. By exploiting the analytical relations of the system equa
tions, computing time can be reduced in proportion to the number of design 
variables: 'the more analytical the DSA, the cheaper the calculation'. 
Furthermore, an improvement results from exploiting the synthesis 
relations for a particular class of mathematical programming, which again 
leads to a reduction in computing time of the same order. 

Of course, it is possible to employ synthesis procedures which do not 
need sensitivity derivatives. The 'price' of this waste of valuable infor
mation is a degraded convergence. Apart from the synthesis method, the 
first and second order information is used for problem approximations, 
process monitoring and termination. Even more, in the final stage of the 
design process, the derivatives with respect to the parameters provide the 
user with valuable information for a revision of the parameters. For these 
reasons the sensitivity analysis has become an indispensable tool of 
structural optimization. Refs. 13,14,15,16,36,49,81. 

Only for displacement related constraints: o(x):= s + Sex) . u(x) such 
as displacements, camber, twist, stress, and also aerolastic efficiencies, 
is the fast FE-based derivative calculation mentioned here. 
The normalized constraints g(o (x, u(x)) :':' I-o(x, u(x))/J ~ 0 of the equivalent 
physical restrictions: 0 $ o(x, u(x)) $ 0 1 where 0 are specifications, 
and u(x) is the displacement vector, require the calculation of the 
Jacobian matrix 

(15) 

where the matrices Dog, (ao/ax) and Duo are easy to calculate. The substan
tial numerical effort is in the calculation of matrix Dxu. By means of 
formal partial differentiation, the system equation for FE structures fol
lows as: 

K(x) . u(x) = P(x) + Q . u(x) (16 ) 

K {~} = ({1.f...} _ ( 'OK) u) + Q {~} V ax; ax; ax; ax; i = I(i)m 
( 17) 

where Q *' 0 for aeroslastic loads. 
The equation systems (16) and (17) have the same structure and can be 
solved using the iterative scheme 

Ky",+l = b + Qy'" /-l = 1, 2, ... (18 ) 

with the stiffness matrix K(x) which has been already factorized K = LLT 
for the analysis. With an eigenvalue transformation A, = w..1. + (i-w) of the 
matrix K-1Q ' good convergence acceleration can be attained through a 
suitable choice of relaxation parameters w. 

Ky",+l = web + Qy"') + (I-w) Ky'" /-l = 1, 2, ... ( 19) 
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Substitution of Eq. (17) in (15) yields 

Dxg = B + e(K-Q)-IR (20) 

B = Dog ( ~~ ), e = Dog· DJ), R = ( ~~ ) - [( ~~) u] 
i~I(1) m 

where 

The essential second terms on the right-hand side of (20) can now be cal
culated either with columns ri of R (pseudo loads) 

V:= (K-Q)-IR <=> KVi = ri + QVi 
V 

i = l(1)m 
(21) 

or with rows Ci of e (virtual loads) 

V (22) 
i = 1 (1) If A I 

using the accelerated iteraton (19). This procedure is known as the 'de
sign space' (21) or 'state space' (22) method [1]. Here, equation solu
tionsmand If AI respectively are required. Refs. 1,20,31,32,55,56,78. 

In many synthesis procedures, subproblems of the following type have 
to be solved: 

minimize {<p(x): = f(x) + G(g(x)) } (23) 

Formal differentiation with the row vector pT:= DgG gives the gradient 

(24) 

By substituting Eq. (20) in (24) and using the 'state space' method (22) 
with the adjoint variable ~T:= pTe 

give the gradient V<p by one single equation solution (22), (19). In the 
most common case, for the static loads Q = 0, the equation solution con
sists of one single forward-backward substitution. The subproblems (23) 
appear in the transformation methods and also in the dual concepts. 

9. Test Studies 

The circumstances in which a synthesis idea proves to be successful 
can only be discovered by thorough testing. There are a multitude of tests 
available which assess MP methods [57]. Here, computing time (efficiency), 
accuracy, reliability, ease of use (tuning) and the sensitivity to the 
initial designs are compared as evaluation criteria. But since the test 
examples have very general properties, the results from these tests are 
not immediately applicable to the problems of structural design. Special 
tests for structural design are rarely carried out [5, 6]. 

At the moment, a large-scale test for wing-like FE structures with 
stiffness and strength constraints is running at MBB. This test is not ex
haustive, since only a few transformation methods compete with sequential 
linear programming. A further expansion of this test model is expected to 
result in a continuous improvement of the user guidelines, i.e. to a kind 
of 'expert system'. Inclusion of OC procedures is important,because many 
program systems already use OC optimal structures as initial design. 
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10. A challenge to the MP experts 

The use of mathematical programming experts' methods and ideas is be
coming increasingly important in the field of structural optimization 
problems. Linear and quadratic problems are solved in a finite number of 
steps. However the procedures for solving general nonlinear problems are 
iterative, thus there is a healthy interest in the convergence analyses of 
these procedures. Unfortunately, these convergence properties have only 
been proved for some restrictive assumptions, such as for quadratic or, at 
the most, convex problems. For example, the m-step-quadratic convergence 
could be proved by Stoer (1977) for the widely used quasi-Newton method 
using asymptotically exact line search. This property shows that the con
vergence speed is dependent on the number of variables. It is percisely 
this dependency which is often confirmed by practical application to 
large-scale problems. 

For a long time, attempts have been made to use the problem inherent 
properties in constructing the design model. Hence, the use of reciprocal 
variables, suitable constraint approximations, the linking of variables, 
even the application of 'move limits' are more or less desperate attempts 
to make the 'real life' problems more attractive to the established MP me
thods. Why not the other way round? 

Thanks to many years of experience in using MP methods, the experts in 
structural optimization now have such an intimate knowledge of MP theory 
that they ought to meet the MP experts in order to develop problem-speci
fic procedures. In the past the structural experts have tried out almost 
the entire range of MP models, such as 'Dynamic Programming, Geometric Pro
gramming, Fractional Programming, Integer Programming' etc. Refs. 42,43, 
44,48,74. 

The school of mathematical programming ought to accept this challenge, 
and signal its readiness for interdisciplinary collaboration. It is no 
surprise that Haftka and Kamat end their book 'Elements of Structural Op
timization' (1985) with the statement: 
"There are also several packages available from mathematical programming 
specialists. However, these programs do not enjoy as much populartiy in 
structural optimization application as those developed by engineers." 
A good survey of structural optimization can be gained from the many ex
cellent review papers Refs. 2,30,38,45,46,47,52,54,60,66,82. 

Appendix 

The following survey of approximately 30 internationally used program 
systems contains some information about their field of applications and so
lution concepts. The data was acquired by means of a questionnaire sent to 
the authors and users of these program systems in November 1983. This data 
was updated by means of another questionnaire in 1985/86. This list is by 
no means complete, neither are all the important features summarized nor 
all the currently used program systems listed. For instance, no investiga
tion was carried out on the frequently used approximation techniques or 
the variable transformation and the variable linking possiblities. Quanti
tative characteristics of te analysis modules as well as the maximum num
ber of design variables and constraints were deliberately omitted since 
these limitations can be extended by using larger computers. 
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ABSTRACT 

STRUCTURAL OPTIMIZATION OF SHIP STRUCTURES 

by 

P. Terndrup Pedersen and N-J. Rish0j Nielsen* 

Department of Ocean Engineering 
Technical University of Denmark 

DK-2800 Lyngby 

Based on: - a rapid design-oriented finite element method for analysis of 
large complex thin-walled steel structures such as ship hulls, - a compre
hensive mathematical model for the evaluation of the capability of such 
structures, and - analytical expressions for the derivatives of the response 
and the capability with respect to the governing design variables, the paper 
presents a procedure for minimizing a linear combination of structural weight 
and production costs for a number of loading conditions. The large, highly 
constrained non-linear optimization problem is solved by sequential linear 
programming. 

1. INTRODUCTION 

It is the object of the paper to describe a procedure for structural optimi

zation of marine structures in the form of large thin-walled steel construc

tions. 

Marine structures such as ships and offshore platforms are of great com

plexity and size. Perhaps of greater complexity and size than any other 

type of man-made structure. They are built of elements which possess un

known residual stresses before they are ever joined, and in the building 

process they are subjected to processes that introduce deformations, stresses 

and strains which escape computation by present analysis procedures. On 

top of this, the system is launched and put into service in the hostile en

vironment of the sea which can only be described by statistical methods. 

Considering these facts, one is led to recognize that a fairly objective assess

ment of the strength of a marine structure is a very difficult task and to 

optimize such a structure even more difficult. 

* Now: Maersk Oil and Gas A/S, Copenhagen 
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This is probably one of the reasons why until now structural optimization 

procedures have had limited applications in practical design of marine struc

tures in spite of the fact that considerable effort has been put into the de

velopment of such programs. 

A review of the work carried out in this field up to 1981 is presented in 

/1 / . 

Among the more significant research work on optimization of marine struc

tures reference can be made to work at the Technical University of Trond

heim, Norway, on Indets (The Integrated Design of Tanker Structures) /2/. 

I n this program system all the automated design programs employ the se

quential unconstrained minimization technique (SUMT) for the non-linear op

ti mi zation problems. 

At the University of Newcastle, U. K., there has been an ongoing effort to

wards development of optimization procedures for ship hull structures /3/. 

The approach taken here is simplified analysis using the displacement method 

and an optimization procedure based on a sequential linear programming al

gorithm. 

Probably the most successful structural optimization programs for marine struc

tures until now are those developed by O. Hughes and coworkers /4/, /5/. 

These programs are based on a synthesis of finite element analysis, strength 

constraints, and optimization using sequential linear programming (SLP). 

The objective may be any continuous non-linear function of the design vari

ables such as weight or cost. 

The optimization procedure to be described in the present paper has adopted 

many of the features described in /4/ and /5/ concerning the segmentation 

of the structure and the element representation. 

The main loading on marine structures is due to wave action. Normally, 

a wave response analysis is performed in two steps. I n the first step an 

overall response analysis is done. Currently, most methods used for prac

tical calculations of the global structural response of ships and offshore 
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structures in waves are based on linear beam models. This overall analysis 

serves to give boundary conditions to the second step which is a more de

tailed analysis of submodules. 

A submodule is a region of structure in which a sufficient number of the 

scantlings are linked such that the region forms a logical entity. An ex

ample of such a submodule may be one hold in a cargo ship. 

Here we shall describe a procedure which can analyze and optimize a sub

module in the form of a ship compartment, i.e. a cargo hold between bulk

heads. 

The response analysis is based on the finite element procedure, and the 

presentation will focus on simulation of the interaction between the sub

module and the surrounding structure through boundary conditions. 

In the evaluation phase some of the constraints for the optimization prob

lem is established with the requirement that the demand must not exceed 

the capability of the structure. These requirements are to a large extent 

based on strength analysis of structural elements such as stiffened or un

stiffened plates and beams. Other constraints to the problem are due to 

fabrication and functional requi rements. 

The optimization procedure combines the finite element method, the con

straints, and sequential linear programming (SLP) with the purpose to min

imize a function of cost and weight. The optimization problem is character

ized by 

many design variables 

a large number of design criteria 

most of the design criteria are strongly non-linear in the design 

variables, and 

the objective function is non-linear. 

The SLP procedure used in the present paper is based on variable move 

limits and analytical sensitivity analyses. 

In the final section an application of the optimization procedure is presented. 
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2. RESPONSE ANALYSIS 

I n order to reduce the computational effort, a design oriented finite element 

program has been developed especially for structural analysis of prismatic 

thin-walled structures. The main features of the mathematical model are 

There is no variation in the longitudinal direction of the structural mem

ber sizes. 

A stiffened panel between major longitudinals and transverse beams is 

modeled with only one special ribbed rectangular membrane element. 

Major longitudinals and transverse beams are modeled with Timoshenko 

beam elements, and the effect of brackets is taken into account by in

troducing rigid end zones. 

To simplify the structural modeling and to speed up the redesign anal

ysis, the structure is subdivided into strakes and girders. Strakes are 

defined as prismatic sections between two guidelines having frame seg

ments at the transverse planes and stiffened plating between the frame 

segments. The length of each strake (number of bays) can be varied. 

Girders are defined as longitudinal beams positioned along the guidelines. 

Figure 1 visualizes the structural modeling. 

An important consequence of the prismatic modeling technique is that it re

duces the number of design variables and thereby decreases the optimiza

tion effort. As shown in Figure 1, eight design variables have been chosen 

for each strake, and four design variables have been chosen for each girder. 

Furthermore, the total redesign problem can be divided into a series of sub

problems corresponding to strake-redesigns and girder-redesigns, which are 

"easier" to handle for the program and at the same time reduce computational 

cost. 

The analysis is performed for a number of different loading conditions where 

the loads are specified together with statistical information describing the 

uncertainty of the loads. 
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a: Timoshenko beam element 

membrane element 

/. 19 / 

~B 
Figure 1. Structural modeling of one quarter midships cargo hold in a 

bulk carrier. 
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Each load case consists of local transverse loading due to cargo and hydro

static pressure, see Figure 2, in combination with a set of sectiona l beam 

forces acting on the long itudinal boundaries . The sect ional forces can be 

obtained from a calculation of the loading on the ship hull in irregular 

waves, see /6/, followed by a response calculation based on a Timoshenko

Vlasov beam theory /7 / . 

Figure 2. 

(1) (2) 

t: 

I 
(3) (4 ) 

Load cases used in a cost optimization of the midsh ip cargo 
hold in a bulk carrier. 

Included in the present analysis and optimization p rocedure is a calculation 

of the distribution of normal stresses and shear stresses at the longitudinal 

boundaries based on specified sectional fo rces at the ends of the prismatic 

section. See Figure 3 . This calculation of stress distributions is based on 

thin-walled beam theory using a procedure which automatically localizes 

closed cells . 
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Z 

Y My 

Qy -'" 
", 

Figure 3. Definition of hull girder sectional forces and moments. 

In order to model the interaction between the hull segment and the sur

rounding structure as well as possible, we have also introduced kinematic 

restraints for in-plane displacements at the longitudinal boundaries. 

Thereby the response analysis can be restricted to relatively short hull 

segments and still yield meaningful results. 

The in-plane displacements at these boundaries are restrained such that 

they are compatible with thin-walled beam theory. That is, in-plane de

formations are only allowed in linear combinations of the following four 

modes: plane axial displacements, vertical and horizontal plane bending 

displacements, and finally in a classical warping mode. This is achieved 

by introducing linear couplings between the longitudinal degrees of free

dom of the nodal points at the boundaries in the form 

4 
u. = L r .. u. 

J i=l J1. 1. 
j = 5,N (1) 

where N is the number of nodal points at the hull girder cross-section. 

To determine the constants, rp-rjq , j = 5,N, four nodal points are taken 

as reference points assuming that their longitudinal displacements can be 

described by 

zl Y1 n1 a 1 u 1 

z2 Y2 n2 u2 
(2) = 

z3 Y3 n3 u3 

Zq yq nq uq 
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Here z., y. are the distances from the horizontal and vertical bending 
I I 

neutral axes to the nodal points, fl. is the sector coordinate at the nodal 
I 

points, and [a l ,a2,a3,a4J can be identified as generalized coordinates. 

By inverting the equations (2) the generalized coordinates can be deter-

mined from 

a l All A12 A13 A14 u l 

a 2 A2l A22 A23 A24 u 2 
( 3) = 

a 3 A31 A32 A33 A34 u 3 

a 4 A41 A42 A43 A44 u4 

= [A] {u} 

Assuming that also the remaining N-4 longitudinal displacements at the 

loaded cross section must satisfy the geometrical condition 

j = S,N 

and introducing the generalized coordinates (3), the j'th displacement 

u. can be put into the form 
J 

4 
u. L (Ali Zj + A2iYj + A3 . fl. 

] 
i=l 

1. ] 

or by using matrix notation 

where 

{X}T = {Z., y., fl., I} 
] ] ] 

+ A4i) u. 
1. 

j S,N 

Comparing Equations (5) and (1), it is seen that the constants r .. in 
JI 

Equation (1) are given by 

i 1,4, S,N 

(4 ) 

( 5) 

( 6) 
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3. STRUCTURAL ASSESSMENT 

In the structural assessment procedure each strength member is checked 

against various possible modes of failure. The failure modes which de

termine structural capability include: excessive yielding; buckling of 

columns, plates, and panels; and excessive permanent lateral deflections 

of plates. 

It was mentioned in the Introduction that in ship structures most of the 

principal factors which determine the structural demand and structural 

capability display statistical variations. Hence it has been found appro

priate to use a probabilistic basis which can reflect uncertainties in es

timating the structural demand and capability. I n the present procedure 

the measure of structural safety is achieved by means of load factors and 

capability reduction factors in the form 

where 

GD denotes the responses in the individual structural elements 

(forces, moments, deflections) 

(7) 

GC denotes the various limit states in the structural element (yielding 

capability, buckling strength, etc.) 

DK represents a characteristic load on the structure 

CK represents a characteristic strength of the structure (material 

properties) 

a symbolizes a load coefficient which reflects the seriousness in ex

ceeding the limit states. In the program a distinction is made be

tween a load factor a for collapse and a load factor a for ser-c s 
viceability 

6 symbolizes a load coefficient which accounts for the subjective un

certainties in determining the loads on the structure 

6 symbolizes a material factor reflecting subjective uncertainties such 

as the accuracy of fabrication and the accuracy of calculating the 

limit states. 
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The characteristic values OK' C K in Equation (7) are defined by 

( 8) 

Here 11 denotes the mean value, k is the p-fractile in the normalized dis-
p 

tribution functions for demand and capability, and 0 denotes the standard 

deviation. In Figure I~ is shown the principle of the above described method 

of using load factors and capability reduction factors in structural design 

to obtain an acceptable safety margin. 

'0 . Ie 

Demand D 

Capability C 

D&mand . Ca 

D.C 

Figure 4. Illustration of safety margin using load factors and capability 
reduction factors. 

4. SENSITIVITY ANALYSIS AND OPTIMIZATION 

Mathematically the non-linear optimization problem can be expressed as 

- Determine a set of design variables {x} which 

- minimizes ~ = f( (x}) 

subject to g.({x}) ~ 0 
) 

= 1,2, ... ,S 

(9) 

( 10) 
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Here 4> = f( {x}) is a scalar function which has to be minimized. I n the 

present case it is a combination of cost and weight expressed as a gen

eral differentiable function of a set of n design variables 

The constraints are expressed through the functions g.({x}) of the de
J 

sign variables. 

To solve this non-linear programming problem an iterative application of 

linear programming has been applied. Linear approximations of non-linear 

functions are accomplished by replacing the non-linear functions of the 

problem with their first-order Taylor series approximations expanded at 

the point of interest. 

The derivatives needed to get the Taylor series approximation can be ob

tained as differences obtained by re-analyses or by an analytically based 

procedure. Using an approach suggested in /8/, we shall in the following 

show that it is possible to get analytically based expressions for the gra

dients and thereby reduce the number of re-analyses. 

In the stiffness method the nodal point displacements {r} are related to 

the nodal forces {R} through the stiffness matrix [K] 

{R} ( 11) 

If x. denotes the i'th design variable in the vector {x}, then partial dif
I 

ferentiation yields 

[K]{r}, = {R}, - [K], {r} 
x. x. x. 

(12) 
~ ~ ~ 

This expression shows that if relatively simple derivatives of the load 

vector and the stiffness matrix can be obtained, then the derivatives of 

the displacements with respect to the design variables can be obtained 

by adding a number of right-hand sides to (11). 
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The right-hand side of (12) can also be expressed as 

{R} , 
X. 

1. 

- [K], 
x. 

1. 

{r} I 
over all 

{Q}global _ [k]?lobaJ {q}global 
, x. 

X. 1. 

elements l. 

( 13) 

where {Q} global and [k]global denotes element loads and stiffness matrices, 

respectively. 

z 

y 

x 

® 

Figure 5. Timoshenko beam element with stiff end zones in a local 
x, y, z coordinate system. 

For a Timoshenko beam element with brackets modeled as stiff end zones, 

see Figure 5, we have 

[k]global 
'x 

i 

a 
ax. 

l. 

Here the rotation matrix [n is independent of the design variables. Also 

the transformation matrix [5] which transfers stiffnesses and loads from 

the elastic beam ends to the nodes is here assumed to be independent of 

the design variables (the scantlings of the brackets are not included in 

the optimization procedure). But the matrix [E] which transfers stiff

nesses and loads from the torsional center of beam cross sections to the 
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center of flexure is a function of the design variables indicated in Figure 

1, and so is of course also the local stiffness matrix [k] for the flexible 

part of the beam. Finally, {Q} denoting the nodal forces due to loading s 
on the rigid beam ends is assumed independent of the design variables. 

Therefore, we have 

where 

[k], 
x. 

1 

Ed; 
x. 

1 

{Q}l + [E]T {Q}l'x. 
1 

Let the generalized local nodal displacements {q} be arranged such that 

the succession is 

where ux1 ' ex1 denote translation and rotation, respectively, in the local 

x direction at Node 1 and so on. Then the differentiated local stiffness 

matrix can be expressed simply as 

[k], 
x. 

1 

[a][k] + [b] 

Here [a] is a diagonal matrix with the elements 

(14 ) 
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a, 
J 

0 0 0 0 0 

a 2 0 0 0 0 

a 
3 

0 0 0 

[al1 ] [a22 ] symrn. a 
4 

0 0 

a 3 0 

a 2 

where 

a () 3 a 
--A ax. I ax. I ax. K ax. z y 

1 1 1 1 
a 1 A 

a, 
.I I 

a 
3 I 

a 
4 K 

z Y 

with A denoting the cross-sectional area, I ,I the cross-sectional moments z y 
of inertia, and K the Saint-Venant torsional stiffness factor. 

The matrix [b] is given as 

0 0 0 0 0 0 

b1 0 0 0 b 2 

b 3 0 b 4 0 

[baS] symrn. 0 0 0 a = 1,2 

bS 0 S 1,2 

b 6 

where with 

E I 

n 
y 

k GA denoting the shear stiffness, 12 
, 

Y k GA z ez 
z ez 

and with 

a a 
ax. I ax. A 

y ey 
I/i = 

1 1 (15) 
I A Y 

Y ey 

the elements are given as 

b1 
k(2,2) ( 1 

1) as l/iz \ 1 + 12n z 

k (2,6) 
l/iz (r 1 

- 1) b 2 as + 12n z 
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b 3 
k (3,3) ljiy C 1 

1) as + 12n y 
b 4 

k (3, 5) ljiy C 1 
- 1) as + 12n 

y (,51 ljiyC 1 +13n~ for a S as + 12n 1 
b 5 

Y 

k (5, 5) ljiyC 1 _16n~ for a " S as + 12n 1 
y 

k (6, 6) ( 1 
+13n ) S as ljiz \1 + 12n 1 

for a 
b 6 

z z 
k (6,6) ( 1 1 \ 

for a " B as ljiz \1 + 12n 1 - 6n ) 
z z 

As an example, on the outcome of a differentiation of the load vector for 

a Timoshenko beam element we can consider the consistent node force Qy1 
resulting from a linearly varying line load in the local y-direction with 

intensities qy1 and Qy2 at the ends of the elastic zones of the beam ele

ment 

where 

1 
Pz = 1 + 12 

z 

Partial differentiation of this expression with respect to the design vari

ables {x} T = [u, hw' f, hf ], see Figure 1, leads to 

where 1/Iz is given by an expression analogous to (15). 

The first-order derivatives of stresses with respect to the design vari

ables can also be expressed. The stresses at the beam ends can be de

termined as 
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where the sectional forces are given as 

By differentiation we get the stress derivatives 

{a}, 

where 

x. 
~ 

[c], 
x. 
~ 

{Q}t + [c] {Q}t,x. 
1 

{Q}t = {Q}, + [k], . {q} + [k] {q}, ,x. x. x~ x. 
~ ~ 1 

Also, for the stiffened membrane plate elements analytical expressions 

have been derived for partial derivatives of displacements and stresses 

with respect to the design variables indicated in Figure 1. 

So, in each step the linearized optimization problem can be expressed as 

Determine a set of design variables 
T {x} = [x1 ,x2 ,x3 ' ... ,xN] 

which minimizes 

N (af) ~(x) = I-x. 
j=1 \ aX j 0 J 

with the constraints 

N (ag .\ (ag .) I -~ x ~ I _l x. - g ({x}) 
j=1 axjJ o j - j=1 aX j 0 JO i 0 

i 1,2, .•. ,S 

where all the necessary derivatives can be found with just one triangular

ization of the overall stiffness matrix. 

The SLP is solved using variable move limits. 



www.manaraa.com

937 

As seen from Figure 6, the optimization problem contains a sub-optimization 

cycle where first all strakes and then all girders are redesigned. As already 

OJ .... 
u 

'" u 

'" " .... 
N .... 
e .... ., 
a. 
o 
I 

..Q 
;;J 
<Il 

Interactive plot program 

run for rational ship design 

NO 

Figure 6. Summary of optimization procedure. 

mentioned in Section 2, a strake is defined as a panel with secondary 

longitudinals and transverse beams between two guidelines as indicated 

in Figure 7. In such a strake all the stiffened membrane elements are 

of the same type, and all the transverse beam elements are of the same 

type. 

Figure 7. 

Stiffened plete 

"'--y 

~ 
/"" 

locel Gl 2 
/ 

locel GlI 

z 

Sub-element in the form of a strake in a local coordinate 
system. 
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IL NUMERICAL EXAMPLE 

The program has been used for optimization of ship structures of the type 

indicated in Figure 1 and for optimization of structural elements such as 

double bottom and bulkheads. Due to lack of space we shall here illu

strate the procedure by a very simple example in the form of an 8 x 5 m 

steel bulkhead subjected only to the uniform loading pressure shown in 

Figure 8. The same panel has been optimized in 19/. The finite element 

model of this bulkhead consists of one beam and two rectangular ribbed 

membrane elements. One on each side of the beam element. 

E 
It') 

I 
I 
1 

8m 

1 1 1 1 I 1 I 1--' __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_-
I 1 I 1 1 1 1 
1 1 1 1 1 1 1 
I I 1 I 1 I 1 
1 I 1 1 1 1 1 
1 1 1 1 1 I I 

I 
(Ws .hs}·fs Ws x hs 

T rYr T T T 

x 

-.s: 
x 

~~~/ 2 
O.054MN/m 

I 
Figure 8. Pressure loaded bulkhead with indication of dimensions, 

design variables, and boundary conditions. 

The design criteria express that the von Mises reference stress in the 

stiffeners is limited to 108 MN 1m2, that the plating shall not have notice

able permanent deflections after unloading, and that web thicknesses shall 

be larger than 1/60 of the corresponding web height. 

The object function is given as 
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~ = ~ e + ~ (1 - e) w c 
o 0 

where W = W({x}) is the panel weight, Wo a reference weight, C = C({x}) 

is the cost based on steel cost 10,770 kr. per m3 and welding cost 107.70 

kr. per m weld, Co is a reference cost, and finally e is a weighting factor. 

The results of the optimization are given in the following table and in 

Figure 9. Figure 9 also includes the effect of omitting the center beam 

so that the structure becomes a prismatic panel. 

Table 1. Optimization results for orthogonally stiffened bulkhead 

Object function ~ = ~ e +~ (1 - e) w c 
0 0 

Minimum weight Minimum cost 

e = 1.0 e = 0.3 e = 0.0 
Wo = 1.0 Wo = 2.89 t Co = 1.0 

Co = 12,200 kr. 

No. of stiffeners 47 16 11 

s (mm) 165 462 635 

hp (mm) 1.8 4.6 6.0 

Ws (mm) 156 229 379 

hs (mm) 2.6 3.8 6.3 

Af (mm 2 )=(ws ·hs )fs 199 428 1174 

wf (mm) 984 872 853 

hwf (mm) 16.4 14.5 14.2 

ff"hff (mm2 ) 4515 5693 5854 

Total cost C (1000 kr) 29.40 13.30 12.20 --
Total weight W (ton) 2.89 3.33 4.46 --
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Weight and cost of prismatic bulkhead (nxO grillage) and 
orthogonally stiffened bulkhead (nxl grillage) as functions 
of the weighting factor e. For the prismatic bulkhead the 
factor fs in Figure 8 is taken as 0.6318 and for the ortho
gonally stiffened. bulkhead fs = 0.4918. 

5. CONCLUSIONS 

The work presented here should be regarded as the authors' first step 

towards a practical procedure for automated structural design of marine 

structures. The approach is promising. But, among the needed im

provements are guidelines for substructuring procedures that guarantee 

a reasonably fast convergence. Based on the experience we have gained 

so far, a new program is being developed at the Technical University 

of Denmark which hopefully will be so flexible and robust that at some 

time in the future it can be used outside University walls. 
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ABSTRACT 

It has been demonstrated that optimal design is indispen
sable for the sizing of complex structures using composite materials. 
~significant application to the RAFALE wing optimisation saved 10 
% on structural weight and obtained a 25 % more stiffened structure in 
comparaison with a classical sizing. Sensitivity analysis gives a 
great knowledge on the structure. 

Multimodel optimisation, the most recent advance in our 
system, managing the synthesis of calculations on several static and 
dynamic models is described. A significant application to the lay-up 
of a compos ite wi ng panel is deta il ed (2 F. E. models with 3500 and 
13000 DOF, 80 models for panel buckling, 480 design variables, 1000 
static and aeroelastic constraints, 24 load cases). 

Then it clearly appears that the passage between the rough 
results of optimisation to the final shape of each lay is impossible 
to solve with classical drawing means. An algorithm computing the 
optimal shaKe of each lay now integrated in our C.A.D. system CATIA is 
described. n application on the previous wing panel is detailed. 

Close integration of C.A.D. systems and FEM systems, inclu
ding geometry, mesh generation, analysis and optimisation is an 
obliged way for greater developments and applications of F.E.M .. It 
will enable FEM system to optimize the shape of structures. Integra
tion of CATIA and ELFINI is described. 

Multimodel optimis'ation on complex structures needs a nearly 
prohibitive CPU time on classical computers. The interest of vectorial 
multi-processor architectures with extended core memory is showed. 

NATO ASI Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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1 - INTRODUCTION 

The optimisation module of ELFINI code has been developped 
since 1975 by Dassault-Breguet. The algorithm has been detailed in 
earlier papers (Ref. 1). 

Optimisation method minimise the weight by a finite element 
model. The optimisation design variables are multiplicative factors of 
the caracteristics of linked finite elements. Optimisation constraints 
can be of different types : 

- Technological minimum thicknesses, simple tooling rules, lay-up 
rules for composite materials, etc .... 

- Limited displacements, stresses and strains, 

- Miscellaneous failure and buckling criterias on metallic and compo
site materials. 

- Limitations on static aeroelastic coefficients, surface control 
efficiencies, divergence speed. 

- Limitations on frequencies, damping and flutter speed. 

The optimisation process is iterative, each iteration 
including three steps: 

- Analysis: static, dynamic, and aeroelastic. 

- Derivation of constraints with regard to the design variables. 

Explicit optimisation using an inverse variable formulation. 

Convergence is insure in about 5 iterations. 

We detailed the multimodel optimisation, managing several 
analysis models, the most recent advance in our code. 

The optimisation of the shape of lays on composite panels is 
described on a significant application on a wing box. 

Future developments in optimisation are exhibited mainly 
close integration between CAD system and FEM code and influence of 
supercomputers on optimisation CPU time. 
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2 - MULTIMODEL OPTIMISATION 

Optimisation has to provide the single physical caracteris
tics of a structure and must take in account all that could size it. 
So many F.E. models (or other type) are necessary, depending on the 
studied phenomenons. So optimisation must insure : 

- identification between design variables defined on several models 

- data transferts between models (caracteristics, boundary conditions, 
loads, ..... ) 

- management of calculation and derivation of constraints defined on 
several models. 

- the linking of all the design variables and constraints (values and 
derivatives) in the single expl icit optimisation step giving the 
optimum. 

The vertical organisation (Fig.1) of the models has needed 
some software investment and is able to manage several FE meshes with 
several boundary conditions, mass configurations (modal and flutter 
analysis), Mach number (aeroelasticity and flutter analysis). Other 
models are used for panel buckling analysis. 

The horizontal organisation (Fig.I), i.e. the data transfert 
between models, can be difficult. We give the exemple of transfert 
between a F.E. model and a Raleigh-Ritz model for panel buckling 
analysis using composite materials. 

G--"· 
tnt. number of lay in each direction'" 

<p stress flow in the panel 

~ derivatives of stress flow with) 
gAo regard to design variables .. 

Raleigh-Ritz model C(~,J) critical buckling factor 
for buckl ing analysis l---. 

C and dC/cAl are recovered by the optimisation monitor in the 
explicit optimisation step. 
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3 - OPTIMAL DESIGN OF A VERTICAL FIN 

We pre?ent the optimisation of the carbon-expoxy panels of 
the main box and the rudder of a vertical fin. Design variables 
represent the thickness of each ply (four design variables in the 
same mesh Fig. 2) and the main constraints are failure and buckling 
criteri as on compos ite materi a 1 s, rudder effi ci enci es and frequen
cies. The exact configuration of this optimisation follows: 

Model 1 Model 2 

F. E. Model s Fin model (1800 DOF) with Fin model with a de-
a super-element of the flected rudder (Fig. 2 
whole aircraft (Fig.2) 

Design variables 237 design variables on the number of lay, spars 
and ribs flanges (area) and web (thickness) 

Static Load cases 3 1 

Failure criteria 190 failure criterias on com- 190 
posite materials with holes 

Buckling criteria 98 buckling criterias computed 82 
from Raleigh-Ritz models for 
panel buckling analysis 

Displacements 1 on the step between main 0 
box and rudder 

Aeroe 1 asti city 8 constraints on fin and 
rudder yaw efficiencies 0 
for two Mach number 

Dynamic Frequencies of lrst flexion 0 
mode and rudder mode 

Technology 107 constraints on plies repartitions and on minimum 
distance between lay interruptions 

Explicit optimisation solves a problem with 237 design va
riables and 678 constraints with a conjugate projected gradient. The 
artificial "sparsity" of the partial derivatives matrix reach up 90 % 
of the 160.686 potential derivatives. 
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4 - LAY-UP OPTIMAL DESIGN ON COMPOSITE PANELS 

Intensive use of optimisation on composite structures has 
showed that the passage between the rough results of optimisation, 
with a patchworh type presentation, to the final shape of each lay is 
a long and difficult step very often impossible to solve with clas
sical drawing means. 

Now thi s passage has been speed-up with two comp 1 ementa ry 
tools 

1) An algorithm gives in interactive mode the optimal shape of each 
lay using the rough results of optimisation (number of lay in the 
basic directions for each mesh element of the patchwock) and lay-up 
rules as distances between cut-l ines of the lays and mixture of 
directions interrupted on a cut-line. 

This algorithm is now integrated in our C.A.D. system CATIA 
and we present a significant application on the lay-up of a wing 
panel (Fig. 3 - 4). 

2} An interactive fonction for lay-up drawing completely integrated to 
CATIA with all classical drawing means and composite specific fea
tures (staking sequence, thickness law, shape for sub-structure). 

It must be noticed that the small size of color raster video 
screens as IBM5080 and Tektronix 4125 unabled the drawing engineer 
to interactively design a lay-up because of a too small distance 
between cut-lines of lays (0,25 mm on the screen). 

5 - IMMEDIATE DEVELOPMENTS 

5.1 - Integration to C.A.D. system 

Close integration of CAD and FEM systems is an obliged way 
for greater developments and appl ications of FEM nowadays too much 
reserved to specialists. These new systems enable the design engineers 
to : 

- design the structure (geometry) 

- generate FE mesh and solve F.E. analysis (interactive or batch mode) 

- make optimisation with intensive use of sensitivity analysis (par-
tial derivatives and Lagrange multipliers). 

So the design variables will be extend from simple caracte
ristics (areas, thicknesses, number of lay) to the real shape of the 
structure - First test data showed that the great problems for shape 
optimisation are the definition of design variables on a shape and 
automatic and adaptative mesh generation. The CAD systems with a para
metric geometry will be very usefull. 



www.manaraa.com

948 

5.2 - Optimisation of un-linear structures 

Post buckling analysis of composite structures is one of the 
most significant advance of the last years (Ref. 2). The next chal
lenge is the optimisation of un-linear structure including post
buckling behavior. 

The most problems can be solved with a similar algorithm to 
those of linear structures with a sequence of analysis and partial 
derivatives. Derivatives computation are relatively less expensive 
than in linear structures: 

i ,..... = L.X 

. de;- _ L. "C> X 
,I - .. 'C». (» .. 

:: -
But this type of algorithm could lead to bad convergence on 

post-buckled structures with snap-through behavior. 

So a simultaneous resolution 
sation problems can be considered. 

{ 
M.: .. M()) 

cr ( X, ~ ) < tr"", •• 

VWt.t = 0 

of the analysis and optimi-

design variables 
displacements 
un-linear potential 

Recent advances in minimisation method based upon precon
ditionned matrices and explicit line-search (Ref.2) will be inten
sively used. 

5.3 - Super-computers and optimisation 

Multimodel optimisation on complex structures needs a nearly 
prohibitive CPU time on classical computers. Multimodel optimisation 
is very well adapted to multiprocessor computers. The cost of optimi
sation is made by the computation of partial derivatives. As detailed 
in Ref.l, partial derivatives consist in resolution of the FE problem 
with several virtual loads and the computational cost can be hardly 
reduced with vectorial computers (pipe-line). 

6 - CONCLUSION 

Multidisciplinary optimisation including aerodynamics, 
flight control, performance and structures is a very important develo
pment where multilevel optimisation can be considered (Ref. 3). 

Aside the computational cost of these applications, the 
choice of a multidisciplanary objective fonction is very delicate. 
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OPTIMISATION OF A VERTICAL FIN 
WITH COMPOSITE MATERIALS 

MODEL 1 (1800 DOF) 

MODEL 2 (DEFLECTED RUDDER) 

Fig. 2a 
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OPTIMISATION OF A VERTICAL FIN 
WITH COMPOSITE MATERIALS 

OPTIMUM DESIGN VARIABLES 

ACTIVE CONSTRAINTS 

)( n. 5\" 1. 38 

Fig. 2b 
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OPTIMISATION OF WING PANEL 

WITH COMPOSITE MATERIALS 

- MODEL 1 : COMPLETE AIRCRAFT : 13000 DOF 
- MODEL 2 : WING 3500 DOF 
- 476 DESIGN VARIABLES 
- 1000 CONSTRAINTS (24 LOAD CASES, 476 FAILURE CRITERIAS, 

144 BUCKLING CRITERIAS, AEROELASTICITY). 

Fi g. 3 
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OPTIMAL LAY-UP DESIGN 

WING PANEL 
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Demands within the international aerospace industry for the design of primary 
components of ever higher quality, at minimum weight and low cost, are growing 
constantly while pressure to achieve the shortest time scales remains strong. As a 
result, the use of computers in design and for structural mechanics is of growing 
importance. 

Structural optimisation is a suitable tool for the design of weight-optimised compo
nents, reducing both the time required and cost. Computer programs for structural 
optimisation have been in use for some years in the aircraft industry [1, 2, 3]. 
This paper shows how research originated at RAE has been carried through and ap
plied in an industrial context at MBB-UT. Some of the principle methods are out
lined and extensive applications are described. 

COMPUTER-AIDED STRUCTURAL OPTIMISATION 

The design of components is an iterative process in which the aim is to achieve a 
design that is 

• light 
• stiff 
• favourable to manufacture 
• inexpensive 

That is, in some sense, an optimum design. 

The design procedure, however, is very long if the conventional design process is 
applied. Lack of time often precludes a component being weight-optimised down to 
the last detail according to all important criteria. 

The intensive use of existing data-processing possibilities during analysis, in connec
tion with the Finite Element Method (FEM), with 

• display workstations 
• pre- and post-processors 
• graphics and evaluation programs 

constitutes an important step towards shortening the design process. 

Structural optimisation 'by hand' is a lengthly process even in the relatively simple 
case of the stress optimisation of a statically indeterminate structure. The work be
comes much more extensive and complicated if further requirements such as stiff
ness and frequency constraints apply. Structural optimisation is a valuable aid in this 
connection. 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 



www.manaraa.com

956 

Structural optimisation is generally understood to mean the fully automatic, weight
optimised dimensioning of components using programmed mathematical methods 
on an iterative basis (analysis and redesign). Different objective functions can be 
used for this purpose [I]. Here structural optimisation is understood as the weight
optimised dimensioning of components idealised as an FE-model of given geometry. 
This means that only the cross-sectional values - and not the geometry - of the 
structural elements are changed. 

The aircraft industry has often been a pioneer in using new technologies, as was the 
case with the Finite Element Method (FEM) and Computer-Aided Design (CAD). 
Both these processes have fundamentally changed the manner and form of struc
tural design, making both development steps more effective in themselves. 

Today the situation with structural optimisation is much the same as it was with 
FEM and CAD some years ago. Structural optimisation is being increasingly used as 
a rational tool offering the possibility to design weight-optimised components with 
cost and time savings in the preliminary and main design phase. 

2 STRUCTURAL OPTIMISATION PROGRAM STARS 

The method and examples described in this paper relate to a particular software 
package called STARS - Structural Analysis and Redesign System. It is a highly 
modular program system for structural optimisation of thin-walled components 
(Fig. 1)[4,5,6]. 

Fig. 1: 

INPUT DATA; 

.O •• i,nYIf;lblu 
• Conl1rl;ntdu.onput 
., S.llct;on01 modul •• 
• ConvergenCY e,ittrion 

RESULTS: 

• StroU •• /d"plutmlnu 

• W.,ghl 
• F,.qulncylflun., .pud 

Modular set-up of STARS 
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Program Overview 

STARS accomplishes fully-automatic weight-optimised dimensioning of thin-walled 
components. For this purpose, the component must be available in form of an FE
model. Only the cross-sectional values (element thickness and cross-sectional areas) 
of the FE-model are varied in the course of the optimisation, the geometry remain
ing unchanged. The structural optimisation problem can be outlined as follows: 

The dead weight W(x) is the objective function of optimisation. It depends on the 
individual design variables x, the cross-sectional areas or the thicknesses of the 
elements The objective function has to be minimised whilst at the same time 
fulfilling various constraints. 

The following constraints can presently be taken into consideration simultaneously: 

• Stresses 
• displacements 
• vibration amplitudes 
• natural frequencies 
• bounds on thickness and cross-sectional areas 
• flutter speed. 

The flutter optimisation is achieved by interfacing STARS to the MBB-UT program 
AEROOPT [7] for the calculation of the flutter speed and its derivatives. 

Depending on the constraints to be considered, the following optimisation methods 
can be used to solve the problem [6]: 

• Stress Ratio Method (SRM) 
• Pseudo Newton Method (PNM) 
• Optimality Criteria (strain energy density) (OPCR) 
• Non-Linear Optimisation Process (NLOP) 

Structural optimisation consists of a fully automatic interaction between analysis 
and redesign. The standard analysis program used by MBB is MSC-NASTRAN 
[8], an FE-program based on the displacement method, which is widely used in the 
aerospace industry. SRM and PNM have proved to be very successful for redesign 
purposes. Moreover, experience has shown that a combination of both procedures 
can be very advantageous for many practical problems [9]. 

Present Development Status 

Fig. 2 briefly outlines the present development status of STARS. 

Components made from metal as well as from fibre-reinforced materials can be opti
mised for several load cases whilst simultaneously allowing for stress, thickness and 
displacement constraints. Furthermore, components subjected to periodic loads can 
be optimised and frequency optimisation and flutter optimisation of components 
are possible. 

The NASTRAN elements used for such computations are listed in the figure. 
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Linearly elastic FE-models of any size can be optimised, although the natural 
limits of the computer capacity and the costs of computing do set limits to the maxi
mum size of components to be optimised. Fig. 3 shows the most important values for 
the present STARS dimensioning on the IBM-308l-K at MBB in Bremen. 

The structural optimisation can be performed either interactively or in batch opera
tion. Data pre-processing and post-processing can be accomplished automatically 
with the aid of various pre- and post-processors. 

The largest optimisation model hitherto processed with STARS at MBB-Uf was a 
composite test example with 1500 elements, 1500 design variables and 1500 con
straints, approximately 3500 degrees of freedom and one load case. 
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Fig. 2: Present development status of ST ARS 

Maximum number of nodes 3000 Maximum number of load cases 

Maximum number of elements 8000 Maximum number of materials 

Maximum number of design variables 1500 Maximum number of active constraints 

Maximum number of constraints 16000 Maximum number of natural frequencies 

Fig. 3: Current dimensioning of STARS at MBB 
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3 PRINCIPLE METHODS 

Mathematical Foundations 

Mathematically, the goal is simply expressed as: 

Minimise W(Z), 

subject to g(z) ~ ci, i = I ... , m, 

where z is the vector of n design variables and the constraints establish the be
havioural response considered acceptable for the structure. 

Some mathematical programming techniques based on hill-climbing approaches 
address this problem directly. However, for the present purposes, it is better to em
ploy an equivalent formulation based on use of the Lagrangian function L (z, A), 
where 

m 
L (z, A) = W (z) + 1: Ai (gi - Ci)· 

i=l 

The Lagrangian function depends on two sets of variables: the primal variables z, 
and the dual variables (otherwise known as Lagrange undetermined multipliers). A 
necessary condition for the minimisation of the original constrained optimisation 
problem is that the Lagrangian function should be stationary with respect to both 
primal and dual variables. Differentiating yields the well-known Kuhn-Tucker con
ditions. 

m 
\lW (z) + 1: Ai \lgi = 0 

i=l 

Ai (gi - ci) = 0 } i = I ... , m 
Ai ~ 0 

The location of a stationary point thus requires the solution of a system of ( n + m) 
simultaneous non-linear equations, as difficult a task as the original minimisation 
problem! 

Structural Considerations 

For the mathematical formulation above to applied in a structural context it is first 
necessary to define the design freedoms considered. In the following, elements are 
linked into groups, the stiffness of each being assumed to scale linearly with a single 
controlling design variable x. Thus the areas A of bars or the thickness of plates 
are given by. 

k= I ... , N , 
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where B is a Boolean matrix and a is a reference area for each of the N elements. 
The structural weight 

reduces to 
n 

W = L Wj Xj 
j=l 

N n 

L L Qk ak lk Bkj Xj 
k=l j=l 

where the coefficients ware component masses given by 

N 
W' = L Qk ak lk BkJ' 

J k=l 

and Z are reciprocal variables, Zj = I / Xj, used above. The use of the reciprocal 
design space is adopted as a well-known device to linearise constraints arising from the 
design of statically loaded structures. 

The Pseudo-Newton method is based on the direct solution of the Kuhn-Tucker 
equations and requires knowledge of design sensitivities with respect to these vari
ables. STARS maintains a tight active-set strategy and therefore requires relatively 
few sensitivities to be calculated at any iteration. It uses fully analytic derivatives, 
to be contrasted with the semi-analytic approach employed within NASTRAN, and 
the calculation employs the adjoint, or dummy load, method [10]. 

Thus for a constraint on g (z) = eTu the combined effect of the use of reciprocal 
variables and design-variable linking is to give a form for the derivatives 

\7g=vT [ ~ 
k=l 

involving a summation over all elements linked to a given design variable, where Kk 
is the k-th element stiffness matrix and v is the adjoint displacement vector satis
fying 

KTv= e. 

Newton Method 

The approach taken is that employed previously [11] for the solution of strength 
critical problems for which the solution is known not to be fully-stressed. That is, it 
is assumed that the critical stresses have been identified, and so the Kuhn-Tucker 
equations are formulated for a set of active equality constraints. 
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As a first step towards solving this set of non-linear simultaneous equations, a linear 
approximation is formed about the current point zO, AO, giving 

[ V' W + ~l X OJ 'V' gi 1 (z-z"J + i~ VI!; (X -},fl = -{V W + ~ Xi Vgi } 

(z-ZO) 

Like any application of Newton's method, the repeated solution of this set of linear 
equations does not necessarily converge: but provided the start point lies within the 
domain of convergence, then that convergence will be quadratic. Unfortunately the 
requirement that second derivatives should be provided for all constraints in the 
active set requires excessive computation. 

Thus, rather than emploing an exact Newton step, the equations are further approxi
mated by neglecting second derivatives of the constraints. Such approximations are 
already implicit in both the stress-ratio and optimality criterion methods, and are 
known to be exact for statically determinate structures, optimised with respect to 
reciprocal variables. 

={ W
j } _ ~ 

z/ i=l 
A·o \lg. 1 1 

For a more general class of problems, this need to depart from the strict Newton form 
will lose the quadratic convergence properties, indeed it is quite possible that the 
iteration may deverge from any solution. In practice, however, many structural 
problems appear to be exceptionally well-behaved, giving good convergence to mini
mum weight designs. 

Omitting the second derivatives of constraints, in fact, gives a very simple form for 
the linear equations. The weight as objective function is convex and separable, giving 
a diagonal Hessian matrix with positive coefficients. Thus, the first equation may be 
used to explicitly eliminate the primal variables from the constraint set, giving a re
duced system of equations in which the dual variables are the unknowns. 

At first the intention was to complement the optimality criterion method, and so it 
was assumed that such a method had been applied until convergence is reached. That 
is until the optimality conditions are satisfied; giving zero on the right-hand side of 
the first of these equations. 

If this is done, the step actually taken in the primal space may be interpreted as a 
weighted least-squares restoration step, shown as SO in fig. 4. The step moves towards 
satisfaction of the constraints while minimising the length of the step, using the 
Hessian of the objective function as the metric. 
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~--------------------------~ z, 
Fig. 4: Step length control 

The use of this restoration step alternating with standard optimality criterion steps 
was shown to be effective; indeed the precursor program to STARS had such a strate
gy 'hard-wired' into it. While this procedure has some elegance, the assumption that 
the alternating steps of optimality criterion are necessary to satisfy the Kuhn-Tucker 
equations is not strictly true. Simply restoring the right-hand sides to the first set of 
equations removes the need for any such assumption. The additional increment OA 
to the step taken may be shown to lie in a surface parallel to the constraints. This 
combined step SA may then be alternated with the optimality criterion step or, more 
frequently, it is used by itself. 

Step-Length Control 

Even the simple problem of static strength design already described exhibits some 
non-linearity for indetermine structures and the algorithms based on the locallineari
sation of constraints could, in theory, diverge from the solution. To improve the 
convergence characteristics some form of step-length control is required. 

To avoid a line search invoking repeated analyses, higher order derivatives are em
ployed. In the Pseudo-Newton method the step-length control is based on second 
derivatives, which are calculated by differencing the analytic first derivatives. The 
restoration step is left unaltered because we still wish the combined step to satisfy the 
linearised constraints. Thus it is only the optimisation step, lying in the tangent 
space to the constraints, that is scaled . 
By considering change 

dz = dzO + s dzA 

and requrrmg the Lagrangian to be stationary in the direction dzA, the first of the 
Kuhn-Tucker equations reduces to 
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963 

dzA '\72 W dzA - dzA 1: Ai '\72 gi dzO 

dzA '\72W dzA + dzA ~ Ai '\72 gi dzA 
1 

It is a measure of the effectiveness with which the original scope of the problem was 
specified, that having implemented the step-length control, few examples could be 
found to illustrate its effectiveness. 

One example which has been found recently with the incorporation of plate-bending 
structure is based on a simple cantilever problem, shown in fig. 5. The improvement 
achieved by scaling is considerable, though this must be in part due to the small 
number of design freedoms making the selection of the search direction trivial. 

More stringent step-length controls are required if the goal is to achieve global con
vergence to a local minimum [12]. To date our experience is that the algorithms 
described here perform well on structural problems without such safe-guards. None
theless they should be included, provided they do not require excessive computation. 
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4 INDUSTRIAL APPLICA nONS 

This chapter describes some characteristic examples of the practical application of 
ST ARS at MBB. These examples relate the stress, stiffness and frequency optimisa
tion of metal and composite components as well as an optimisation of the track 
positions of a flap. 

ST ARS is applied not only in the preliminary design phase but also in the main de
sign phase. Consequently the FE-models used for optimisation will differ in the level 
of detail employed. The characteristic values of the FE-models and optimisation 
models are shown in the different illustrations of the application examples. 

Fig. 6 shows a simplified FE-model (preliminary design) of the aluminium inner flap 
of the Airbus A310 with the constraints and a sketch of the load case considered 
[9]. In this optimisation run, not only the allowable stresses were taken into con
sideration as constraints but also the displacement constraint shown in fig. 6. 27 DV's 
were used in this model. The optimisation results in fig. 8 show the typical result 
for a SRMjPNM combination. On the basis of the DV history plots and fig . 9 and 10, 
it is seen that the SRM converges very quickly for element areas which have been 
dimensioned stress-wise (e.g. DV 8, 9, lOan II; element 643). The plots for the areas 
to be dimensioned with regard to the stiffness (e.g. DV 12, 13, 14, 15; mode 62) 
show, however, that the SRM is not suited for stiffness optimisations. In this case, 
the PNM reaches the optimum in just a few steps on the basis of the stress pre-opti
mised FE-model. 

OIfligIHI of f,Hdom 
Material, 

1 Lo.d ales 
27 D.s.Ign ""deb'.' 
400 Sl'HI corutrainu 
2 Ol1P1Klrnen1 conlUllnll 
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Fig. 6: Simplified FE· model of inner flap Fig. 7: Design variables at simplified FE-model 
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Fig. 8: Results for simplified FE-model 
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Fig. 9: Displacement of nodes versus iterations Fig. 10: Element stresses versus iterations 

In contrast, fig. 11 illustrates the FE-model of the aluminium inner flap of the Air
bus A3l0 during the main design phase [9]. With due consideration to the two load 
cases which determine design , this model has been optimised using 92 design vari
ables . 

EI .. mln11 

Otgr ... ot freedom 
3 Mat.rl,h 
2 load ClWS 

92 Design vlrieble, 
1200 SItHt constraint' 
2 D is.placement consn. inu 

Fig. 11 : FE-model of inner flap of Airbus A31 0 

Fig. 12 shows the FE-model of the frame for a modern fighter aircraft in the pre
liminary design phase. This aluminium-titanium frame is subjected to the wing attach
ment forces. The allocation of DV's is given in fig. 13 . 

From the optimisation results obtained, fig. 14 plots the weight curve and some 
DV's versus the iterations. The weight curve shows clearly that the subsequent PNM 
leads to a lower optimum' weight than when SRM only is applied. 

The physical reason for the difference in weight is as follows: 

The SRM gives preference to the frame reinforcement (rod elements linked to DV 70) 
for load transfer at the wing attachment frame. By using the sensitivity analysis, the 
PNM determines that a load transfer through the frame wall (membrane elements 
linked to DV 90) is the best solution with regard to the weight and therefore changes 
the initial design determined by the SRM. 
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Fig. 15 and 16 give two further practical applications. The FE-model of the wing box 
of a modern airliner is shown in fig. 15 . This FE-model (metal inner wing/ composite 
outer wing) served as the basis for stress optimisations at the inner and outer wing 
within the scope of a study. In these optimisation runs the number of DY's was 
systematically increased in successive runs. 

4300 E ~menll 
4500 Degree. of freedom 
2 MalltrUih 
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194 Oelign variable. 
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Fig. 15: FE-model of wing box 

The FE-model of the fin of a modern fighter aircraft (composite) is shown in fig. 16 
and the weight history plot of a stress optimisation with the two selected load cases is 
given in fig. 17. 
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Fig. 16: FE-model of fin 
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Fig. 18 shows the FE-model of the Short Supply Mast (SSM) of the planned space 
station COLUMBUS. MBB-ERNO is examining this composite tube construction in 
a study [13]. After stress optimisation, this FE-model was additionally frequency 
optimised with PNM using 7 DV's (which correspond to seven tube types) . The 
results show that the frequency constraint for the first eigenvalue is fulfilled in four 
iterations (fig. 19 and 20). 
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Fig. 18: FE-model of Short Supply Mast 
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Fig. 20: Optimisation result: 
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In all the applications so far mentioned, the geometry and the support of the FE
models were not considered variable. The simple beam model of a flap system sketch
ed in fig. 21 shows that structural optimisation can even be used to optimise the po
sition of the flap tracks. 

The aim of the investigation [13] was to change the positions of two track stations in 
such a way as to give the flap system a minimum weight at a specified geometry and 
load as well as at predetermined stress and displacement constraints. Six different 
FE-models of systematically selected combinations of the track positions were pre
pared for this purpose (fig. 22). A combined stress and stiffness optimisation was 
achieved for each FE-model. The optimum positions of the tracks can be deduced 
from the graphic display of all established optimum weights (fig. 23). 

The interaction between designer and structural optimisation as described .here for 
optimum placement of supports can naturally also be applied to other types of com
ponents. 
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5 RESULTS AND CONCLUSIONS 

The industrial application of structural optimisation in aircraft construction has 
convincingly demonstrated its many advantages, Conclusively, the following can be 
said: 

• Large and complicated components made of metal and composite materials can be 
weight-optimised with the optimisation methods used 

• Weight savings over conventionally designed components are possible 
• The development costs can be reduced and shorter process times achieved 
• The computing costs for optimisation runs, per iteration step, amount to approx, 

one to three times of the costs of stress analysis alone (depending on the optimi
sation method employed), 

On the whole, structural optimisation has become an efficient design tool for the 
preliminary design and main design phases, Further development, integrating the pro
cess more closely with standard design practice, will improve the possibility of de
veloping components of even better quality in less time, 
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WEIGHT OPTIMIZATION OF AIRCRAFT STRUCTURES 

Torsten Brama 
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S-581 88 Linkoping, Sweden 

ABSTRACT 

The general structural optimization system OPTSYS has been 

developed. In this system software for mathematical programming, 

structural, aeroelastic and aerodynamic analysis are integrated. 

The system design and methods used in OPTSYS are presented and 

applications to aircraft structures are supplied to show the 

capabilities of the system. 

BACKGROUND 

Saab Aircraft Division and the Aeronautical Research Institute 

in Stockholm (FFA) are since 1982 developing a structural 

optimization system called OPTSYS. We decided to build our work 

on an existing system, developed by B. Esping who had been 

working with structural optimization for several years at the 

Royal Institute of Technology in Stockholm, ref (4). In late 

1983 we got the CRAY 1 computer and a few months later the first 

version of OPTSYS was tested. At Saab Aircraft Division OPTSYS 

is linked to the ASKA FE-system, while FFA is using an inhouse 

FE-code named BASIS. We have however the major parts of the 

software in common. OPTSYS is today running on VAX and CRAY. 

PROBLEM STATEMENT 

Consider a structural optimization problem in the following 

general form: 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
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Minimize W ( X) , X (x ,x , •.• ,xn ) (1) 
1 2 

subject to g j (X) < gj j=1,m (2) 

and x. 
-J. ~ xi < xi , i=1,n ( 3) 

I: d ij 
i 

xi ~ d j , j > m ( 4) 

The objective function (1) (eg. weight) and the constraints (2) 

(eg. stresses, deflections) are implicit nonlinear functions of 

the design variables, X. 

The variables are also bounded by upper and lower limits (3), 

corresponding to, for instance, fabrication considerations. 

Sometimes you also need an additional set of linear constraints 

(4),(eg. upper limit for total thickness of a composite stack 

when layers are associated to individual variables). 

PROBLEM SOLUTION 

The general approach used for solving this implicit problem is 

to generate a sequence of explicit subproblems according to the 

following iterative scheme: 

i Choose a starting set of variables XO. 

ii Calculate the current values of objective and constraint 

functions, using for instance a FE-model of the 

structure. Select an active set of constraint functions 

and calculate their gradients. 

iii Generate an explicit and convex subproblem by 

approximating (1) and (2) through a first order 

expansion based on the calculations in the previous 

step. 
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iv Solve this subproblem and let the solution be the next 

iteration point Xk. Go back to step ii. 

This process is interrupted when some convergence criteria are 

fulfilled or when the user is satisfied with the current 

solution. 

There are three basic tasks in each iteration, analysis, 

gradient calculation and solution of the subproblem. These task 

are expensive, therefore it is of great importance that the 

subproblem as good as possible approximates the original problem 

in order to get few iterations. 

We can today choose between three different algorithms, the 

DUAL-2 by Fleury, ref (2), one by Esping, ref (4, 5) and the MMA 

by Svanberg, ref (3). All of these are using a dual formulation 

to solve the subproblem. The MMA algorithm which was developed 

and implemented during 1985 has been used since and so far 

behaved well in all applications. 

OPTSYS SYSTEM 

The system consists of a number of stand alone programs, each 

with a well defined task, and a central optimization database, 

ODB, which is an application of a general database system 

MEMCOM, ref (15). 

Some programs are standard inhouse analysis programs only 

communicating with its own database, others transfer information 

between two databases through subroutine calls. 

This approach requires that you have access to the internal data 

structure in the FE-database. In this sense the ASKA system is 

very suitable as it is a highly modular FE code and the user has 

access to a large library of subroutines. 

The MONITOR function is used to control the optimization 

process, ego get the iteration history, redefine or modify the 

problem statement, create the proper execution procedures as the 
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calling sequence of programs depends on the application. In VAX 

you also have a complete interactive access to ODB through a 

standard monitor included in MEHCOH. 

The system sketch below indicates the OPTSYS system functions, 

where each box consists of one or several stand alone programs. 

AERODYNAMICS I MONITOR I STRUCTURES 

DATABASE Flexibility F DATABASE I FE-Model t:= DATABASE 

AERODYN. - Derivative !!. - OPTIMIZA· STRUCTURES 
WINGBODY OXj TION ----f Dafine optim. I FINITE 

ELEMENT --l Update FE· r Efficiency 11 
model -- Derivative ~ -----aXj I FE·Analvsis ,:;:::::: 

~ Gradients I ----- aw.~. ax; , aXj' .... 

l f 
Optimization 

New structural 
variablls 

Fig I OPTSYS system 

OPTSYS FEATURES 

The features of OPTSYS are listed below. The options within 

parenthesis are currently under development and have so far not 

been tested on production like applications. 

Objective function 

Structural weight or the moment of inertia around an axis. 

(Linear combinations of the quantities above and constraint 

functions). 

Constraints 

General deflection constraint expressed as a linear combination 
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of displacement components. Stress and strain constraints. Lower 

bound on eigenfrequency. Aileron efficiency constraint. Local 

buckling. (Flutter.) 

Variables 

Sizing variables as cross section areas in rods, thicknesses in 

membranes. In the case of a composite stack, the ply thicknesses 

and the fibre direction. Location of nodal points. (Shape 

variables using a CAD approach ref. (4)). Variables can be 

continous or discrete. Variables are linked to meet practical 

requirements. Variables are given upper and lower limits. 

Elements included 

All element types can be included in the FE model but variables 

and element dependent constraints like stresses can today only 

be associated to the following set of finite element types. 

Namely the 2 and 3 node bar, 6 and 8 node membrane, 3 and 4 node 

shell (only membrane stress) and 15 and 20 node solid elements. 

This set can however easily be extended. 

Pre and post processing 

There are tools for creating the input file defining the 

optimization problem and for documentation of the optimization 

process. The standard inhouse pre- and post processors can of 

course be used for the ASKA FE-model. 

GRADIENT CALCULATION 

Derivatives on element quantities like weight, stiffness and 

mass matrices are derived numerically using finite differences 

and stored in ODB. 

(5) 
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These derivatives are later used when calculating gradients for 

objective and constraint functions. This approach makes it 

especially easy to implement new elements. 

Weight gradient 

The complete weight gradient is evaluated by assembling 

contributions from all elements affected by the design 

variable. 

dW/dx 

Deflection gradient 

The static problem can be formulated, 

K u p. 

(6 ) 

The general deflection constraint can be expressed as a linear 

combination of components in the displacement vector. 

d u t q < d max 

The gradient is now assembled, using (5), as 

d(d)/dx = - L (u t dk /dx v ), if 
e e e e 

dp/dx o (7 ) 

where v is the solution to the new equation system, 

K v q 

Strain and stress gradients 

These gradients are in the simple isotropic case evaluated in a 

similar way as 

dE/dx dk /dx v ) + dq /dx 
e e e 

(8 ) 
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with e: = u t q and K v q 

e: being the element strain vector. 

Eigenfrequency gradients 

With the eigenvalue problem formulated as 

( K - w2 M )a o ,and at M a 1 

gradients for w2 ,using (5) are given by 

dw 2 /dx L (at dk /dx ) w2 L (at dm /dx a ) e e e a e - e e e e ... (9) 

The constraint is then stated as 

Aeroelastic gradients 

2 
w min or -w 2 < -w 2 min 

For aerodynamic and aeroelastic analysis the FFA-WINGBODY 

program is used ref. (9). The program solves a linearized 

potential equation using a panel method. Among other quantities 

the FFA-WINGBODY can calculate aeroelastic efficiency parameters 

which are important for aircraft performance. This parameter ~ 

is defined as the ratio of an aerodynamic response quantity for 

an elastic structure over a rigid, ref (7). 

Gradients of ~ with respect to design variables x can be 

calculated if the program is provided with a structural 

influence matrix (EM) and its derivatives (d(EM)/dx), computed 

at the panel points. (EM) is defined by the relation 

s - (EM) F 

where F is the vector of forces in panel points and S is 

corresponding slope changes. An application on aircraft 

structures is presented in ref (8). 

(10) 
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Flutter gradients 

Flutter is a serious vibration phenomenon which if it occurs 

might be disastrous. It is therefore vital to be able to avoid 

flutter during the optimization process. Analysis of this 

aerodynamic instability yields a nonlinear eigenvalue 

problem. The location of the eigenvalues in the complex plane 

indicate if the vibrations are stable or not. The method that is 

used at Saab Aircraft Division to solve this problem is 

described in ref.(10). This flutter analysis program has 

capabilities to calculate also the derivatives of the complex 

eigenvalues with respect to design variables, ref. (11). In 

order to reduce the number of unknowns, the flutter problem is 

expressed in a base ~ of m selected structural eigenmodes. The 

information needed from the structural FE model is, besides the 

selected modes and corresponding frequencies, the stiffness and 

mass matrices and their derivatives transformed to the modal 

space. For example the reduced stiffness derivatives, dKm/dx, 

can be evaluated like 

~tdK/dx ~,or expressed as an assembly operation 

l: 
e 

~t dk /dx ~ 
e e e 

(m x m) 

MMA, THE METHOD OF MOVING ASYMPTOTES 

The demands for a good optimization algorithm could be 

summerized in the following qualities. 

( 11) 

Reliability. It should always converge to a good feasible 

solution. 

Efficiency in terms of few iterations. 

Generality. It should be able to treat all types of variables 

and constraints, ego discrete variables, negative variable 

values, mixture of linear and highly nonlinear functions, and 

reasonably infeasible initial designs. 
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As we were not quite satisfied with the algorithms available at 

that time, we started in early 1985 a cooperation with K. 

Svanberg at the Royal Institute of Technology in Stockholm, who 

had some interesting ideas. 

He came up with the MMA algorithm. It can be looked upon as a 

generalization of an algorithm proposed by Fleury using mixed 

direct/reciprocal design variables, ref (1). The expansion 

is now made in variables of type 1/(U i -x i ) or 1/(x i -L i ) 

depending on the sign of the gradient. Li and Ui are the 

moving asymptotes. It can be shown that if you let Li = 0 

and Ui reach infinity you end up with the algorithm by Fleury. 

The new idea here is firstly that each variable has its own 

upper and lower asymptote and secondly that these asymptotes can 

be moved between iterations. Rules for how to move the 

asymptotes are based on information about iteration history for 

the variables and on human experience and intuition. In this way 

the algorithm is automatically tuned to generate improved 

approximate functions during the optimization process. 

The rules used today for how to move the asymptotes can 

briefly be described like this. If a variable tends to 

oscillate the process needs to be stabilized. This is 

accomplished by moving the asymptotes closer to the current 

variable value and in this way create a more conservative 

function approximation (ie. with more curvature). On the 

other hand when a variable is steadily going in the same 

direction the asymptotes are "moved away" to speed up the 

process. 

There is a set of parameters for MMA controlling the rules for 

how to set the initial position of, and how to move, the 

asymptotes. These parameters can be set by the user in the input 

file or changed between iterations using a monitor function. 

However, the default parameters should be sufficient to solve 
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any problem, although another set of parameters would have been 

more efficient. As the character of constraint functions is very 

difficult to estimate in advance, it is important to have an 

algorithm which can improve itself. 

MMA has proved to solve large problems efficiently. 

The treatment of discrete variables and equality constraints 

will be implemented in MMA during 1986. 

APPLICATIONS 

The fighter aircraft composite wing 

Problem statement: Minimize the wing weight by varying ply 

thicknesses and the fibre directions in upper and lower skin 

including constraints on fibre strains and wing torsion 

stiffness. The FE-model contains 1046 elements, 1571 unknowns 

and 2 loading cases. A total of 92 independent variables, 90 ply 

thickness variables and 2 fibre directions corresponding to the 

zero degree ply in upper and lower skin. 432 strain constraints 

and wing torsion constraints at two wing sections. 

With fixed angle variables the process converges with a weight 

reduction of 8.5 %. Some strain and torsion constraints has now 

reached their limit value. When letting the angles free the 

convergence is slow. To get a feasible solution the angles where 

fixed again at 68 degrees giving a total weight reduction of 

11 %. The CPU time on the CRAY 1A is 100 seconds per iteration. 

Recently this problem was restarted after iteration 10 with the 

new MMA algorithm giving the result indicated with the dotted 

lines. After 4 iterations we have a similar solution as 

previously. 
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Fig 2 The fighter wing 

The fin rudder 

Problem statement: Minimize the moment of inertia around an axis 

a, by varying the ply thicknesses including a lower bound for 

the eigenfrequency. The FE model contains 346 elements and 1859 

unknowns. A total of 393 independent design variables in 131 

elements and only one constraint. 

The initial design is infeasible as the eigenfrequency is to 

low. The wanted eigenfrequency is reached already after the 

first iteration and the objective function converges after 7 
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iterations. When the lower bound is raised another 7 Hz, the 

new optimum is reached after 4 iterations. 

The CPU time is 44 seconds per iteration on the CRAY lA. 

Moment of inertia 

JOO 

210 ~------..::-------r 

r. 200 ~-----:---::---:::---:--::-s -~6-~-~-9--1~O--I1---lt-er~a-ti-o-n 
~Mf/IJ w - conUtaint 

(78.8 H" 

Fig 3 The fin rudder 

Shape optimization of a cantiliver beam 

a 

Problem statement: Minimize the weight of a beam subjected to an 

eigenfrequency constraint of 1 rad/s by varying the cross 

section shape. 

The beam has a constant length of 10, an initially quadratic 

cross section area of 1 and density 1. It is modelled by 10 

solid 20 node elements . The node coordinate variables are linked 

to keep element edges straight and the cross section 

rectangular . This means two independent variables in each cross 

section, giving a total of 22 shape variables. 
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As the eigenmodes occur as pairs due to the symmetry in this 

problem the quadratic shape of the cross section is 

automatically kept during the process. The shape has converged 

after 10 iterations having reached the upper limit of the shape 

variables, corresponding to the minimum area, in the three 

outermost sections. The number of iterations needed to solve 

this type of problems using MMA is in the range of 7 to 15, ref 

(12) • 

110tij 

final area distribution: .307, .275, .242, .204, .166, .125 
.089, .052, .040, .040, .040 

Fig 4 Shape optimization 

PRACTICAL EXPERIENCE 

J 

iter weight freq 

0 10.0 1.10 
1 6.29 1.13 
2 6.77 1.16 
3 4.96 1.25 
4 l.04 1. 51 
5 1.85 1.23 
6 1.41 0.908 
7 1. 36 0.961 
6 1.41 1.00 
9 1.40 0.999 

10 1.40 1.00 

When you start to use a system like OPTSYS on real life problems 

you are immediately confronted with demands for further 

development and practical considerations that has to be taken 

care of. It is therefor very important to have a flexible system 

design which as far as possible is prepared for future 

extensions. 
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Systems like this tend to become very complex as software from 

several sources are linked together to an integrated unit. The 

need for careful planning and documentation is obvious. 

The optimization system is not limited to solve the classic 

weight minimization problem. It can be a useful tool in a wide 

range of investigations. Already the basic gradient information 

is useful, ie. what is the influence of each variable on 

objective and constraint functions? 

Is there a feasible design to my problem? 

What is the cost in weight to change the limit of a constraint? 

What is the potential weight reduction of a change of material? 

Etc. 

CONCLUSIONS 

Using a good optimization algorithm together with efficient 

analysis tools and a general database based program system, it 

is possible today to create an efficient and general system for 

structural optimization. Providing you have a fast computer, it 

is possible to treat large and complex structural optimization 

problems within resonable time. The OPTSYS program is developed 

continously and has so far proved to have the flexibility 

needed. 
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A CAD approach to structural optimization 

B J D Esping and D Holm 

Dept. of Aeronautical Structures and Materials 

The Royal Institute of Technology, Stockholm, Sweden 

Abstract 

A general approach to shape optimization based on CAD 

formulations is proposed and implemented in the OASIS

ALADDIN system for structural optimization. Two large 

scale examples demonstrates the ideas. 

Introduction and design concept 

CAD, in a very wide meaning, involves not only drafting, 

but also analysis and redesign (fig 1) 

WEIGHT - 1000 kS 

~::::::::::::?1 OUTPUT" 

- COMPUTING -

COMPUiER OlJiPUT-MIN1MUM WEIGHT DESIGN - 500 KG 

~ 
GE.OME."TRI MATERIALS 

~ 
LQLJ6J 
DIMENSIONS 

Fig. 1 CAD including optimization 

NATO AS! Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 



www.manaraa.com

988 

The design concept that we worked on looks like fig 2: 

CAD .1 CAM I=?~O~ 

Fig. 2 Design concept 

First we would like to briefly explain the different boxes in 

the concept 

CAD - is the traditional CAD system used for drafting, etc. 

We assume that a wire frame model is used 

CAM - is the manufacturing phase 

ALADDIN - is our link to analysis and design. ALADDIN uses 

the wire frame data from the CAD system. The wire 

frame model can also be defined directly in ALADDIN. 

FE - is a Finite Element program for analysis. Its input is 

produced by ALADDIN 

OASIS - is the optimizer and adminstrator of the redesign 

process. OASIS includes some subroutines from the 

ALADDIN and FE programs and also uses their data

bases, see ref [7]. OASIS is using the data base 

system MEMCOM [9] for external storage. 
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Let us explain the process a little bit further: 

1. The designer will create a CAD model of his structure 

using his ordinary CAD system. The model is temporarily 

since it will be changed during the optimization process 

2. Information concerning the shape definition is trans

ferred to the ALADDIN program. ALADDIN is using the wire 

frame concept from CAD and is basically using a set of 

controlpoints, lines, surfaces and solids to describe 

the shape. The designer will now add design variables 

to some of the control points. The shape can now be 

plotted, either as a CAD model or as a FE model, for 

different sets of design variables. Once the designer 

is pleased he will complete the structure with data 

such as loads, boundary conditions, material proper-

ties etc. Complete data for FE-analysis and optimization 

is transferred to the FE program and the OASIS program. 

ALADDIN is also creating a database that is used by OASIS. 

3. OASIS takes over. OASIS computes function and gradient 

values of the objective and constraint functions using 

the FE and ALADDIN systems. A sequence of subproblems 

will be solved and result in a new set of design 

variables which are used to update the CAD and FE data

bases. The results can be inspected or interactively 

changed after each iteration using the optimization 

postprocessor GANDALF, ref [10]. The present design can 

also be visualized on a data screen using ALADDIN. A FE

postprocessor can also be used to present intermediate 

stress and displacement distributions. Corrections of 

the FE-mesh due to unexpected shapes can be made in 

ALADDIN before the optimization continues. 

4. The optimized design can be checked using GANDALF, 

ALADDIN and FE postprocessers before the updated CAD 

model is transferred back to the CAD system. 

5. The designer will now, on the CAD level, inspect his 

new design. Maybe he is not pleased with his result and 
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will thus do pome modifications and another optimization. 

Once he accepts the design he will complete the data with 

measurements, surface finish etc before the CAM system 

takes over to produce the structure. 

Up until today is the system not complete. Operative is now 

the ALADDIN-OASIS-FE system including GANDALF and FE-post

proccessing. 

The following will present a more detailed description of 

the ALADDIN-OASIS-FE system. 

Shape description and design variables 

A wire frame model is basically defined by its control 

points, Pk , k = 1,K, and their coordinates. However, a 

general mechanical structure is a continuum. It can be de

scribed with a parametric formulation: 

R = F(r,s,t,P) 

where R is the position vector in the real space, r,s,t are 

the parameters (values 0 + 1) and P is the set of control 

point coordinates. F is the transformation fucntion, see 

fig 3. 

Parameter space Real space 

t 

t transformation 

~s 

~Y 
X 

Fig. 3 Transformation from parameter space to real space 
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A FE mesh is easily defined in the parameter space. It is 

transformed to the real space using the mapping function F. 

Let C1 , 1=1 ,L be the FE node points and (r,s,t)l their para

meter values. If we want to go from a rough mesh to a more 

refined one, this is easily done. We simply introduce a new 

coordinate set (r,s,t)l in the parameter space. The mapping 

function is unchanged. 

Another interesting feature is that the mathematical expres

sion for the mapping function F is not affected by the 

values of the control points Pk . The value of F is of 

course changed but not its mathematical form. This implies 

that all the real space node points Cl are affected by a 

small change of a control point Pk . However the parameter 

values (r,s,t) 1 of the nodes will be unchanged. With a 

fixed set of parameters, the structure and the mesh is 

entirely defined by its control points. It is now logical 

to attach design variables X., j = 1, J to some of those 
J 

control points. Parametric shape functions F can be found 

for most structures (see ref [2] ). Several such structures 

or separately defined bodies can also be combined in order 

to describe more complex structures. 

It shall be noticed that we can use the mapping function F 

not only for the geometrical shape but also for any kind of 

distribution, ie load, temperature, thickness, boundary 

condition etc. 

The work described in this section is performed by the 

ALADDIN program, see ref [8]. 

Optimization algorithm and approximations 

The design problem can be expressed as an optimization 

problem: 
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min w(x) 

subject to 

g. (x) -< 0 i 1 ,I 
-1 

x. -< x. ..;; x. j 1 ,J 
] ] ] 

w is the objective function which will be minimized. 
gi' i=1, I is the set of constraints and x j ' j=1,J the set 

of design variables. x is the vector of design variables x j . 

wand gi are, in general, nonlinear implicit functions of x. 

Some type of approximation has to be done. 

Prasad and Haftka, see ref [3], have proposed a first order 

hybrid approximation where wand each gi are linearized in 

1/x or x., depending on the sign of the functions derivative. 
] 

Let us consider one constraint gi. It will be linearized in 

1/x. if 3g./3x. -< 0 or linearized in x. if 3q./3x. > O. As a 
J 1 ] ] -1 J 

result the approximate problem will always be convex 

(for x. > 0) and separable. It can be solved by many 
J 

techniques, for instance dual methods, see Fleury and 

Braibant ref [4]. A sequence of hopefully converging approxi

mate subproblems will thus be solved in order to solve the 

original problem. 

We will in this paper use a further development of the 

hybrid method. It is called the Method of Moving Asymptotes 

(MMA) as proposed by Svanberg ref [5]. 

Let us introduce new variables y. = 1/(x.-L.) and 
] ] ] 

z. = 1/ (U . -x. ). We shall notice that L .-+0 =:> y .-+1 /x. and 
] J ] ] ] J 

U. -+ 00 =:> Z. -+ x ., eg the hybrid method approximations. 
] ] ] 

L. and U. are the lower and upper asymptotes to x., and x. 
J ] ] ] 

will always lie somewhere in between. We will now make 

convex approximations in these new variables, that is 

linear in y. if 3g./3x.-<0 or in z. if 3g./3x. > O. L. 
] 1] ] 1 J ] 

will successively be adjusted in order to improve the 

and Uj 
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approximations. If the subproblem solutions are 

oscillating in a variable x., then L. and U. will be 
J J J 

forced closer together. On the other hand if the variable 

Xj is monotonic, increasing or decreasing, they will be 

pushed further apart. 

OASIS is using (k is here the iteration number) : 

L. (k) x. (k) (x.-x.) 
J J J -J for k 1 ,2 

U. 
(k) x. (k) 

+ (x. -x. ) 
J J J -J 

and 

L. (k) x. (k) s (x. (k-1 ) - L. (k-1 ) 
J J J J for k > 2 

U. (k) x. (k) 
+ s(U. (k) - x.(k-1» 

J J J J 

where s = 0,7 for oscillating variables, ie if 

A (x. (k) - x. (k-1» (x. (k-1) - (k-2) ) < 0 and x. 
J J J J 

s = 1/10:7 for monotonic variables, ie if A > O. 

The approximated subproblem will always be convex, so dual 

methods can be applied. The resulting equations are uncoupled, 

due to the separability, and of second degree which implies 

that Xj can be expressed explicitly by the Lagrangian multi

pliers. The convexified problem can sometimes be too conser

vative, which results in a problem with no feasible domain. 

This situation can be avoided if we introduce relaxation 

factors hi for each constraint, eg 

min W + E ai(h i + h. 2 ) 
i 1 

s.t. gi ~:; h. 
1 

i 1 ,I 

X ~ x. ..:; x. j 1 ,J 
J J 

wand gi are the approximations of wand gi respectively, 

and a. are constants. 
1 
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Derivatives 

The MMA needs information about the derivatives aw/ax j and 

agi/ax j . 

Let us consider a displacement constraint, ie: 

g. = d- d ~ 0 
l 

d = uTq 

ad 
ax. 

J 

aK 
IuT ~v e ax. e 
e J 

where d,d is the constrained displacement and its upper 

bound. q is the virtual load and u is the displacement 

vector in the FE problem Ku=p where K is the assembled 

stiffness matrix and p the load-vector. v is the virtual 

displacement vector defined by Kv=q. 

u ,K and v are the displacements, stiffness matrix and e e e 
virtual displacement associated with element e, respec-

tively. 

We finally calculate the derivative of Ke numerically: 

aKe K (x.+~x.)-K (x.) 
e J J e J 

ax. ~x. 
J J 

The data flow will be: 

1. The optimizer OASIS gives x. and an accurate step ~x. 
J J 

to the shape definition system ALADDIN 

2. ALADDIN computes the associated element node coordi

nates and their resulting steps, and brings this infor

mation over to the FE system 

3. The FE system computes K (x.) 
e J 

and K (x.+~x.) 
e J J 

4. OASIS finally calculates the derivative aKe/aXj 

The FE system is also used to solve the equation Kv q. 

Examples 

We will very briefly present three cases where the FE 

system BASIS, ref [6], has been used. 
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Truck front beam 

This is a contract job for Saab-Scania truck division, 

Sodertalje, Sweden. The forged steel beam is shown in fig 4. 

We have in this example used Coons 3-D solids bodies to 

create the CAD model. Each solid body is described by its 

opposing cross section surfaces which are connected by 

alongside splines. Each cross section is defined by a 

combination of straight lines and splines. Design variables 

are then attached to some of the control po~nts in those 

cross sections and alongside splines. Many of those 

variables are linked to each other. We also have require

ments on "positive" slopes of all surfaces as the beam is 

going to be forged. This implies explicit, linear 

constraints on many variables. The structure is also sub

jected to stress constraints and constraints on the rota

tions of the steering pivot pin. In order to reduce the 

problem size we consider only stresses on the beam surface. 

The process was interupted after 3 iterations for inspec

tion and after iteration 5 for discussions with the client. 

Each interation required cp-hour on a CRAY-1 computer. 

Fig 5-8 show the CAD-model, FE-model and iteration histories. 
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~~~~~~~~fi9 5 CAO-mode1 

fig 4 truck front beam 

WEIGHT 

Fig 6 FE-mode1 

0.85 ITER 
I 3 4 5 

STRESS 

problem size: 

4754 nodes 

792 solid elements 

0.951 3 4 5 
ITER (20-nodes) 

3 loading cases 
OEF 39 design variables 

1.01 
/ / / '.L/.£/-L 

0.951~~2--73--4'"----'5-- ITER 

fig 8 iteration histories fig 7 FE-model (active part) 
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Suspension arm 

This is a contract job for Saab-Scania car division, 

Trollhattan, Sweden. The pressed steel suspension arm is 

shown in fig 9. 

The CAD-model is defined by a combination of Coons 2-D and 

lofted spline surfaces, which in turn are composed of 

straight lines, circles and splines. We have in this case 

the uniform thickness as a design variable and also the 

height, width and overhang of the sides. The production 

requires "positive" slopes of the surface. Except for 

explicit, linear constraints we also have stress constraints. 

One iteration required 2 cp-hours on a VAX-7S0. Figs 10-12 

show the CAD-model, FE-model and iteration histories. 
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fig 10 CAD-model 

fig 11 FE-model 

fig 9 suspension arm 

problem size: 

819 nodes 

223 she ll elements 

(8-nodes) 

1 loading case 

4 design variables 

0." L~--,-_~'::;:==-====='-- IlE" 

'" " 

0 .11 
. -..1.-- ITI!R 

• 10 t1 

fig 12 iteration histories 
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Discussion 

We have here been working with large scale problems on 

real structures which implies practical problems such as 

long execution times, very much I/O-operations, require

ments on big disc size (300 Mbyte for the truck front beam) 

and need of big primary storage in the computer (1Mword on 

the CRAY-1). 

We have also been confronted with practical requirements 

such as the positive slopes which implies explicit linear 

or nonlinear constraints. Other aspects are the forced 

linear dependency of many variables and mixtures of diffe

rent kinds of variables such as thickness and shape. 

OASIS can also treat orientation of fibres in composite 

materials simultaneously [7]. 

In example 1 do we only consider surface stresses. We 

solved this problem by including surface stress elements 

with zero thickness. Stress constraints are only consi

dered in those double curved membranes. OASIS can treat 

all kinds of elements simultaneously. 

The steel plate used in the suspension arm is produced in 

certain discrete thicknesses only. We must therefore be 

able to solve mixed continous-discrete problems. 

We can interactively inspect the results and do modifi

cations after each iteraction. We do believe that this is 

very important for large scale problems where unexpected 

results may appear. We have, for certain examples, had 

problems with the element shapes after a number of itera

tions. So far we have solved this problem interactively 

using ALADDIN to modify the FE-mesh. We are right now 

working on adaptive mesh refinement and changes to over

come this problem. 

On our work to link the CAD-system to ALADDIN we have 

noticed that sometimes we must use different CAD repre

sentations in the optimization then were originally de

fined in the CAD-system. 
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We have found that it is very important with good post

processing to evaluate the results. This includes plotting of 

iteration histories, shapes at different iterations, thick

ness distributions, stress distributions etc. The system 

must also be flexible to make it easy to include special 

requirements such as additional constraints for instance 

buckling, flutterspeed etc. 

Finally we must say that the MMA method that we have used 

is very satisfactory. So far no problems. 
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Introduction 

Until recently, structural optimization has not significantly impacted the 

wider analysis community. Several reasons may be advanced, the most 

prominent in the mechanical engineering field being the requirement for 

shell bending elements. In addition, the capability has generally been made 

available as ad hoc packages loosely connected to an analysis program. 

SDRC's OPTISEN offers fully integrated analysis and redesign with 

interactive graphics capabilities for both the specification of the design 

problem and the interpretation of results. 

THE INTEGRATED CAE ENVIRONMENT 

In order that structural optimization be usable for production applications, 

close integration is required between finite elment mesh definition, 

analysis, optimization and output interpretation software. In addition, the 

database environment must be sophisticated enough to recognize and support 

multiple design studies for a given component. These multiple design 

studies could arise form considering: 

Modified groupings of elements to form design variables 

Modified constraint limits 

Modified gauge limits 

Figure 1 
I_DEAS™ 

schematically illustrates the integration present within the SDRC 

software. A common application database allows free transfer of, 

for example, geometry, finite element mesh, loading definition and design 

variable groups between the various modules within the integrated re-design 

package. 

NATO ASl Series, VoL F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
© Springer-Verlag Berlin Heidelberg 1987 
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Figure 1. The I·DEAS MechanIcal CAE System 

Currently in OPTISEN optimization is available for linear static analysis 

for the following elements: 

3, 4, 6 or 8 noded shell with membrane and bending effects 

Tube beam 

Box beam 

Bar 

Circular solid beam 

Channel beam 

Other elements may be included in the model but they will not be resized . 

Mathematical Foundation 

OPTISEN seeks to minimise the mass of the structure Y(~) subject to 

performance constraints 

Yhere ~ is the vector of design variables, Zi - typically thicknesses of 

shells. A group of finite elements is related to a design variable using 

the accepted technique of design variable linking (1) . 
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In order to determine the conditions to be satisfied at the optimum we 

introduce a Lagrangean function 

L (z, X) = V (z) + 1: A. (g. (z) - 1) 
-- - jJ J-

where Aj are Lagrange multipliers which must be positive. 

The Kuhn-Tucker conditions [2J may be derived as 

av(z*) + I Aj ~j (~*) 0 

aZi 
j az. 

1 

A. (gj (z*) - 1) = 0 
J 

gj (~*) ~ 1 

Solution Strategies 

Two solution strategies are adopted in OPTISEN. The well known full 

stressing algorithm is available for stress constrained problems. In 

addition, a more general pseudo-Newton algorithm applicable to strength 

and/or stiffness controlled structures is included. The pseudo-Newton 

algorithm [3] seeks to satisfy the Kuhn-Tucker conditions in total by 

retaining linear 

that first and 

expressions for the performance constraints and presuming 

second derivatives of the objective function can be 

calculated. This approach may be interpreted as a second-order gradient 

projection algorithm. 

i.e. Minimise ~ 

Subject to 

v(~ + !!) 

s:(Z) + Gil < I - --c 

where I is a column of unit values -c 
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This leads to the matrix equations 

)..k+1 
[Q H-1 Qt]-l {l GH-1 w I } -c 

h _H-1 
{ Qt 

)..k+1 + 
V ~ } 

Vlhere 

G is a matrix of constraint gradients commonly referred to as design 

sensitivities. 

h is a step in design space 

The superscript refers to iteration level. 

Active Set Strategy 

A means of identifying active constraints is required to utilise this 

algorithm. OPTISEN uses a compound strategy based on constraint violation 

and information on Lagrange multipliers obtained by solving a linearised 

form of the dual problem [4] which requires maximisation of 

Subject to 

Constraints with positive Lagrange multipliers in the dual are added to the 

active set. An anti- zig-zag strategy is adopted by ensuring that a 

constraint is retained in the active set for at least two successive 

iterations. 
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It should also be noted that in the solution for the primal Lagrange 

mUltipliers if negative multipliers are obtained, the most negative is 

rejected and the solution repeated until only positive multipliers remain. 

Sensitivity Analysis 

The pseudo-Newton algorithm requires the calculation of the derivatives of 

the active constraints with respect to changes in the design variables -

commonly referred to as design sensitivities. 

OPTISEN computes sensitivities for static problems using either the dummy 

load method or the direct method [5,6]. Both methods use as a starting 

point differentiation of the equations of equilibrium. 

Example 1 - The Fully Stressed Design of a Plastic Seat Tub 

The plastic seat tub is fabricated in Azdel Thermoplastic laminate with the 

following properties. 

Flexural strength: 

Tensile strength: 

Tensile Modulus: 

Density: 

152MPa 

76MPa 

5.52GPa 
-6 3 1.19 x 10 kg/m 

Three load cases were considerd (Figure 3) 

1) Seat frame fatigue (678 N.m. about design H point) 

2) Seat durability (2446 N through H point) 

3) Racking load 

Only the first two load cases were critical in designing material 

thicknesses. 

The seat tub and the steel brackets to which it connects were idealized 

using 3 and 4 noded shell elements. The model geometry, topology, boundary 

conditions, material properties and load were defiend in SORe Supertab. The 

finite element model was comprised of 763 nodes and 697 elements. 
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o.llgn H PoInl 

Figure 2 Three Load Cases were Critical to the Seat Tub Design 

Additional data to define the optimization was specified in the OPTISEN 

module. Firstly, finite elements which were required to have a constant 

thickness were associated with an Optimization Group (Figure 3). This 

linked the thickness of the elements in an Optimization group to one design 

variable. Each group had the following parameters specified: 

1) Allowable von-Mises stress in bending 

2) Allowable von-Mises stress in membrane 

3) Maximum and minimum allowable thickness (gauge limits) 

4) Initial thickness 

Figure 3 

. 
1.:. 

Optimization Group for Outer Edges Used to Maintain Constant 

Thickness 
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The optimization groups were defined based on a number of manufacturability 

and design criteria. 

- Maintaining uniform thickness on outer edges for aesthetic purposes 

- Maintaining constant thickness around structural connect points 

- Promoting smooth flow of load and gradual thickness variation across the 

part 

This led to the use of 10 optimization groups. 

Groups of elements which were not to be redesigned, in this case the steel 

brackets, were specified as frozen elements. 

Initially all plastic Optimization Groups were prescribed a minimum gauge 

limit of 2.54mm. 

The Optimization strategy adopted was a classical fully stressing technique. 

In this approach the optimization groups are redesigned in an attempt to 

ensure that the most highly stressed finite element in the optimization 

group is either on its stress limit or its gauge limit. 

For combined bending and membrane cases where different limits are specified 

the following failure law is adopted 

1 

Yhere a and G are the actual and limit von-Mises Stresses for membrane and m m 
ab and Gb are the actual and limit von-Mises Stresses for bending. 

The described procedure is essentially iterative, requiring a finite element 

analysis at each sweep. The analysis forms the vast majority of the 

computational expense of each iteration. 

In two iterations most of the optimization groups were on their lower gauge 

limits and only two groups were being designed. This suggests a possible 

route for efficiency improvements obtained by rapid re-evaluation of designs 

in succeeding iterations based on structural modification theory rather than 

a complex reanalysis. 

The mass of the seat tub was further reduced by 16% from the manually 

optimized design. As the majority of the structure was held on its lower 

gauge limits a second design study using the minimum moldable thickness of 
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2mm was undertaken. The convergence history for this example is illustrated 

in Figure 4. This design produced a mass reduction of 24% from the starting 

figure. 
\N( I-Cl(M I .... ... 1 a",- •• u.t I ." ' ~.".'\'" 'l", to.,li 
~ .... :=!.~-

\ 
.~ 

._ .... --

l4 . fU · " ""il l i' -.. 
.I~-"""-

Figure 4 Yeight versus Iteration using 2.0mm Minimum Gauge Limit 

Example 2 - Fiat-Allis Excavator Arm 

The objective of this example, undertaken jointly by SDRC and Fiat-Allis, 

was to improve the durability of a production arm while giving due 

consideration to product cost and manufacturability. Fatigue failures had 

been occurring in welds located in four critical areas. 

A finite element model of the production arm was configured using 3 and 4 

noded shell and linear beam elements. The mesh density of the model was 

consistent with an accurate representation of the overall stiffness 

distribution and the accurate prediction of stresses in the following 

critical areas. 

A. Change in section between the foot casting pivots and the boom cylinder 

castings. 

B. The area surrounding the attachment of the boom cylinder casting to the 

side panels. 

C. The area surrounding the attachment of the stick cylinder to the toe 

panel. 

D. The nose casting area. 

The finite element model with these four critical regions highlighted is 

shown in Figure 5. 
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Figure 5 Finite Element Model of Excavator Arm 

Local weld detail was modelled in critical Area A. In other critical areas 

the mesh was defined to give an accurate representation of nominal stresses 

in the vicinity of the welds. 

The finite element model is comprised of: 

1617 nodes, 1728 shell amd 176 beam elements 

Three load cases were considered (Figures 6 - 8) 

1) Fatigue 

2) Yield - boom fully extended 

3) Yield - boom vertical 

Optimization 

(specifically 

groups were selected based on manufacturability considerations 

a reduced level of fabrication) and the production boom was 

analysed using OPTISEN for stress and displacement requirements. The 

displacement constraints were based on' acceptable in operation behaviour and 

the stress constraints were based on achieving an acceptable fatigue life. 

Various design studies were performed with, typically, 15 design variables. 

The OPTISEN analyses showed a potential for weight reduction of 14% (437kg) 

when considering displacement constraints and 20% (611kg) when considering 

stress constraints. 

OPTISEN provided a great deal of design insight regarding the most efficient 

locations for material redistribution. Many internal panels were reduced in 

thickness to the extent of becoming redundant. The sidewalls were also 

sized down significantly. 
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Based on the optimization results a new concept was developed. Optimization 

groups were chosen such that the top and bottom of the boom would be of 

uniform thickness. The sides of the booms were each divided such that there 

could be two different thicknesses. Each internal member was allocated a 

unique optimization group. 

Stress constraints were applied to each of the optimization groups based on 

allowable stresses derived from fatigue calculations. 

After five iterations OPTISEN had reduced the mass by 8% and produced a 

structure satisfying the constraints. The full potential for weight 

reduction was not achieved because of the restrictions imposed by ease of 

manufacture. 

• 
~t 

--
Figure 6 Load Case 1 Fati~ue 

-

I ~ 

\ 

Figure 7 
Load Case 2 Yield - Boom Fully Extended 

Figure 8 Load Case 3 Yield - Boom Vertical 
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The stress levels in the critical areas were reduced to acceptable levels. 

A comparison between the production and new concept level is shown in Table 

1. Although the fatigue stress has increased for critical Area B the 

location of the maximum has been relocated away from the welds. 

Fiat-Allis produced a prototype of the "new concept" arm in accordance with 

the analytical recommendations. Operating tests consistent with the 

analytical load cases were carried out while strain measurements were 

recorded. 

The test measurements show a good level of correlation with the analytical 

results and thus demonstrates the effectiveness of such a technique. 

Table 1: New Concept versus Production 

Area A Area B Area C Area D 
Design Fatigue Yield Fatigue Yield Fatigue Yield Fatigue Yield 

Production 273 1489 141 514 231 294 239 193 

New Concept 91 447 199 448 186 435 211 133 

Units in N/mm2 

Conclusions 

Modern structural optimization techniques can significantly 
design of complicated mechanical components. Application 
techniques has been demonstrated on practical problems. 
development includes extending the software to include 
constraints. 
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PANEL DISCUSSION: TRENDS IN COMPUTER AIDED OPTIMAL 
DESIGN 

Panel Discussion Moderator: 
Dr. Jaroslaw Sobieski 

NASA Langley Research Center 

The ASI program culminated in a panel discussion. The panel was made up of the following 
eminent contributors to the theory and practice of optimization, introduced in alphabetical or
der: 

Dr. L. Berke, NASA Lewis Research Center, USA 
Prof. C. Fleury. UCLA, USA 
Prof. E.J. Haug, University of Iowa, USA 
Mr. H. Hornlein, MBB, FRG 
Mr. G. Lecina, Avions Marcel Dassault, France 
Prof. A. Morris, Cranfield Institute of Technology, USA 
Prof. J.E. Taylor, University of Michigan, USA 

The discussion format was defined by the Moderator at the outset of the session: the session 
was divided in two parts. The first part focused on four topics: 

* Acceptance of optimization methods in engineering and the role of education III 

fostering that acceptance. 

* Interactive use of information in optimization. 

* Potential of the AI methods in optimization. 

* Integration of optimization into design process. 

Each topic was briefly introduced by one panel member who volunteered to do so. Following 
the introduction, the topic was declared open for discussion by the panel members and by the 
audience. The audience 'participation was not limited to the question adressed to the panel 
members; the audience's own comments and polemics were encouraged. The discussion's divi
sion into topics was treated flexibly, with the division lines acrossed freely often. 

The second part of the discussion was entirely devoted to an open forum involving the panel 
members and the audience. 

The Panel Session lasted 3 ! hours and there was 84 interventions. It was only possible to 
include a few of these in this book. The Editor apologizes for any inconvenience it may have 
caused. All discussion was recorded and anyone interested in the magnetic tape please contact 
the Editor. 

NATO ASI Series, Vol. F27 
Computer Aided Optimal Design: Structural and 
Mechanical Systems. Edited by C. A. Mota Soares 
@ Springer-Verlag Berlin Heidelberg 1987 
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The topic of the discussion is: Why do we have problems 
with optimization methods to be accepted by designers and used 
in daily practice? Well, we might or might not have a problem, 
and it is a matter of degree of acceptance, and for what kind of 
problems. There are major automated design capabilities, 
representing large coded systems, that are in use over a decade 
by the aerospace industry for detailed design studies. These 
are based mostly on classical optimality criteria approaches, 
such as in the case of the ASOP/FASTOP capabilities with FSD for 
stress constraints and "equal cost of improvement for all design 
variables" as the criteria for stiffness type constraints 
(displacements, flutter, vibration, divergence, etc.). Also, 
the TSO preliminary design capability, based on direct search 
techniques, is in industry-wide use for a decade. However, the 
newer capabilities might have some difficulty in being readily 
accepted and certain amount of aggressive marketing is needed, 
as occurring in the case of COPES/CONMIN and ADS. 

Let us briefly look at the various aspects of the problem. 
The advantages are clear, feasible designs can be obtained where 
human designers may have problems finding isolated feasible re
gions that look like the cosmologist's worm-holes in the uni
verse. Optimum design with labor saving automation is the most 
obvious benefit for a design office. 

There are inhibitors, of course, such as confidence in 
automated design wisdom that is perhaps not clear to a non
specialist, and the expense in time and money to train design
ers in new methodology. The drivers towards acceptance are the 
broad application in the total range of design from conceptual 
studies to final detailed sizing once confidence is built. Then 
there are special problems perhaps not even solvable except by 
the infinite patience of an automated search procedure. 

The question of acceptance is also different relative to what 
kind of company is to adopt new methods. Aerospace is perhaps 
more innovative, civil more conservative, small companies £an go 
either way to survive and prosper. 

Within a company one can think of three sets of people with 
entirely different attitudes. Managers weigh advantages-disad
vantages, designers worry about the correctness of the design; 
method developers are the most flexible, they have nothing to 
loose, but prefer their own developments to be adapted. 

There can be concerns by companies also relative to what is 
the competitive edge if government agencies distribute the same 
"best" method to everyone? What is the proprietory design sys
tem in that case giving real or imaginary competitive edge? 
Training.is costly, but pressures of unusual High Tech. problems 
with,no previous body of experience forces designers towards 
rational automated methods. One can also raise the question of 
the role of government, university and industry researchers in 
promoting acceptance of optimization methods. Aggressive demon
stration of applicability through real world design problems is 
the most productive way. ASOP/FASTOP was demonstrated through 
developing designs parallel and concurrent with manual design 
activities. To ease the training needs and reduce aversion to 
learning to use a new code, modern "expert systems" approaches 
can make the first .experience with a new code "user seductive". 
This topic is now open for discussion. 
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Computational effort in structural design 
H.R.E.M. Hornlein 

The different algorithms which are used to solve the general nonlinear 
programming problems, are usually assessed by means of efficiency, accuracy, 
reliability and robustness. The efficiency is a measure of the processing 
time and is considered as the most important criterion in almost all test 
studies. Obviously the acceptance of a method is dominated by efficiency, 
because of excessive execution time all other criteria are superfluous. 

The numerical effort for function evaluation and gradient calculation was 
never considered during the development of mathematical programming methods. 
Quite the opposite, the measures to accelerate the convergence speed are in 
most cases based on higher order information, i.e. the derivatives. In 1970 
R.L. Fox argued in his book IOptimization Methods for Engineering Design l 
for the choice of a method: IIFor very large, ill-conditioned problems (200 
variables or more) with no gradients available, one is likely to need divine 
aSSistance, ••. 11 

In structural design problems, the restricted state variables (stress, dis
placement, natural frequencies, aeroelastic efficiencies etc.) are given 
implicitly in the system equations. Therefore, the evaluation (analysis). 
and derivation (sensitivity analysis) of these constraint functions are very 
costly. The required computational cost for finite element structures in
creases polynomially with the number of design variables. 

Subsequently, lower bound estimates of the processing time for displacement 
related constrained problems will be given. The main effort is the solution 
of linear equation systems. This will be measured by means of operation
counting (operation = multiplication + addition). The following three dif
ferent methods for gradient calculation wi 11 be assessed and compared by 
the relative analysis effort. 

DQ : Difference quotient via finite differences. 
DSA*: Design sensitivity analysis by exploiting the analytical relation

ship. 
SAXT*: Extended sensitivity analysis for special structured mathematical 

programming problems e.g. transformation methods. 

The number of degrees of freedom for the finite element structure is chosen 
as reference number for counting the number of operations OP(n). Some fur
ther assumptions are based on factors of proportionality. 

n '" m :# structural elements => m : = n 
m '" iii :# design vari able => rrr : = m/2 

These assumed factors might be discussed, but this does not change the 
final qualitative conclusions. The number of load cases is set toNLC= 4 and 
the relative bandwidth of the stiffness matrix K is assumed to be c = 10% 
of the number of degrees of freedom. 

* see item 8. in ITake-off in optimum structural designl. Lecture presented 
at the NATO Advanced Study Institute on Computer Aided Dptimal Design, 
Troia, Portugal, July 1986 



www.manaraa.com

1021 

The static response requires one Cholesky factorization (CF) and l NLC forward 
backward substitutions (FB) to obtain the displacement vectors u from the 
static equilibrium equations: Ku l = Rl 1 = 1, ... ,NLC 

OPA(n) = OPCF (n) + 4 . OPFB(n) (1) 

This is assumed to be the main effort for the analysis. For the sensitivity 
analysis by finite differences DQ as many analyses are needed as design 
variables. 

(2 ) 

The analytical calculation of the gradients DSA*, only as many forward back
ward substitutions are required as design variables (design space method) 
for each load case. The adjoined variable method (state space method) needs 
proportionally the same effort. 

(3) 

Eventually the special sensitivity analysis SAXT* needs just one forward 
backward substitution for each load case. 

(4) 

Because of the required operations for one standard Cholesky factorization 
and forward backward substitution respectively 

3 2 
OPCF(n;c) = ~(3c2 - 2c3) + ~(3c-c2) + % (6+5c) 

OPFB(n;c) = n2(2c - c2) + nc 

the required computing time for equations (1) to (4) can be expressed by 
polynomials of second to fourth degree. 
Fig.1 shows the processing times for a computer with 106 operations per 
second. 

A comparison of the methods reveals that the gradient calculation via finite 
differences is prohibitive for large scale structures. The DSA and SAXT are 
actually not comparable. The DSA provides the primal mathematical programming 
methods with the entire Jacobian of the constraints (row-wise gradients), 
while the SAXT gives only a linear combination of the gradients as needed in 
the transformation methods. More obviously is the superiority of SAXT (if 
applicable) when considering the relative effort, Fig.2. It is evident that 
the computational effort becomes insignificant in comparison with the over
head calculations for large scale structures. 
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ISSUES OF GENERALITY, RELIABILITY AND EFFICIENCY 
IN OPTIMUM DESIGN 

Discussion by Jasbir S. Arora, University of Iowa 

Optimal design of large systems in the interdisciplinary design 

environment needs reliable algorithms. Many algorithms have been 

developed and evaluated for structural optimization. In these algorithms, 

efficiency has been given priority over reliability and generality. 

To have efficiency, approximations are introduced into the algorithms. 

With such approximations, many algorithms loose their robustness and 

applicability to complex problems. In summary, approximate methods 

are efficient but unreliable, inaccurate and not general. Globally 

convergent (robust) methods are general, accurate and reliable but 

need more computational effort. My contention is that we should relax 

the efficiency "constraint" for optimum design of practical systems. 

I am not saying that we should use inefficient algorithms. What I 

am advocating is that reliability should be given more weightage over 

efficiency in practical design environment. We should concentrate 

on developing reliable algorithms that are generally applicable. 

For complex and interdisciplinary systems, reliability of algorithms 

is essential. Unreliable algorithms can be actually more expensive 

because they require more user interaction and time, resulting in 

overall inefficiency. Use of optimization in general design environment 

also needs reliable algorithms. This is essential to gain user confi

dence and promote use of design optimization. The efficiency aspect 

will be taken care of in the near future with spectacular advances 

in computer hardware. In addition, we can expect to have finite element 

methods, design sensitivity analysis methods and optimization algorithms 

on hardware making the design process very efficient. With parallel 

computers becoming available we should concentrate on developing robust 

algorithms that exploit this capability. Finally, implementation 

of optimization algorithms into a robust software is a tedious problem 

requiring considerable resources and time. Knowledge engineering 

concepts can help considerably in robust implementation of algorithms 

as well as the design process itself. 
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Some Factors Favoring Interactive Opti.a1 Design 

E.J. Haug 

Optimal design, has, in the past, been viewed as a batch mode 

computational problem. Most iterative optimization methods make little or no 

provision for interactive control of the process by the experienced 

designer. A number of factors are emerging that suggest more emphasis should 

be placed on methods of optimial design that involve the designer, preferably 

an interactive mode. 

Graphics based workstations have become commonly available and used in 

finite element modeling. Expansion of graphic definition of finite element 

models to include design variable definition would be extremely valuable in 

formulation of design optimization problems. It can also be extremely 

valuable in displaying information in a form that is interpretable by the 

experienced designer. 

Most experienced designers can evaluate progress in design and 

optimization best if feasible, or near feasible design iterations are 

reported. Human experience in control of the optimization process can (1) aid 

in formulation refinement, (2) identify onset of mesh distortion in shape 

optimization, and (3) evaluate progress and/or difficulties and permit 

termination of the iterative design optimization process. Reporting trade-off 

information to the experienced designer can greatly assist in refinement of a 

formulation that may not have considered all factors that become important 

during the iterative optimization process. This is particularly important in 

complex systems, since modes of failure or classes of feasible design 

alternatives may not have been adequately considered prior to analysis of the 

structure. 

Of critical importance in gaining acceptance of design optimization 

methods by experienced designers is providing them with design change control 

on an iteration by iteration basis. Through realization that optimization 

methods can resolve trade-offs and predict improved designs in complex 

situations that defy human intuition, over time the experienced designer may 

develop enough confidence in optimization algorithms to adopt them and turn 

control over to the algorithm for a few iterations or for convergence to an 

optimized design. Without interactive control, many experienced designers may 

never give optimization methods a fair evaluation. 

Finally, artificial intelligence methods may be able to capture some 

forms of "design wisdom" and take advantage of experienced designers 

capabilities in formulating and solving design optimization problems. 
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Some Factors Favoring 

INTEIlACTIVE OPTIMAL DESIGN 

E.J. Haug 

• Graphics to assist in design variable definition 

• Report feasible (or near feasible) design iterations to user: 

(1) aid in formulation refinement 

(2) identify onset of mesh distortion 

(3) evaluate progress/terminate 

• Report trade-off information to assist in formulation refinement 

• Permit experienced designers who do not trust or believe in optimization 

to control the process, to encourage adoption 

• Enhance communication (AI) 
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Potential of AI Methods in Optimisation 

A.J. Morris 
Cranfield Institute of Technology, V.I(. 

AI has been "over-sold" in recent times and many exagerated claims are made on its behalf 
which seems unlikely to come to fruition in the near future. Nevertheless, some important 
developments are taking place and the Structural Optimisation community show view. theref0re. 
view AI as representing a new."box of programing tools" some of which will be beneficial in 
making Structural Optimisation systems more user friendly. 

Beginning with Natural Language developments it is possible to see a simple passer being 
incorporated into a structural optimisation program to allow a more flexible command language 
structure to be used. At the lowest level this would free the user from needing to employ 
exact sentences or word lists in a command statements in order to avoid syntax errors. The 
incorporation of declarative routines would permit the creation of effective explanation and 
tutoring facilities. On a higher level Expert System concepts could be used with a " first
level" structural optimisation routine to aid in the tasks of modelling the structure, order the 
algorithms and controlling the utility routines. 
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Future Trends in Computer Aided Optimal Design 

Claude Fleury 
Mechanical, Aerospace and Nuclear Engineering 

University of California 
Los Angeles 

Structural optimization is now a mature discipline, and it begins to penetrate the industrial 
comunity. Several commercially available FEM systems will soon be released with design optI
mization capabilities. Therefore the most important area of development in the next few years 
will certainly reside in creating good user interfaces aimed at facilitating the task of the design
ers. In particular it will be extremely important to nicely integrated FEM and CAD technologies 
within an optimization loop, in order to fully computerize the design rycle. From the academic 
research point of view, considerable efforts should be redirected toward the following topics: 

• development of appropriate" design oriented" structural models (for example, in
stead of optimimizing the thickness of membrane elements, it would be more suitable 
to optimize a design model from which the finite element mesh can be derived); 

• fundamental study of geometric modeling concepts and methods is probably the 
key of successfully implement shape optmization capabilities (again the finite ele
ment mesh should be derived analytically from the parametric geometric model); 

• an important and challenging research domain is concerned with error analysis 
and adaptive mesh refinement methods, which will be in the future key ingredients 
of FEM analysis and optimization systems (any user friendly FEM system should 
create and update the mesh by itself); 

• the computer graphics aspects of CAD should now be exploited with design opti
mization concepts in mind (display of design model, representation of design space, 
iteration history, etc ... ); 

• as a result interactive optimization capabilities should be developed, making an 
extensive use of innovative visualization features; 

• finally, when we shall have enough experience and expertise in using user friendly 
Computer Aided Optimal Design Systems, it will become possible to gradually re
place the interactive capabilities with more automated ones, by bringing artificial 
intelligence methods, as well as expert systems. 

Of course more traditional approaches to structural optimization methods will continue to 
be studied, because there still exists many fundamental problems that have not been solved 
(optimal design of solid plates; dynamic response constraints, ... ). For the same reason, numerical 
optimization algorithms will still be the object of substancial development efforts (discrete 
variables, equality constraints, very large scale problems, ... ). However I believe that most of 
the research and development activities in the next decade will be devoted to the topics listed 
above. 
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